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Unsteady analyses of the flow between two egg-carton corrugated plates were performed.
Geometry effects on the flow were as follows: “closed recirculations” shrank downstream the
channel and became “open recirculations”. For the 180◦ egg-carton plates, recirculations were
z-symmetric to the channel center. Reynolds number increments favored recirculation growth
and flow detachment. Transient development effects were as follows: the steady state was
reached faster in waves closer to the channel entrance. As time advanced, spatial flow develop-
ment advanced toward the channel outlet, and y-concave geometries inhibited fluid detachment
and steady state achievement. Consequences of the geometry on the transient development of
the flow were as follows: the recirculations appeared at larger times, they were smaller, and
became “open recirculations” closer to the channel inlet for the 0◦ model, and the 0◦ model
flow reached a steady state faster. Finally, no clear evidence of unsteady features called “rolling
vortices” was observed. Such unsteady features might be a consequence of small unavoidable
experimental uncertainties creating a pulsating flow.
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Notations

A – amplitude, m,
g – gravitational acceleration, m/s2,

Havg – the average distance between corrugated plates, m,
P – pressure, Pa,

P1, ..., P6 - - monitored points in the secondary flow region,
Pi, Po – monitored points close to the inlet and outlet,

Re – Reynolds number, dimensionless,
Rst – detachment point x-location, m,
RL – recirculation x-length, m,
t – time, s,
v – velocity, m/s,

x, y, z – Cartesian coordinate system, m.

Greek symbols

µ – dynamic viscosity, Pa · s,
Λ – wavelength, m,
ρ – density, kg/m3,
φ – scalar variable,
δ – hydrodynamic boundary layer thickness.

Subscripts and superscripts

x, y, z – variable acting on the x, y, or z direction.

1. Introduction

Multiple investigations have been conducted to improve mixing at low Rey-
nolds numbers by modifying the geometry of the walls and/or the characteristics
of the main flow [1–7] in heat exchangers applications and microfluidic applica-
tions involving chemical reactions. The improvement in mixing leads to a better
transfer of thermal energy. In particular, several researchers [2, 7–12] reduced
thermal resistance close to the plates of the heat exchangers by using corru-
gated plates (1-D corrugations in the direction of the main flow) instead of flat
plates. Such corrugations generate recirculations and better mixing. However,
they also produce naturally higher pressure drops. Searching for better mixing,
few researchers [13, 14] have added corrugations not only in the streamwise but
also in the spanwise directions of the flow, generating an egg-carton corrugated
plate. By studying 2-D fluid particles pathlines of the flow between two egg-
carton corrugated plates, Sawyers et al. [14] observed fluid particles leaving
the recirculation and joining the main flow, while Girón-Palomares et al.
[13] observed open recirculations and rolling vortices allowing interaction be-
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tween the secondary and main flow. Such interactions between the secondary
flow and the main flow, reported in [13, 14], improve the mixing of the fluid.

Theoretical investigations [14] on egg-carton corrugated plates usually make
several assumptions (steady state, full development, and periodic flow), while
the experimental counterpart [13] keeps the flow between egg-carton corrugated
plates closer to reality. Several experimental investigations [8, 9, 13, 15] have
reported possible unsteady flow features (open recirculations, rolling vortices,
and macroscopic mixing) in the flow between two corrugated plates. However,
it is not completely clear if such flow features are effects of the plate geome-
try or consequences of experimental conditions uncertainties (unavoidable small
variations on the flow velocity creating a pulsating flow or a transient flow that
has not achieved a steady state). In order to verify if such unsteady features
are a consequence of unsteady artifacts, Girón-Palomares et al. [16] per-
formed a detailed numerical steady analysis of a long egg-carton corrugated
channel (i.e., a corrugated channel with corrugations not only in the streamwise
but also in the spanwise directions of the flow) avoiding the fully developed and
periodic flow considerations. The authors [16] observed not only open recircu-
lations and macroscopic mixing, but also a complex 3-D behavior of the fluid.
These observations confirmed the egg-carton corrugated plate geometry effects
(open recirculations, macroscopic mixing and 3-D behavior) on the flow and
ruled out unsteady artifacts as the cause of such flow features observed in ex-
perimental works. Nevertheless, no rolling vortices were observed and such flow
feature could be a consequence of unwanted experimentally introduced unsteadi-
ness. Rolling vortices are unsteady features that improve the transport of fluid
and therefore mixing. In consequence, this additional mixing feature will locate
egg-carton channels as the leading corrugated channels to improve mixing in the
laminar regime. Nevertheless, these rolling vortices could result from unavoid-
able small variations of the flow velocity creating a pulsating flow. Pulsating
flows have been used by several researchers [1, 3, 5, 6] to improve mixing and
heat transfer. A detailed unsteady analysis of the flow between two egg-carton
corrugated plates was performed in this research to explore such possibility. The
unsteady model was built based on the steady model developed in [16] (a model
exhibiting local and global convergence, as well as spatial mesh size indepen-
dence), and it was corroborated to have temporal mesh size independence. As
in [16], two phase angles (180◦ and 0◦) between the top and bottom plates were
investigated, and they were referred to as the 180◦ model and the 0◦ model, re-
spectively. To observe the differences in the flow pattern as turbulent regimes are
approached, Reynolds numbers from 100 to 600 were considered. It is imperative
to examine if egg-carton corrugated plates generate rolling vortices, because this
phenomenon will make egg-carton corrugated plates as the leading corrugated
channels to improve mixing in the laminar regime.
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2. Methodology

