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The onset of stationary convection in thermal instability of porous layer saturating a Jeffrey
nanofluid is studied. The behaviour of nanofluid is described by a Jeffrey fluid model and the
porous layer is assumed to follow Darcy’s law. Due to the presence of the Jeffrey parameter
and nanoparticles, the momentum-balance equation of fluid is modified. The linear stability
analysis and normal modes analysis method are utilised to derive the dispersion relation for
the Rayleigh number in terms of various parameters for free-free boundaries. The effects of the
Jeffrey parameter, Lewis number, modified diffusivity ratio, nanoparticles’ Rayleigh number
and medium porosity on the physical system are discussed analytically and graphically.
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Notations

a – wave number,
d – thickness of the horizontal layer,

Da – Darcy number,
DB – Brownian diffusion coefficient [m2/s],
DT – thermophoretic diffusion coefficient,
g – gravitational acceleration vector,
k1 – medium permeability,
kf – thermal conductivity of the fluid,
km – thermal conductivity of porous medium,
kp – thermal conductivity of the nanoparticle,
Le – Lewis number,
NA – modified diffusivity ratio,
NB – modified particle density increment,
p – pressure,

Pr – Prandtl number,
qD – Darcy velocity vector [m/s],
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Ra – Rayleigh number,
Rm – basic density Rayleigh number,
Rn – nanoparticles Rayleigh number,
T – temperature,
Va – Vadasz number.

Greek symbols
α – coefficient of thermal expansion,
ε – medium porosity,

κm – thermal diffusivity,
λ1 – stress relaxation-time parameter,
λ2 – strain relaxation-time parameter,
λ3 – Jeffrey parameter,
µ – fluid viscosity,
ρf – density of fluid,
ρp – density of nanoparticle,
σ – thermal capacity ratio,
ϕ – nanoparticles volume fraction,
∇ – Laplacian operator,
∇2
H – horizontal Laplacian operator.

Superscripts
’ – non-dimensional variables,
* – perturbed quantity.

Subscripts
f – fluid,
p – particle,
0 – lower boundary,
1 – upper boundary.

1. Introduction

Non-Newtonian fluids are widely used in various industries and find impor-
tant applications in various fields of science and technology such as manufactur-
ing of plastic, polymer industries, dying of papers and textiles, food processing,
geophysics, chemical and biological industries, etc. Engine oil, soap solution,
sauce, foam, paints, lubricants and biological liquids such as blood are some
examples of non-Newtonian fluids. With the relevance of non-Newtonian fluids
in modern technology and industry, various constitutive relations have been de-
rived in the modelling of non-Newtonian fluids. One such type of constitutive
relations is the Jeffrey non-Newtonian fluid model. The Jeffrey fluid model is
a linear model that uses time derivatives instead of convective derivatives. Jef-
freys [1] examined the stability of a layer of fluid heated from below. He derived
a numerical solution to some problems related to the stability of a layer of in-
compressible fluid when temperature decreases upwards. A detailed literature
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review on thermal instability in a Newtonian fluid has been given by Chan-
drasekhar [2]. Several researchers have studied the Jeffrey fluid model and
now it is considered as the best fluid model to depict the behaviour of physio-
logical and industrial fluids [3–10].

The flow of a fluid through a homogeneous and isotropic porous medium
is governed by Darcy’s law that states that the usual viscous term in the
momentum-balance equations is replaced by the resistance term

[
− µ
k1(1+λ3)

qD

]
,

where µ is the viscosity, k1 is the medium permeability, λ3 is the Jeffrey param-
eter, and qD is the Darcian (filter) velocity of the Jeffrey fluid. The research
on flow through the porous layer has various practical applications, viz., flow
in earth’s molten cores, petroleum reservoirs, tyres, ropes, cushions, seats, flow in
sand-beds, etc. Sandstones, limestones, the human lungs, bile duct, and gall-
bladder with stones in blood vessels are some examples of natural porous me-
dia. Lapwood [11] studied the convective flow in a porous medium, whereas
Wooding [12] studied the Rayleigh’s instability of a thermal boundary layer in
a flow through a porous medium. They found that the layer is stable provided
that the Rayleigh number for the system does not exceed a critical positive value
and that the wave-number of the critical neutral disturbance is finite. A detailed
study of convection in a porous media was given by Nield and Bejan [13].

