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The wind turbine gearbox is a critical equipment transforming the speed of the rotor
hub to the generator, the condition of which is the reflection of operational efficiency and
reliability of wind turbines. As the initial stage of the wind turbine gearbox, the fault feature
extraction of the planetary gear set is challenging since it is prone to be affected by complicated
structure, vibration from other high-speed stages and background noise. In this paper, a double
Q factor wavelet-based sparse decomposition is applied to the fault feature extraction of the
wind turbine planetary gearbox. Considering the sparsest wavelet coefficients, the vibration
signal is iteratively decomposed into high Q and low Q components. The fault feature is
generally hidden in the low Q component. With further demodulation, the fault information
of planetary gears can be easily detected.

Key words: wind turbine gearbox; planetary gears; double Q factor wavelet; sparse decom-
position.

1. Introduction

Wind energy is an important pillar of renewable energy, which has develo-
ped rapidly in recent years. By the end of 2020, China’s installed wind power
capacity has reached 280 million kW [1], accounting for 5.5% of the electricity
supply. As the conversion carrier of wind energy to electric energy, wind turbines
operate under alternating load, extreme temperature difference and other harsh
operating conditions for long periods of time, and their failure rate is high.
As wind turbines usually operate at high altitudes, the maintenance tasks for
subassemblies are exceptionally challenging, leading to long downtime and high
maintenance costs.
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Horizontal-shaft wind turbine with speed-increasing gearbox is the prevail-
ing type of wind power generation, accounting for about 80% of the total in-
stalled capacity [2]. The wind turbine gearbox is responsible for converting the
impeller’s low speed into the generator’s high speed. To achieve a large trans-
mission ratio in limited space, the wind turbine gearbox is usually composed of
a planetary stage gear set and a parallel stage gear set. The planetary stage gear
set is located at the low-speed end, namely the power input end, where the load
is heavier than at the high-speed end. Since the ring gear encloses the planet
gears, sun gear and planet bearings, it is difficult for any metal fragments from
faulty planetary stage gears to fall into the bottom of the shell but they can eas-
ily be embedded in the planetary stage gear clearance. This phenomenon will
inevitably cause the planetary transmission to jam, and even the whole gearbox
body to burst. In a nutshell, the consequences brought by the faulty planetary
transmission are more serious than those from the parallel gear transmission.

The fault feature extraction and diagnosis for planetary gears have attracted
considerable attention. Feng and Zuo [3] proposed the vibration model of pla-
netary gears under fault states and presented the calculation method of fault
characteristic frequency of planet gear, sun gear and ring gear. Based on this,
the iterative generalized synchro squeezing transform [4] and the adaptive opti-
mal kernel time-frequency analysis [5] were proposed to extract fault features of
planetary gears under non-stationary conditions. Lei et al. [6] used the adaptive
stochastic resonance method to realize fault diagnostics of the planetary gear.
Zhang et al. [7] integrated the Teager energy operator (TEO) demodulation
and stochastic resonance method to detect early faults of the planetary gear-
box. Liang et al. [8] proposed a vibration signal model of a planetary gear set
considering the effect of multiple vibration sources and changing transmission
path.

The above research provided important findings for the fault feature extrac-
tion and diagnosis methods for planetary gears but mainly focused on the pure
planetary gear transmission with a relatively simple structure. Several challenges
exist in fault feature extraction of planetary gears in the wind turbine gearbox
with multistage transmissions:

1) The rotational speed of planetary gears is relatively low. Correspondingly,
the fault features of the planetary gears will be weak and can be easily
concealed by the meshing energy of the parallel stage gears or background
noise.