The procedure used in this research work was as follows:
1) Develop unsteady hydrodynamic numerical models of two egg-carton plates

with the geometrical characteristics and operating conditions of a previ-
ously developed spatial mesh size independent model [16].

2) Solve the unsteady models for four different time steps, three different
Reynolds numbers, and confirm local as well as global convergence for
each model.

3) Compare the different time-step models to confirm that further reduction
of the time step is not necessary (i.e., temporal mesh size independence
has been obtained).

4) Verify that the flow patterns obtained at a very long time agree with the
steady state results obtained in [16].

5) Analyze and discuss the development of the flow pattern in space and time
for the results obtained from the numerical models exhibiting spatial and
temporal mesh size independence.

The characteristics of the unsteady hydrodynamic numerical models and the
numerical solution procedure are described in Subsec. 2.1. Subsection 2.2 shows
the rigorous methodology used to develop numerical models that exhibit global
convergence, local convergence, as well as spatial and temporal mesh-size inde-
pendence. Steps 2 to 4 of the procedure shown above are discussed in Sec. 3.
Finally, step 5 is described in Sec. 4.

2.1. Governing equations, discretization and solution procedure

Schematic views of the heat exchanger plate geometries studied in this re-
search are shown in Figs 1 and 2. The location of a point at the top corrugated
plate can be described by the following equation:

(2.1) z =
Havg

2
+Ax cos

(
2πx

Λx

)
+Ay cos

(
2πy

Λy

)
,

where x, y, and z are the Cartesian coordinates, Λx is the wavelength in the x-
direction, Ax is the amplitude of the wave in the x-direction, Λy is the wavelength
in the y-direction, Ay is the amplitude of the wave in the y-direction, and Havg

is the average distance between plates (see Figs 1 and 2). A similar expression
can be obtained for the bottom plate.

The computational domain was considered as fluid bounded by walls, except
for the inlet and the outlet. The top and bottom walls were the corrugated plates
with a 180◦ or 0◦ phase angle (applied in both x and y directions), while the
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a)

b)

Fig. 1. Schematic view of the egg carton plates with a 180◦phase angle: a) lateral view (the
main flow direction is from right to left) and b) frontal view. Havg = 30 mm, Ax = 4.5 mm,

Ay = 3 mm, Λx = 83.34 mm, and Λy = 76.25 mm.

a)

b)

Fig. 2. Schematic view of the egg carton plates with a 0◦ phase angle: a) lateral view (the
main flow direction is from right to left) and b) frontal view. Havg = 30 mm, Ax = 4.5 mm,

Ay = 3 mm, Λx = 83.34 mm, and Λy = 76.25 mm.

side walls were considered to be flat and parallel to the xz-plane. The govern-
ing equations for the flow in the computational domain are the continuity and
Navier-Stokes equations. If the fluid is considered Newtonian, incompressible,
and with constant viscosity, the governing equations take the following forms:
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where x, y, and z are the Cartesian coordinates, v is the velocity, P is the pres-
sure, g is the gravitational acceleration, t is the time, ρ is the density of the
fluid, µ is the dynamic viscosity, and the subscript x, y or z indicates a scalar
component of a vectorial variable acting on the x, y or z direction.

The boundary conditions used to solve the governing equations were as fol-
lows: non-slip boundary conditions for all the walls in the computational domain,
an inflow boundary condition at the inlet of the channel with a uniform velocity
profile, and a pressure outlet boundary condition at the exit of the channel (this
boundary condition accounts for sudden expansions or divergent geometries by
allowing backflow and flow separation). Because the outlet and the surface of
the corrugated plate are mutually perpendicular, the backflow was considered to
be perpendicular to the outlet boundary. In this way, the outlet flow variables
were determined from the interior. The magnitude of the velocity at the inlet
was determined according to the Reynolds numbers studied. In agreement with
a previous steady analysis [16] of these plates, the static pressure (gauge pres-
sure) was applied as 0 Pa. These boundary conditions were applied for any time
larger than zero.