For the past decade, various researchers have shown keen interest in studying
hydrodynamic thermal convection problems in porous/non-porous medium sa-
turated by a nanofluid layer based on the Buongiorno model [14]. Nanofluid has
various applications in automotive industries, energy-saving, nuclear reactors,
etc. Suspensions of nanoparticles flourish in medical applications, including can-
cer therapy. Porous media heat transfer problems have several engineering appli-
cations, such as geothermal energy recovery, crude oil extraction, groundwater
pollution, thermal energy storage, etc. The natural convection of a nanofluid
based on Buongiorno’s model was studied by different authors [15–23], and they
revealed that nanofluids are big coolants due to their enhanced thermal conduc-
tivities.

For the last few years, an extensive interest has been observed in the study
of non-Newtonian nanofluids due to their applications in petroleum drilling,
manufacturing of foods and biomedical products, etc. Thermal convection in
a viscoelastic nanofluid layer saturating a porous medium has been studied
by a few researchers [24–28], and they found that viscoelastic nanofluid has
applications in various automotive industries and biomedical engineering. Re-
cently, Shahzad et al. [29] studied the Jeffrey nanofluid flow in the presence of
Joule heating and viscous dissipation over a stretching sheet, whereas an un-
steady flow heat transfer of a Jeffrey nanofluid was studied by Sreelakshmi
et al. [30].
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Keeping in view various applications of viscoelastic nanofluids specified above,
the main aim of this paper is to study the effect of the Jeffrey parameter and
other parameters in a porous layer saturating a nanofluid heated from below.
An analytical/graphical investigation of thermal instability of porous layer satu-
rating a Jeffrey nanofluid is carried out for free-free boundaries on the onset of
stationary convection. To the best of the author’s knowledge, this problem has
not been studied yet.

2. Mathematical model

Here, an infinitely extending horizontal porous layer of Jeffrey nanofluid of
thickness d heated from below and restricted by two impermeable and perfectly
thermal conducting parallel planes z = 0 and z = d is considered (see Fig. 1).
Let T0 be the temperature of lower planes and ϕ0 be the volumetric fraction of
nanoparticles at z = 0 while T1 and ϕ1 at z = d (T0 > T1 and ϕ1 > ϕ0). The
physical system is permeated by the gravity force g = g(0, 0, −g).

Fig. 1. Physical sketch of the problem.

2.1. Governing equations

For an incompressible fluid, the mass-balance equation is

(2.1) ∇ · qD = 0,

where qD is the flow velocity of nanofluid.
The modified momentum-balance equation of Jeffrey nanofluid in a porous

layer after applying the Boussinesq approximation (see [15–28]) is:

(2.2)
ρf
ε

(
∂qD

∂t
+

1

ε
(qD · ∇)qD

)
= −∇p− µ

k1 (1 + λ3)
qD

+ [ϕρp + (1− ϕ) ρf {1− α (T − T1)}]g,
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where λ3 = λ1
λ2

, λ1, λ2, ρf , ρp, p, T , µ, k1, and ε denote the Jeffrey param-
eter (accounting for viscoelasticity), the stress relaxation-time parameter, the
strain relaxation-time parameter, the fluid density, the fluid pressure, the fluid
temperature, the fluid viscosity, the medium permeability, and the medium po-
rosity, respectively.

Let kB, kf , kp, ρf , µf , and dp denote the Boltzmann’s constant, the ther-
mal conductivities of the base fluid, the thermal conductivities of nanoparticles,
the base fluid density, the base fluid viscosity, and the nanoparticles’ diame-
ter, respectively. The Brownian diffusion coefficient DB and the thermophoretic
diffusion coefficient DT are defined, respectively, as:

DB =
kBT

3πµfdp
and DT =

µf
ρf

0.26kf
(2kf + kp)

ϕ.