2) There are multiple gears and bearings in the wind turbine gearbox. The
low fault characteristic frequencies of the components in the planetary gear
set are close to each other, so that the discrimination degree is insufficient,
which may cause an incorrect identification of problem.
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Wavelet-based sparse decomposition methods have proven effective in fault
diagnosis of rotating machineries, e.g., gears, bearings, etc. Under the resonance-
based signal decomposition framework with the L1 norm regularization [9] and
tunable Q wavelet transform (TQWT) [10], Cai et al. [11] employed the mor-
phological component analysis to estimate and separate different resonance com-
ponents of gearbox vibration signal, and solved the optimization problem by
the split augmented Lagrangian shrinkage algorithm. Du et al. [12] proposed
a sparse framework considering noise to decompose the vibration signal from
the wind turbine gearbox and successfully detected the weak gear fault charac-
teristics. To overcome the potential underestimation of the signal component of
L1 norm, a series of non-convex penalty functions, e.g., atan, log, rat, etc., were
combined in signal sparse representation, and have been applied in the multi-
faults detection of milling stand gearbox [13] and planetary subassemblies in
wind turbine gearbox [14]. A multivariate generalization of the minimax-concave
(MC) penalty was proposed by Selesnick [15] in sparse approximate solutions.
Afterward, Cai et al. [16] and Wang et al. [17] developed MC penalty-based
sparse methods to detect gearbox faults. Although the L1 norm often under-
estimates the true solution, there are still advantages in the L1 norm sparse
decomposition compared to other non-convex penalty functions:

1) The optimization problem using the L1 norm can guarantee the convex
and global optimal solution with fast computation.

2) The L1 algorithm avoids several sub-problems when solving non-convex
penalty-based sparse decomposition, which reduces the method comple-
xity.

Based on the analysis aforementioned, the double Q wavelet-based sparse
decomposition with the L1 norm, an existing signal processing technique, is
used in this paper to analyze the vibration signal collected from the on-site
gearbox to accurately detect the fault features of planetary gears in wind tur-
bine gearbox. TQWT enables to decompose vibration signals as their resonance
characteristic with different quality factors. Further, under the sparse decom-
position framework, the vibration signal is expressed by more concise wavelet
atoms to accurately extract the intrinsic features. The vibration signal is iter-
atively decomposed into low Q and high Q components, in which the low Q
component matches the impact process caused by potential faults, while the
high Q component represents the normal meshing and noise information of the
faultless gears. Through the envelope demodulation analysis for the decomposed
low Q component, weak planet gear faults covered by complex information can
be found distinctly. The double Q wavelet-based sparse decomposition provides
an effective tool for detecting incipient planet gear faults of the wind turbine
gearbox, which can assist in avoiding catastrophic results at the wind farm.
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2. Tunable Q wavelet transform

In the wavelet transform, the quality factor Q is defined as the ratio of the
wavelet bandwidth to the center frequency. Generally, the wavelet transform has
the characteristic of constant Q. Selesnick [10] proposed a wavelet transform
(tunable Q wavelet) that can adjust the Q factor arbitrarily. Wavelets with
different Q factors have different oscillation properties, which can match various
vibration components during the operation of mechanical components [11].

The decomposition and reconstruction process of tunable Q wavelet trans-
form is shown in Fig. 1, which is similar to the conventional wavelet transform.

Fig. 1. The decomposition and reconstruction process of tunable Q wavelet transform.

Like the conventional dyadic wavelet transform, tunable Q wavelet transform
gradually decomposes the signal from high to low frequency. Merely the quality
factor can be set artificially to adapt different signal resonance characteristics.
The difference is that the tunable Q wavelet introduces low-pass scale factor α
and high-pass scale factor β, and the relationship between α, β and quality
factor Q can be described as

β =
2

Q+ 1
,(2.1)

α = 1− β

r
= 1− 2

r(Q+ 1)
.(2.2)
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In Eq. (3.2), r is the redundancy denoting the oversampled degree r = β/(1−α).
Based on the above parameters, the maximum decomposition level of tunable
Q wavelet is calculated as

(2.3) Jmax =

⌊
log(βN/8)

log(1/α)