The computational solution of the governing equations was obtained by im-
plementing a finite volume method in ANSYS FLUENT. First, the spatial com-
putational domain was divided into discrete control volumes using a computa-
tional grid (mesh). A uniform mapped mesh with more than 10 million finite
volumes, providing high-quality cells, was used (see [16] for a detailed descrip-
tion). Next, Fluent created a system of algebraic equations by applying and inte-
grating the conservation governing equations over every single discrete volume.
The system of algebraic equations was linearized and solved by using a Fluent
pressure-based solver. For the transient analysis, the pressure-implicit with split-
ting of operators (PISO) [17, 18] scheme is a pressure-velocity coupling scheme
that is more efficient than the SIMPLE (i.e., a segregated algorithm [19]) scheme.
The COUPLED algorithm [20] is usually more stable and faster than the SIM-
PLE or PISO algorithms but requires a computer with larger RAM. According
to [16], the COUPLED algorithm was able to obtain converged steady solutions
for high Reynolds numbers and number of cells in the same mesh model of the
steady flow between the egg-carton corrugated plates. Therefore, the COUPLED
algorithm was chosen as the first option to obtain the unsteady flow solution.
When the solution residuals presented unstable or stalling convergence behavior,
the solution algorithm was changed to the PISO algorithm. The under-relaxa-
tion factors (commercial code default optimum values) were used for velocity,
pressure, conservation equations, density, and body forces in order to avoid in-
stabilities or divergence of the solution. Such optimum values were reduced when
needed (i.e., when residuals stalling, divergence or instabilities were observed).
On the other hand, interpolation procedures were used to obtain the value of the
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solution variable at the faces of the cell (the pressure-based solver obtains the so-
lutions only at the center of the cells). A second-order Fluent upwind interpo-
lation scheme was used for velocities. In the case of the pressure, the Fluent
PRESTO! interpolation scheme [19, 21] was used. Models presenting swirling
or high boundary curvatures work well with PRESTO! interpolation schemes.
These spatial discretization and solution procedures were applied to every un-
steady state numerical model generated in this research.

The temporal term on the governing equations was discretized using back-
ward finite differences. Therefore, the following discretized version of the mo-
mentum governing equations should be solved:

(2.3) 3φn+1 − 4φn + φn−1

2∆t
= F

(
φn+1

)
, second order temporal discretization,

where n indicates the value of a particular variable at the n-time, ∆t is the time
increment, φ is the scalar variable (vx, vy, or vz), and F (φn+1) is a function
involving any spatial discretization performed. This equation was implicitly dis-
cretized (i.e., F (φ) was evaluated at the unknown state n+ 1), and its solution
was unconditionally stable with respect to the time increment size. The solu-
tion was obtained for every successive time step by an iterative solution method.
At t = 0, it was considered that the fluid between the corrugated plates was at
rest. It is important to remark that any compressibility effects in the fluid were
neglected for every temporal solution determined.

2.2. Numerical models development procedure

The strict procedure to develop the numerical models was as follows:
1) Four computational fluid dynamics (CFD) models with different temporal

mesh sizes were generated by using a previously developed model exhibiting
spatial mesh size independence [16]. The time steps were selected in such
a way that consecutive time steps have a decreasing ratio of 0.5. These
four models are evaluated to ensure that the solutions are not affected by
further reduction of the time step.

2) A reduction of six orders of magnitude in the scale residuals was consid-
ered for convergence. Additionally, the scalar velocities of points located at
different regions of interest were observed to ensure local convergence (see
Fig. 3). Such regions were chosen as the recirculation zones in x-wave 8
(points P1 to P6) and main flow areas (points Pi and Po). The compari-
son of the velocity variation in these regions among the different numerical
models allows to study a temporal grid size independence . All of the points
were studied in three different xz-planes located at y = 1Λy, 2Λy, and 3Λy.
Points Pi and Po were located streamwise at x = 1Λx and x = 8Λx while
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keeping a z-equidistant coordinate from the top and bottom plates. The z
and x-locations for P1 to P6 can be observed in Fig. 3.

a) b)

Fig. 3. Location of points monitored for the mesh size independence study on x-wave 8
and 2Λy xz-plane for: a) 180◦ model, and b) 0◦ model.

The temporal grid size-independent model was used to study the flow pat-
tern between the two heat exchanger plates as the time increased for different
Reynolds numbers. Subsequently, the numerical model flow pattern was com-
pared with the flow patterns obtained in previous experimental [13] and numeri-
cal studies [16]. It is important to mention that a temporal grid size independence
study was performed for every Reynolds number considered (Reynolds number
defined as a function of the uniform inlet velocity and the average distance be-
tween plates, Havg). Details on the results of the mesh size independence study
as well as the numerical flow patterns development are given in Sec. 3.