The momentum-balance equation of nanoparticles [13, 17, 26–28] is given by

(2.3)
[
∂

∂t
+

qD · ∇
ε

]
ϕ = DB∇2ϕ+

DT

T0
∇2T.

The energy-balance equation [13, 17, 26–28] is given by

(2.4) (ρc)f

{
∂T

∂t
+ qD · ∇T

}
=κm∇2T + ε(ρc)p

{
DB∇ϕ · ∇T +

DT

T0
∇T · ∇T

}
,

where κm is the thermal conductivity of porous medium and (ρc)f is the heat
capacity of fluid.

In non-dimensional form, Eqs. (2.1)–(2.4) can be written by omitting the
dashes (′) for convenience as:

∇ · qD = 0,(2.5) (
1

Va

∂

∂t
+

1

1 + λ3

)
∇2w = −∇p− Rm êz + RaT êz − Rnϕ êz,(2.6)

1

σ

∂φ

∂t
+

1

ε
qD · ∇ϕ =

1

Le
∇2ϕ+

NA

Le
∇2T,(2.7)

∂T

∂t
+ qD · ∇T = ∇2T +

NA

Le
∇ϕ · ∇T +

NANB

Le
∇T · ∇T.(2.8)

Here, we have used the non-dimensional variables:

(x′, y′, z′) =
(x, y, z

d

)
, (u′, v′, w′) =

(
u, v, w

κm

)
d,

t′ =
tκm
σd2

, p′ =
pk1
µκm

d2,
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ϕ′ =
ϕ− ϕ0

ϕ1 − ϕ0
, T ′ =

T − T1
T0 − T1

,

K ′ =
K

γ0E0∆Td
, V = γ0E0βdV

′,

where κm = km
(ρc)f

is the thermal diffusivity of the base fluid, σ =
(ρc)p
(ρc)f

is
the thermal capacity ratio, the Prandtl number is Pr = µ

ρfκm
, Darcy’s num-

ber is Da = k1
d2

, the Vadasz number is Va = εPr
Da , the Rayleigh number is

Ra =
ρfgβdk(T0−T1)

µfκm
, nanoparticles’ Rayleigh number Rn =

(ρp−ρf )(ϕ1−ϕ0)gk1d
µκm

,

the modified particle density increment is NB =
(ρc)p
(ρc)f

(ϕ1−ϕ0), the Lewis num-

ber is Le = κm
DB

, the modified diffusivity ratio is NA = DT (T0−T1)
DBT1(ϕ1−ϕ0)

, the basic

density Rayleigh number is Rm =
{ρpϕ+ρf+(1−ϕ0)}gk1d

µκm
, ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
is

a Laplacian operator, and ∇2
H = ∂2

∂x2
+ ∂2

∂y2
is a horizontal Laplacian operator.

The dimensionless boundary conditions are

(2.9)
w = 0, T = T0, ϕ = ϕ0 at z = 0,

and w = 0, T = T1, ϕ = ϕ1 at z = 1.

2.2. Perturbation solutions

Let the physical system be slightly perturbed/disturbed from the equilibrium
position. We suppose that the velocity, pressure, temperature, medium porosity,
volumetric fraction of nanoparticle perturbed as

(2.10) qD = 0 + q∗, p = p+ p∗, T = Tb + T ∗, ε = ε+ ε∗, ϕ = ϕ+ ϕ∗,

where q∗D, p∗, T ∗, ε∗, and ϕ∗ are the perturbations overlapped into the physical
quantities of the equilibrium state.