⌋
,

where b c means negative rounding operation, N is the signal length. For the
j-th decomposition, the equivalent frequency response function of the wavelet
filter is

H
(j)
L (ω) =


j−1∏
i=0

HL

( ω
αi

)
, |ω| ≤ αjπ,

0, other,

(2.4)

H
(j)
H (ω) =

 HH

( ω

αj−1

) j−2∏
i=0

HL

( ω
αi

)
, (1− β)αj−1π ≤ |ω| ≤ αj−1π,

0, other,

(2.5)

where HL(ω) is the frequency response of the low-pass filter, HH(ω) is the
frequency response of the high-pass filter, and their expressions are{

|HL(ω)| = 1, |ω| ≤ (1− β)π,

HL(ω) = 0, απ ≤ |ω| ≤ π,{
|HH(ω)| = 0, |ω| ≤ (1− β)π,

HH(ω) = 1, απ ≤ |ω| ≤ π.

The transition bands of HL(ω) and HH(ω) must be chosen as

|HL(ω)|2 + |HH(ω)|2 = 1.

Primarily, they can be designed as the Daubechies frequency response

HL(ω) = θ

(
ω + (β − 1)π

α+ β − 1

)
,(2.6)

HH(ω) = θ

(
απ − ω
α+ β − 1

)
.(2.7)

The above filter banks are designed by the Daubechies frequency response with
two-order vanishing moments [18]

(2.8) θ(ω) = 0.5(1 + cosω)
√

2− cosω, |ω| ≤ π.
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3. Double Q wavelet-based sparse decomposition

In morphological analysis, it is assumed that the original signal x is composed
of two types of signals with different vibration properties, and the background
noise n

(3.1) x = x1 + x2 + n,

where x1 is the high Q component in the signal, which usually represents the
smooth component of normal gear meshing in rotating machinery, and x2 is
the low Q component in the signal, which represents the impact component
caused by potential fault. If x1 and x2 are separated from x, the fault components
hidden in the signal will be more distinctly revealed. The sparse decomposition
method aims at the sparsest wavelet coefficients of all levels of components under
different tunable Q wavelet decomposition [9]:

(3.2)
{ωopt

1 , ωopt
2 } = arg min

ω1,ω2

‖ω1‖1 + ‖ω2‖1 ,

s.t. ‖x− Φ∗1ω1 − Φ∗2ω2‖2 ≤ ε,

where ω1 and ω2 are wavelet coefficients after high Q and low Q wavelet trans-
form, Φ∗1 and Φ∗2 indicate the inverse transform of tunableQ wavelet, representing
the reconstruction process from wavelet coefficients to vibration signal, and ε
is the limited noise. The L1 norm is used to evaluate the sparsity of the wavelet
coefficients.

Converting Eq. (3.2) into an unconstrained problem, the optimal problem is
expressed as

(3.3) {ωopt
1 , ωopt

2 } = arg min
ω1,ω2

‖x− Φ∗1ω1 − Φ∗2ω2‖22 + λ1 ‖ω1‖1 + λ2 ‖ω2‖1 ,

where λ1 and λ2 are the Lagrange multipliers. They can be further denoted by

λ1 = θ1 ‖ψ1‖2 , λ2 = θ2 ‖ψ2‖2 ,

where ψ1 and ψ2 are the wavelet corresponding to the wavelet coefficients ω1

and ω2 in high Q and low Q wavelet transform. The scalar parameters θ1 and
θ2 are associated with the signal and the estimation error, which are used to
adjust the relative energy of the high Q and low Q components.