3. Results and discussion

This section discusses the temporal size independence study results and the
flow pattern behavior as the fluid travels downstream and the time progresses.
As mentioned in Subsec. 2.1, the solver, interpolation schemes and relaxation
factors were varied in order to obtain convergence. Usually and without consi-
dering a phase angle, the COUPLED algorithm with a second-order interpola-
tion upwind scheme, a second-order implicit temporal discretization, average flow
Courant number (120), and optimum relaxation factors (0.75 for pressure and
0.75 for momentum) worked well. However, for a Reynolds number of 600, a time
step of 0.25 s and a 180◦ phase angle, only the PISO algorithm with a second-
order interpolation upwind scheme, a second-order implicit temporal discretiza-
tion, and relaxation factors of 0.3 for pressure and 0.75 for momentum was able
to achieve convergence for every time step a solution was determined. The nu-
merical study was performed for three Reynolds numbers (200, 400, and 600).
For the sake of briefness, only the results for 600 are presented, but the re-
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sults for the other Reynolds numbers are quite similar. Increments of Reynolds
number were found to favor recirculation growth and early flow detachment;
these dimensional effects in the recirculations of the Reynolds number are in
line with previous experimental [13] and numerical investigations [16]. A very
detailed analysis of the Reynolds number effects on the recirculations spatial
behavior (spatial flow development) is presented in [16]. In the case of tempo-
ral flow development, Reynolds number increments increased the time needed to
reach a steady state, but the behavior of the flow to achieve a fully temporal flow
development (steady state) was the same regardless of Reynolds number. The
results are divided into the 180◦ and 0◦ models results. A spatial size indepen-
dence study was not performed. However, the spatial division of the model was
chosen according to a previous spatial grid size independence study performed
in the same geometrical model [16]. A finite element model with around ten mil-
lion cells showed spatial mesh size independence. Accordingly, the length, the
width, and the distance between the top and bottom of the corrugated plates
were divided into 594, 264, and 64 segments. This technique produced a uniform
mapped mesh providing high-quality cells. The unsteady results obtained in this
work were compared with the steady-state analysis results. These steady state
results are identical to those obtained in [16]. Therefore, this data is marked
as “SS [16]” in any plot or graphic representation including such steady state
results.

3.1. Transient flow pattern: 180 ◦ model

Figure 4a shows the converged scale residuals for a transient analysis per-
formed for a total elapsed time of 93.25 s (as subsequently explained, the steady
state has been well established at such time). 178 unsteady solutions were ob-
tained using a time increment of 0.25 s for the first 157 solutions, 0.5 s for the
next 4 solutions, 2 s for the next 8 solutions, and 4 s for the final 9 solutions.
The continuity and velocity residuals were required to reach a value in the order
of 10−6 to consider the achievement of global convergence. Every time a solu-
tion was determined for a particular time, the scale residuals increased to a high
initial value that kept reducing until convergence was achieved (i.e., a value in
the order of 10−6 was reached). The local convergence was verified for each tem-
poral solution in the selected locations of the channel shown in Fig. 3a. For
brevity’s sake, only the local convergence plots for 29.25 s are shown in Figs 4b
to 4d. In these figures, it can be seen how the local velocities reached a prac-
tically constant value (the absolute percentage of change between consecutive
iterative velocities in the horizontal line region was determined to be well below
0.1%) for a considerable amount of iterations (i.e., local convergence has been
achieved).
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a) b)

c) d)

Fig. 4. Convergence study for: a) global convergence, b) Vx local convergence, c) Vy local
convergence, and d) Vz local convergence. 2Λy xz-plane and 180◦ model. Local convergence is

shown for 29.25 s.

After proving global and local spatial convergence, a temporal size indepen-
dence study was performed by considering four different time steps (0.25, 0.5,
1, and 2 s). The local velocities obtained for selected locations after 2 s are
compared and shown in Fig. 5. From this figure, it can be observed that the dif-
ference among the converged velocities is not significant. Moreover, the velocity
difference between those velocities for the first two time steps (0.25 and 0.5 s)
is always the smallest. If percentages of difference were determined among the
converged total velocities for consecutive time steps, maximum percentages of
difference around 1.8% would be achieved between 0.25 and 0.5 s time steps.
Therefore, it is safe to infer that converged velocities for time steps below 0.25 s
will show no significant differences with those determined for a time step of 0.25 s.
According to this, several solutions were obtained for a time step of 0.25 s until
no significant differences were observed on the converged solution among con-
secutive solutions (i.e., until the steady state was achieved). For the few several
starting solutions, a time step of 0.25 s was used, but it was gradually increased
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a) b)

c)

Fig. 5. Temporal size independence study for: a) Vx, b) Vy, and c) Vz;
2Λy xz-plane and 180◦ model.

after a quasi-steady state was observed in order to entirely confirm a steady state
at much longer times.

Figure 6 shows a few chosen path lines exemplifying the evolution of the
recirculation formation as time proceeds. At early times (observe path lines for
1.25 s), it can be observed that the detachment point appears relatively far
from the x-wave entrance, the reattachment point starts relatively close to the
entrance of the next wave, and the size of the recirculation is quite small. At
moderate times (observe path lines for 4.25 s), the detachment point is closer
to the x-wave inlet, the reattachment point is quite far from the x-wave inlet,
and the size of the recirculation is considerably larger and closer to the main
flow. As time further advances, the detachment point keeps moving closer to the
x-wave inlet, the reattachment point keeps advancing farther from the x-wave
inlet, and the size of the recirculation keeps growing. Of course, these changes
of the geometry of the recirculation reduce gradually until no changes are ob-
served (i.e., steady state has been reached). The steady state is reached faster
at x-waves closer to the inlet (x-wave 1 reached it around 7 s, x-wave 5 reached
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Fig. 6. Path lines showing the recirculation behavior as the fluid progresses downstream and
time advances; 2Λy xz-plane and 180◦.

it around 37.25 s, and x-wave 8 reached it after 37.25 s). At long enough times
and x-waves numbers above wave 1, the fluid detaching from the wall does not
reattach anymore and incorporates to the main flow (“open recirculations” are
being formed), while the reattachment point is a point at which fluid incorpo-
rates from other planes and follows a downstream path (joining the main flow) or
an upstream path (forming part of the “open recirculation”). Such appearances
of these “open recirculations” as the flow approaches the channel outlet were
well documented in [16] in the complete steady state analysis of such corrugated
plates. This growing interaction between the secondary flow and the main flow,
as the channel outlet is approached and as time advances, is a direct consequence
of the flow developing in space and time.

Figures 7 to 9 show the x-velocity profiles at different channel locations for
selected times (these locations are at the center of different x-waves). After the
curves achieved a quasi-steady state, the temporal parametric curves are shown
as solid lines. This procedure was used in all the parametric plots presented in
this research to clearly show steady state achievement. By comparing x-velocity
profiles at different channel locations, it can be observed that the walls affect
more the channel center as the x-wave increases (i.e., spatial flow development).
By comparing x-velocity profiles over time for a particular x-wave, it can be seen
that the walls affect more and more the channel center as time progresses (i.e.,
temporal flow development). Of course, full development will be reached at long
enough times and bigger lengths. Although spatial flow development cannot be
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Fig. 7. Vx velocity profile as function of time for x = 1Λx and y = 2Λy;
Re = 600, 2Λy xz-plane and 180◦ model.

Fig. 8. Vx velocity profile as function of time for x = 5Λx and y = 2Λy;
Re = 600, 2Λy xz-plane and 180◦ model.

completely achieved (the channel is periodically diverging and converging), tem-
poral flow development was fully achieved. As observed in Figs 7 to 9, temporal
flow development (steady state) has been reached at 13.25 s, 29.25 s, and 41.25 s
for x-waves 1, 5, and 8, respectively, confirming that the steady state is reached
faster at x-waves closer to the channel entrance. This behavior was observed in
other locations of the x-waves. For example, Fig. 10 shows the x-velocity profile
over time for the entrance of x-wave 8. From this figure, it can be seen how
the velocity profile reaches the steady state at around 41.25 s. The difference
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Fig. 9. Vx velocity profile as function of time for x = 8Λx and y = 2Λy;
Re = 600, 2Λy xz-plane and 180◦ model.

Fig. 10. Vx velocity profile as function of time for x = 7.5Λx and y = 2Λy;
Re = 600, 2Λy xz-plane and 180◦ model.

with the x-velocity profile at the center of the x-waves is the lack of reversed
flow promoted by the converging or concave characteristic of the entrance of
the x-waves. The local convergence, temporal size independence, path lines, and
x-velocity profile plots are for the 2Λy xz-plane. This plane exhibits a y-convex
geometry. As mentioned in the technical literature [16, 22], convex and concave
wall geometries affect flow patterns in a different way.

In the two previous paragraphs, the different effects of the entrance (x-concave
wall) and middle (x-convex wall) of the channel x-waves were described. The
x-concave wall generates no recirculation at the inlet because of the converging
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flow before the entrance. However, the x-convex wall after the entrance generates
recirculation because of the diverging flow after the entrance. Similar effects are
expected of the y-convex or y-concave geometries, although to a lesser degree
because the main flow is in the xz-plane. A comparison of the flow pattern be-
tween the 2Λy and 1.5Λy xz-planes (henceforth referred to as Planes A and B,
respectively) is of particular interest because the 2Λy xz-plane exhibits a y-convex
geometry while the 1.5Λy xz-plane exhibits a y-concave geometry. As mentioned
in [16], these two planes are far from the side walls to avoid any significant effects
from the hydrodynamic y-boundary layer caused by such walls (Λy = 2.65δy at
the exit of the channel). Although the local convergence, temporal size inde-
pendence, pathlines, and x-velocity profile plots are not shown for Plane B, the
flow pattern behavior explained a few paragraphs above for Plane A holds for
Plane B. The main difference between the flow patterns for Planes A and B is
only the size of the recirculations.