Since the L1 norm is not differentiable, the split augmented Lagrange shrink-
age algorithm [19] is adopted to solve the above unconstrained problem, which
is defined as

f1(u) = ‖x− Φ∗1u1 − Φ∗2u2‖
2
2 ,

f2(ω) = λ1 ‖ω1‖1 + λ2 ‖ω2‖1 ,
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where u = [u1, u2] is a temporary variable. Equation (3.3) is solved by alternat-
ing split-augmented Lagrange algorithm, which can be expressed as

u(k+1) = arg min
u
‖x− Φ∗1u1 − Φ∗2u2‖

2
2 + µ

∥∥∥u−ω(k) − d(k)
∥∥∥2
2
,(3.4)

ω(k+1) = arg min
ω

λ1 ‖ω1‖1 + λ2 ‖ω2‖1 + µ
∥∥∥u(k+1) −ω− d(k)

∥∥∥2
2
,(3.5)

d(k+1) = d(k) − u(k+1) + ω(k+1),(3.6)

where µ is the introduced penalty parameter. After multiple iterations, the op-
timal wavelet coefficients ωopt

1 and ωopt
2 of high Q and low Q components with

sparsity can be obtained. Further, the high Q and low Q components will be
constructed by the wavelet coefficients.

4. Case study

4.1. Testing condition of the wind turbine

The tested wind turbine is a 1.5 MW doubly-fed unit, whose gearbox struc-
ture incorporates two-stage planetary gear sets combined with one-stage parallel
gear transmission, shown in Fig. 2. Wind energy absorbed by the blades is con-
verted into the rotating mechanical energy of the rotor hub, which is further
accelerated by the speed-increasing gearbox and converted into the high-speed
mechanical energy that drives the rotation of the generator.

Fig. 2. Structure of the wind turbine gearbox.

The number of teeth of all stages of gears in the speed-increasing gearbox
are shown in Table 1. When the rotational speed of the rotor hub is 18 r/min
(0.3 Hz), the rotational frequencies of each shaft in the gearbox are shown in
Table 2 where fc1 is the rotational frequency of the rotor hub, namely the
carrier of the first PS, fs1 is the rotational frequency of the sun gear in the
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Table 1. The number of teeth of multiple gears in the wind turbine gearbox.

Nomenclature Number Description

Zp1 34 number of teeth of the planet gear in the first planetary stage (PS)

Zs1 23 number of teeth of the sun gear in the first PS

Zr1 91 number of teeth of the ring gear in the first PS

Zp2 45 number of teeth of the planet gear in the second PS

Zs2 25 number of teeth of the sun gear in the second PS

Zr2 116 number of teeth of the ring gear in the second PS

Zhi 101 number of teeth of the input gear in the high-speed parallel stage

Zho 28 number of teeth of the output gear in the high-speed parallel stage

Table 2. Shaft rotating frequencies and gear meshing frequencies.

Nomenclature Number Description

fc1 0.3 rotating frequency of the rotor hub
(rotating frequency of the carrier of the first PS)

fs1 (fc2) 1.42 rotating frequency of the sun gear in the first PS
(rotating frequency of the carrier of the second PS)

fs2 8.04 rotating frequency of the sun gear in the second PS
(rotating frequency of the input gear in the high-speed parallel stage)

fh 29 rotating frequency of the output gear in the high-speed parallel stage

fPS1 26.2 meshing frequency of the first PS

fPS2 165.3 meshing frequency of the second PS

fHSS 812 meshing frequency of the high-speed parallel stage

first PS, equivalent to the frequency fc2 of the carrier of the second PS, fs2 is
the rotational frequency of the sun gear in the second PS, fh is the rotational
frequency of the output shaft of the wind turbine gearbox, and fPS1, fPS2 and
fHSS are respectively the meshing frequencies of the first PS, the second PS
and the parallel gears. The meshing frequencies of the three stages in the wind
turbine gearbox are calculated as follows:

• the first PS fPS1 = fc1 · Zr1 = (fc2 − fc1)Zs1,
• the second PS fPS2 = fc2 · Zr2 = (fs2 − fc2)Zs2,
• the high-speed stage fHSS = fs2Zhi = fhZho.
The shaft rotating frequencies are shown as:
• the sun shaft of the first PS (the planet carrier of the second PS) fc2 =
fc1 (1 + Zr1/Zs1),