Figures 11 and 12 show the detachment point (Rst) location and the recir-
culation length (RL) as a function of time and x-wave for Planes A and B. Few
differences can be noticed for the detachment point among these planes: the most

a)

b)

Fig. 11. Distance from x-wave inlet at which detachment occurs for:
a) y = 1.5Λy and b) y = 2Λy; Re = 600 and 180◦ model.
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a)

b)

Fig. 12. Recirculation length for: a) y = 1.5Λy and b) y = 2Λy; Re = 600 and 180◦ model.

remarkable difference is that the detachment distances are longer for Plane B
(0.0121–0.0131 m) than those for Plane A (0.0101–0.0116 m), the curves ap-
proach the steady state from below for Plane B and from above for Plane A, and
the steady state is practically achieved at 61.25 s for Plane B and at 45.25 s for
Plane A. From these differences, it can be inferred that y-concave geometries in-
hibit fluid detachment (higher detachment points) and steady state achievement
(longer time to reach steady state). Two differences can be remarked in the recir-
culation length between planes: the most important difference is that the range
of recirculation length values is smaller for Plane B (0.0504–0.0537 m) than those
for Plane A (0.0515–0.0578 m), and the steady state is practically achieved
at 57.25 s for Plane B and at 49.25 s for Plane A. Again, it can be inferred
that y-concave geometries disfavor recirculation formation (smaller recirculation
length) and steady state achievement (longer time to reach steady state). For
both planes, the temporal development of the flow is significantly close to the
inlet for small time values (observe the non-horizontal looking curve for the first
three x-waves at 7 and 9.25 s in Figs 11 and 12). As time advances, this flow’s
temporal development at the inlet reaches a steady state, while it begins to affect



UNSTEADY FLOW PATTERNS BETWEEN TWO EGG-CARTON. . . 183

the waves closer to the outlet of the channel (see the relatively small differences
of the curves shape for the first three x-waves and the non-horizontal like curve
behavior for the rest of the x-waves after 21.25 s in Figs 11 and 12); finally,
the flow temporal development achieves the steady state all over the channel at
a prolonged time (it can be observed that the curves have practically achieved
steady state after 49.25 s in Figs 11 and 12).

3.2. Transient flow pattern: 0 ◦ model

The converged scale residuals are depicted in Fig. 13a for a transient analysis
performed for a total elapsed time of 93.25 s (the steady state has been well
established at such time). 193 unsteady solutions were obtained using a time
increment of 0.25 s for the first 181 solutions, and 4 s for the final 12 solutions.
A global convergence was considered to be achieved when the velocity and con-
tinuity residuals achieved a value in the order of 10−6. Every time a solution was
determined for a particular time, the scale residuals increased to a high initial
value that kept decreasing until convergence was achieved (i.e., a decrease of

a) b)

c) d)

Fig. 13. Convergence studies: a) global, b) local Vx, c) local Vy, and d) local Vz.
2Λy xz-plane and 0◦ model. Local convergence is shown for 29.25 s.
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six significant digits was reached). The local convergence was verified for every
temporal solution in the selected locations of the channel depicted in Fig. 3b.
For the sake of briefness, only the local convergence plots for 0.75 s are presented
in Figs 13b to 13d. In these figures, it can be observed that the local velocities
attained quite a constant value (the absolute percentage of change between con-
secutive iterative velocities in the horizontal line region was calculated to be well
below 0.1%) for a considerable amount of iterations (i.e., local convergence has
been attained).

Next, a temporal size-independent study was performed by considering four
different time steps (0.25, 0.5, 1, and 2 s). The local velocities obtained for
selected locations after 2 s were compared among the different time steps (see
Fig. 14). From this figure, it can be observed that the difference among converged
velocities is not significant (the curves are practically straight lines for Vx and Vy
local velocities). The curves for Vz are a little more variable, but the differences
in magnitude between consecutive time steps are small. Moreover, the velocity
difference between those velocities for the first two time steps (0.25 and 0.5 s)

a) b)

c)

Fig. 14. Temporal size independence study for: a) Vx, b) Vy, and c) Vz;
2Λy xz-plane and 0◦ model.
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is always the smallest. Maximum percentages of difference around 1.7% would
be achieved between 0.25 and 0.5 s time steps, if percentages of difference were
determined among the converged total velocities for consecutive time steps. As
with the 180◦ model, it can be inferred that converged velocities for time steps
below 0.25 s will show no significant differences with those determined for a time
step of 0.25 s. Consequently, several solutions were obtained for a time step of
0.25 s until the steady state was considered to be achieved. For the few several
initial solutions, the time step of 0.25 s was used, but it was changed to 4 s after
a quasi-steady state was observed in order to completely corroborate the steady
state at much bigger values of time.

Figure 15 shows the few selected path lines exemplifying the temporal progress
of the recirculation formation. At early times (check the path lines for 3 s), it can
be clearly seen that the detachment point starts relatively far from the x-wave
inlet, the reattachment point begins closer to the entrance than for longer times,
and the size of the recirculation is quite small. At moderate times (see the path
lines for 5.25 s), the size of the recirculation is considerably larger and closer to
the main flow, the reattachment point is further away from the x-wave inlet when
compared to the case of earlier times, and the detachment point moves moder-
ately closer to the x-wave inlet. As time evolves, the size of the recirculation
keeps growing, the reattachment point keeps advancing farther from the x-wave
inlet, and the detachment point keeps moving slowly to the x-wave inlet. These
evolutions on the characteristics of the recirculation diminish gradually until no
changes are seen (i.e., steady state has been achieved). As with the 180◦ model,
the steady state is accomplished faster at x-waves closer to the inlet (x-wave

Fig. 15. Path lines showing the recirculation behavior as the fluid progresses downstream and
time advances. 2Λy xz-plane and 0◦ model. The main flow direction is from right to left.
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2 reached it around 9.25 s, while x-wave 5 and x-wave 8 will reach it beyond
21.25 s). At x-waves numbers above x-wave 2 and long enough times, the fluid de-
taching from the wall does not reattach anymore and joins the main flow (“open
recirculations” are being developed), while the reattachment point is a point at
which fluid joins from other planes and follows an upstream path (forming part
of the “open recirculation”) or a downstream path (joining the main flow). Such
“open recirculations” appearing as the flow approaches the channel outlet were
well documented in [16] in the complete steady state analysis of such corrugated
plates. A few differences can be noticed between the 180◦ and 0◦ models: the
recirculations appear at longer times and are smaller in the 0◦ model than those
in the 180◦ model, and the flow pattern in the 0◦ model achieves a steady state
faster than that of the 180◦ model (compare Figs 6 and 15). The first difference is
caused by the fluid trying to follow the parallel path in the 0◦ model (inhibiting
detachment) and the second difference is most likely caused by the same reason.
The growing interaction between the secondary flow and the main flow, as time
advances and as the channel outlet is approached, is a direct consequence of the
flow developing in space and time.

Figures 16 to 18 show the x-velocity profiles at different locations of the
channel for selected times (these locations are at the bottom center of different
x-waves and in the 1.5Λy xz-plane). By comparing x-velocity profiles over time
for a given x-wave, it can be observed that the walls affect more the fluid at
the center of the channel as time advances (i.e., temporal flow development).
By comparing x-velocity profiles at different channel locations, it can be seen
that the walls affect more the fluid at the center of the channel as the x-wave

Fig. 16. Vx velocity profile as function of time for x = 1.5Λx and y = 1.5Λy;
Re = 600, 2Λy xz-plane and 0◦ model.
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Fig. 17. Vx velocity profile as function of time for x = 4.5Λx and y = 1.5Λy;
Re = 600, 1.5Λy xz-plane and 0◦ model.

Fig. 18. Vx velocity profile as function of time for x = 7.5Λx and y = 1.5Λy;
Re = 600, 1.5Λy xz-plane and 0◦ model.

increases (i.e., spatial flow development). Certainly, full development will be
reached at long enough times and lengths. As seen in Figs 16 to 18, temporal
flow development or steady state has been practically reached by the x-velocity
profiles at 9.25 s, 33.25 s, and 49.25 s for x-waves 2, 5, and 8, respectively. As in
the 180◦ model, this confirms that the steady state is attained faster at x-waves
closer to the channel inlet.
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Figure 19 shows the x-velocity profile over time for the entrance of x-wave 8.
From this figure, it can be seen how the velocity profile reaches the steady state
at about 45.25 s. Unlike the x-velocity profile at the center of the x-waves, this
velocity profile shows the secondary flow at the top of the channel (the walls
have an x-convex surface at the top and an x-concave surface at the bottom
for this location). In other words, just before this location, the fluid is diverg-
ing (promoting separation) at the top and converging (inhibiting separation) at
the bottom. The local convergence, temporal size independence, pathlines, and
x-velocity profile plots are for the 1.5Λy xz-plane. This plane exhibits a y-convex
geometry. As in the previous 180◦ model, the effects of the y-convex or y-concave
geometries of the corrugated plates were analyzed. A comparison of the flow pat-
tern between the 2Λy and 1.5Λy xz-planes (i.e., Planes A and B, respectively)
was performed. The 2Λy xz-plane exhibits a y-concave geometry while the 1.5Λy
xz-plane a y-convex geometry. The local convergence, temporal size indepen-
dence, pathlines, and x-velocity profile plots are not shown for Plane A, but the
flow pattern behavior explained a few paragraphs above for Plane B holds for
Plane A. Only the size of the recirculations is different between the flow patterns
for Planes A and B.

Fig. 19. Vx velocity profile as function of time for x = 7Λx and y = 1.5Λy;
Re = 600, 1.5Λy xz-plane and 0◦ model.