• the sun shaft of the second PS fs2 = fc2 (1 + Zr2/Zs2),
• the high-speed shaft fh = fs2 · Zhi/Zho.
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The fault characteristic frequency of planet gear in the first PS is calcu-
lated as 2fc1Zr1/Zp1, the characteristic frequency of ring gear in the first PS is
3fc1, and the characteristic frequency of sun gear in the first PS is 3(fc2 − fc1).
Similarly, the fault characteristic frequency of planet gear in the second PS is
calculated as 2fc2Zr2/Zp2, the characteristic frequency of ring gear in the sec-
ond PS is 3fc2, and the characteristic frequency of sun gear in the first PS is
3(fs2 − fc2). The characteristic frequencies of input and output gears in the
high-speed stage are separately fs2 and fh.

When the rotational speed of the rotor hub is 18 r/min (0.3 Hz), the fault
characteristic frequency of planet gear in the first PS2×fc1×Zr1/Zp1 = 2×0.3×
91/34 = 1.6 Hz. In Fig. 2, the accelerometer is installed on the surface of the
wind turbine gearbox to monitor the condition of the planetary subassemblies.
The vibration data from the accelerometer (shown in Fig. 2) collected within
nine days are shown in Fig. 3a. The data was collected every half an hour, and
48 groups were collected each day. There are 414 groups of vibration signals in
Fig. 3a. Since the planetary gear set is located at the input end of the gearbox,
with lower rotational speed, the sampling frequency is set as 2560 Hz and the
sampling duration is 6.4 s. Figures 3b and 3c are respectively the root mean
square (RMS) and kurtosis corresponding to the long time signal. As shown

Fig. 3. Long-term vibration signal and the features:
a) temporal signal, b) root mean square, c) kurtosis.
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in Fig. 3, starting from 9:00 on March 28, the signal’s amplitude increased
significantly, and the RMS and kurtosis exhibited an abrupt change as well,
denoting that the overall state of the first planetary stage gears deteriorated
at this time. After that, the signal’s vibration amplitude, RMS and kurtosis
always remained at high level, indicating that the monitored subassemblies had
irreversible failures.

Generally, weak faults emerge before the mechanical parts fail, but the fault
symptoms are weak, concealed by the background noise or other vibration
sources. As shown in Fig. 3a, the vibration amplitude before 9:00 on March 28
is low, and it is difficult to obtain effective fault symptoms from the original
vibration signals. For this reason, the double Q wavelet sparse decomposition
method is used to analyze the vibration signal at 5:30 on March 27, and the
vibration signal at this time is shown in Fig. 4a.

Fig. 4. Vibration signal: a) vibration signal, b) frequency spectrum, c) envelope spectrum.

In Fig. 4a, the vibration amplitude is relatively stable, and no evident fault
features can be found from the time signal. The frequency spectrum at 5:30 on
March 27 is shown in Fig. 4b. Frequency components such as 26.3 Hz, 53.1 Hz,
105.2 Hz and 132.2 Hz are distinct in the figure, corresponding to the first-,
second-, fourth-, and fifth-order meshing frequencies of the first planetary gear
set. In addition, there is also a prominent component of 167.5 Hz, which is
the meshing frequency of the second planetary gear set. The occurrence of the
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above meshing frequencies belongs to the normal meshing vibration of the wind
turbine gearbox. Figure 4c is the envelope spectrum of the vibration signal,
where there is no obvious impact component in the figure.

4.2. Fault extraction using double Q wavelet-based sparse decomposition

Double Q wavelet-based sparse decomposition is performed for the vibration
signals at 5:30 on March 27, where the high Q factor Q1 = 16, the wavelet
redundancy r1 = 12, and the relevant parameters of the low Q wavelet are Q2 =
1 and r2 = 8. As expressed above, the scalar parameters θ1 and θ2 are associated
with the signal and the estimation error, which are used to adjust the relative
energy of the high Q and low Q components. Referring to the fact that the
similar θ1 and θ2 can generate superior decomposed results [11, 14], we set
θ1 = θ2 = 2. The decomposed high Q component is shown in Fig. 5b, and the

Fig. 5. Vibration signal and the decomposed results: a) vibration signal, b) high Q component,
c) low Q component, d) noise.
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decomposed low Q component is shown in Fig. 5c. Noise is shown in Fig. 5d.
There is an obvious impact process in the low Q component. The envelope
signal of the low Q component is shown in Fig. 6a, and its envelope spectrum
is shown in Fig. 6b. A clear 1.72 Hz appears in Fig. 6b, which is consistent
with the calculated planet gear fault characteristic frequency (1.6 Hz). It can
be inferred that the planet gear was in an faulty state at this time. However,
the corresponding fault characteristics cannot be detected by the conventional
analysis in Fig. 4. By contrast, the periodic fault impact of the planet gear is
successfully found in the low Q component through the double Q wavelet-based
sparse decomposition.

Fig. 6. Low Q component and its envelope: a) envelope of the low Q component, b) envelope
spectrum of the low Q component.

After the notable failure of the planet gear at 9:00 on March 28, the vibration
signal at 17:00 on March 28 is shown in Fig. 7a. There is a regular impact
process in the signal, but it is greatly affected by high- frequency signals and
noises. Vibration signals are decomposed using the same double Q wavelet sparse
decomposition method, and the decomposed high Q component is shown in
Fig. 7b, which is dominated by high-frequency meshing vibrations. The low
Q component after decomposition is shown in Fig. 7c, where distinct impact
vibrations appear, indicating that the proposed method can effectively separate
the impact components from original signals.
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Fig. 7. Vibration signal and the decomposed results: a) vibration signal, b) high Q component,
c) low Q component, d) noise.

The envelope signal of the isolated low Q component is shown in Fig. 8a.
The envelope spectrum of the envelope signal is calculated and shown in Fig. 8b.
In the latter figure, 1.72 Hz and 3.3 Hz are clearly presented, corresponding
to the planet gear’s first-order and second-order fault characteristic frequencies
in the first planetary stage gear set in the wind power gearbox. The above analy-
sis once again demonstrates the effectiveness of the double Q-based sparse de-
composition in extracting the fault characteristic frequency of the planet gears.
Figures 5 and 6 show that the proposed method is valid even though the fault
is in the incipient phase.

To study the fault tendency during the eight days, 414 groups of vibration
signals are decomposed by the double Q wavelet-based sparse method with iden-
tical parameters. The envelope spectrum of the low Q components that represent
potential faults is shown in Fig. 9. We can see that the weak fault characteris-
tic exists before March 28, and the demodulated vibration amplitude increases
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Fig. 8. Low Q component and its envelope: a) envelope of the low Q component,
b) envelope spectrum of the low Q component.

Fig. 9. The 3-D envelope spectrum of the low Q components of 414 groups of vibration signals.

gradually with the fault deterioration. The fault characteristic is 1.72 Hz, cor-
responding to the fault of planet gears.
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Figure 10 shows the root crack of the planet gear in the first planetary stage
gear set, which was observed through the peephole. The picture verifies the
analysis result above.

Fig. 10. Root flaw of the planet gear.

4.3. Comparison analysis

Without considering the sparsity of wavelet coefficient, only the lowQ wavelet
transform is used to analyze the vibration signal collected from 5:30 on March 27.
Q2 = 1 and r2 = 8. After the TQWT transform, the wavelet coefficients are re-
constructed at different frequency bands, i.e., the different decomposition stages.
The envelope spectrum of the reconstructed signal at different stages is shown
in Fig. 11. The fault characteristic frequency of planet gears (1.7 Hz) cannot be
found, and only 3.28 Hz (approximating the twice of 1.7 Hz) is distinct. The

Fig. 11. The envelope spectrum of the reconstructed signal only using a low Q wavelet trans-
form for the vibration signal collected from 5:30 on March 27.
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results are insufficient to demonstrate that the incipient faults emerged on
the planet gears at that time.