Figures 20 and 21 show the detachment point (Rst) location and the re-
circulation length (RL) as a function of time and x-wave for Planes A and B.
Two main differences can be noticed for the detachment point among planes:
the detachment values are higher for Plane A (0.017–0.027 m) than those for
Plane B (0.010–0.020 m), and steady state is practically achieved at 37.25 s
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a)

b)

Fig. 20. Distance from x-wave inlet at which detachment occurs for:
a) y = 1.5Λy and b) y = 2Λy; Re = 600 and 0◦ model.

for Plane B and at 41.25 s for Plane A. From these two differences, it can
be inferred, in agreement with the 180◦ model, that y-concave geometries in-
hibit fluid detachment (higher detachment values) and steady state achievement
(longer time to reach a steady state). Two differences can be mentioned for the
recirculation length between planes: the recirculation length values are larger for
Plane B (0.0269–0.0488 m) than those for Plane A (0.0073–0.0365 m); and steady
state is practically attained at 37.25 s for Plane B and at 41.25 s for Plane A.
Once more, it can be corroborated that y-concave geometries do not favor recir-
culation formation (smaller recirculation lengths) and steady state achievement
(higher times for steady state). As in the 180◦ model, the flow temporal deve-
lopment is significantly closer to the inlet for small time values (e.g., this can be
clearly seen in the non-horizontal looking curve for the first three x-waves at 4,
5.25, and 9.25 s in Fig. 20b). As time advances, this temporal development of
the flow at the inlet reaches a steady state, while it begins to affect the waves
closer to the outlet of the channel (clearly seen in the relativelly small differ-
ences of the curves shapes for the first three x-waves and the non-horizontal like
curve behavior for the rest of the x-waves after 25.25 s in Fig. 20b). Finally, the



190 B. GIRÓN-PALOMARES et al.

a)

b)

Fig. 21. Recirculation length for: a) y = 1.5Λy and b) y = 2Λy; Re = 600 and 0◦ model.

temporal development of the flow achieves the steady state all over the channel
at a prolonged time (it can be corroborated that the curves have practically
achieved a steady state after 41.25 s in Figs 20 and 21).

4. Conclusions

A detailed numerical study of the unsteady laminar flow pattern between two
corrugated plates with an egg-carton configuration was developed. The numeri-
cal study was performed for three Reynolds numbers (200, 400, and 600). Two
phase angles (180◦ and 0◦) between the two corrugated plates were studied. The
temporal and spatial development of flow particle paths, detachment point, and
the recirculation length were illustrated and discussed for both the 180◦ and 0◦

egg-carton corrugated channels. The effects of the geometry on the flow patterns
were the same as those described in [16]: for both phase angles, “closed recir-
culations” diminished in size downstream the channel and finally disappeared
becoming “open recirculations” because of spatial flow development. The recir-
culations in the 180◦ egg-carton corrugated plates were z-symmetric with respect
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to the center of the channel, but the recirculations for the 0◦ egg-carton corru-
gated plates were not. “Closed recirculations” in the 0◦ egg-carton corrugated
plates were smaller and became “open recirculations” earlier than those of the
180◦ egg-carton corrugated plates, and, in both phase angle models, convex ge-
ometries on the transversal direction favored detachment while concave geome-
tries inhibited it. As in previous experimental [13] and numerical investigations
[16], increments of Reynolds number were found to favor recirculation growth
and early flow detachment. For both phase angles, the transient development
effects were as follows: steady state was achieved faster in waves closer to the
entrance of the channel. As time advanced, spatial flow development advanced
toward the outlet of the channel, and y-concave geometries inhibited steady state
achievement. The recirculations appeared at larger times and were smaller in the
0◦ model than those in the 180◦ model, and the flow pattern in the 0◦ model
achieved a steady state faster than that of the 180◦ model. These are clear con-
sequences of the geometry influence on the transient development of the flow
patterns. The flow patterns behavior achieved at the steady state was found to
agree with the one obtained in [16].

All of the unsteady effects on the flow patterns mentioned in the paragraph
above are natural consequences of a flow developing in time. On the other hand,
no clear evidence of vortices that seem to travel from wave inlet to wave outlet
by rolling on the surface of the plates (“rolling vortices”) was observed. It can be
concluded that such unsteady flow features observed in previous experimental
studies [13] might be a consequence of an unavoidable small variation of the
experimental flow velocity generating a pulsating flow and not a consequence of
a flow developing on time with a constant channel inlet velocity. To corroborate
this, future detailed unsteady analyses should be performed by varying the ve-
locity at the entrance of the channel over time and creating a pulsating flow.
Such temporal variation should consider the unsteady analysis results of this
research to assess completely the effects of small variations of inlet velocities in
the flow patterns between two egg-carton corrugated plates. Finally, it can be
concluded that this unsteady numerical analysis was very adequate in present-
ing the temporal processes accompanying the flow to achieve most of the flow
patterns observed in [13, 16].
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