At 17:00 on March 28, severe faults have already arisen on the planet gears.
The envelope spectrum of the reconstructed signal at different stages is shown
in Fig. 12, where the fault characteristic frequency of planet gears (1.7 Hz) is
clear but still weaker than the three times (0.93 Hz) of the rotating frequency of
the rotor hub. The TQWT only using a low Q wavelet can detect planet gears
fault as well. However, it is incapable of detecting incipient faults in Fig. 11. By
contrast, the double Q wavelet-based sparse decomposition is effective in Figs 6b
and 9.

Fig. 12. The envelope spectrum of the reconstructed signal only using a low Q wavelet trans-
form for the vibration signal collected from 17:00 on March 28.

Another classic fault analysis method – spectral kurtosis has been applied
to compare the demodulation effect. The aim of spectral kurtosis is to find the
most sensitive frequency band for faults through a series of bandpass filters.
The kurtogram [20] is an effective tool that can realize the fast computation
of the spectral kurtosis method. For the vibration signal collected from 5:30
on March 27, the kurtogram is shown in Fig. 13a. We filter the most sensitive
frequency band (center frequency 60 Hz, bandwidth 40 Hz), and the envelope
spectrum is shown in Fig. 13b. In this figure, the fault characteristic frequency
of planet gears (1.72 Hz) exists but is submerged by the three times (0.96 Hz) of
the rotating frequency of the rotor hub. Comparing to the decomposition result
in Fig. 6b, it is hard to judge that planet gear was faulty at that time only
through observing Fig. 13b.
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a) b)

Fig. 13. The kurtogram of the vibration signal collected from 5:30 on March 27.

The kurtogram of the vibration signal collected from 17:00 on March 28
is shown in Fig. 14a. The center frequency of the sensitive frequency band is
240 Hz with a bandwidth of 53.33 Hz. The corresponding envelope spectrum
is shown in Fig. 14b. In the figure, besides the three times (0.93 Hz) of the
rotating frequency of the rotor hub and the fault characteristic frequency of
planet gears (1.72 Hz), a series of harmonics with the interval 0.78 Hz are ob-
vious. These intervals approximate half of the fault characteristic frequency of
planet gears (0.86 Hz), indicating that the impacts from the ring gear and sun
gear meshing with faulty planet gear are independent. The kurtogram has suc-
cessfully extracted the fault characteristics of planet gears in the wind turbine
gearbox, as shown in Fig. 14b. However, the demodulated energy is dispersed,

a) b)

Fig. 14. The kurtogram of the vibration signal collected from 17:00 on March 28.
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which is unfavorable to implementing automatic fault alarms by analyzing many
harmonics. By contrast, the fault characteristic (red line with an arrow) in low
Q components increases with the fault deterioration in Fig. 9 by the double Q
wavelet-based sparse decomposition, exhibiting a superior tendency.

5. Conclusions

The structure of the wind turbine gearbox is complex, and the fault cha-
racteristics of the planetary stage gear set are usually concealed by the meshing
vibration of higher-speed parallel gears and background noise. In this paper,
the double Q wavelet sparse decomposition method was applied to extract fault
features of the planetary gearbox of wind turbine. The complex vibration signals
were decomposed into a high Q component dominated by gear meshing vibration
and a low Q component dominated by fault impacts and background noise.
Further, envelope demodulation of the low Q component clearly detected the
weak fault features of the planet gear hidden in the complex background. The
double Q wavelet-based sparse decomposition method can provide the technical
guidance for the fault features extraction of planetary gears in wind turbine
gearboxes.
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