Using the perturbation Eq. (2.10) in Eqs. (2.5)–(2.8) and linearising, we
obtain the non-dimensional perturbed equations as

∇ · q∗D = 0,(2.11) (
1

Va

∂

∂t
+

1

1 + λ3

)
∇2w∗ = Ra∇2

1T
∗ − Rn∇2

1ϕ
∗,(2.12)

1

σ

∂ϕ∗

∂t
+
q∗D
ε

=
1

Le
∇2ϕ∗ +

NA

Le
∇2T ∗,(2.13)

∂T ∗

∂t
− q∗D = ∇2T ∗ +

NB

Le
(∇T ∗ −∇ϕ∗)− 2NANB

Le
∇T ∗,(2.14)
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and boundary conditions are

(2.15)
w∗ = 0, T ∗ = T ∗0 , ϕ∗ = ϕ∗0, at z = 0,

and w∗ = 0, T ∗ = T ∗1 , ϕ∗ = ϕ∗1, at z = 1.

3. Normal mode analysis

The infinitesimal perturbation is analysed into a complete set of normal
modes and then the stability of every mode is examined separately. Thus, we
describe the quantities dependence on xy and t of the form exp(ilx+ imy+ωt),
where l and m are the wave numbers in the x and y-direction, respectively,
and ω is the growth rate of the disturbances, which is, in general, a complex
constant. The perturbations quantities w∗, T ∗, ϕ∗, and V ∗ are supposed to be
of the form

(3.1) w∗, T ∗, φ∗ (x, y, z, t) = [W (z), Θ(z), Φ(z)] exp (ilx+ imy + ωt) .

Using expression (3.1), the set of partial differential Eqs. (2.11)–(2.14) redu-
ces to ordinary differential equations:(

ω

Va
+

1

1 + λ3

)(
D2 − a2

)
W + a2RaΘ − a2RnΦ = 0,(3.2)

W

ε
− NA

Le

(
D2 − a2

)
Θ −

{
1

Le

(
D2 − a2

)
− ω

σ

}
Φ = 0,(3.3)

W +

{
NB

Le
D +

(
D2 − a2

)
− 2

NANB

Le
− ω

}
Θ − NB

Le
DΦ = 0,(3.4)

where D = d
dz and a2 = l2 +m2 is the dimensionless resultant wave number.

The set of differential Eqs. (3.2)–(3.4) together with the boundary conditions
(2.15) constitute a characteristic value problem for Rayleigh number Ra and
given values of the other parameters λ3, Rn, ε, Le, NA, NB, Va whose solutions
have to be obtained.

We have applied stress-free conditions for a free surface. Now, the vanishing
of the shear stresses tangent to the surface and continuity equation give the
boundary conditions for free-free boundary as follows:

(3.5)
W = 0, D2W = 0, Θ = 0, Φ = 0 at z = 0

and W = 0, D2W = 0, Θ = 0, Φ = 0 at z = 1.
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We assume the solution to W , Θ, and Φ is of the form

(3.6) W = W0 sinπz, Θ = Θ0 sinπz, Φ = ϕ0 sinπz,

which satisfies boundary conditions (3.5).
Substituting solution (3.6) into Eqs. (3.2)–(3.4), integrating each equation

from z = 0 to z = 1, and performing some integrations by parts, we obtain the
following matrix equation:

(3.7)

(
1

1 + λ3
+

ω

Va

)(
a2 + π2

)
−a2Ra a2Rn

1 −
(
a2 + π2

)
− ω 0

1

ε

NA

(
a2 + π2

)
Le

a2 + π2

Le
+
ω

σ



W

Θ

Φ

 =


0

0

0

.

The above matrix equation has a non-trivial solution if

(3.8)

∣∣∣∣∣∣∣∣∣∣∣∣

(
1

1 + λ3
+

ω

Va

)(
a2 + π2

)
−a2Ra a2Rn

1 −
(
a2 + π2

)
− ω 0

1

ε

NA

(
a2 + π2

)
Le

a2 + π2

Le
+
ω

σ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

which implies

(3.9) Ra =

(
1

1+λ3
+ ω

Va

) (
π2 + a2

) (
π2 + a2 + ω

)
a2

−
εNA

(
π2 + a2

)
+ Le

(
π2 + a2 + ω

)
(π2 + a2)σ + ωLe

σ

ε
Rn.

Equation (3.9) is the required dispersion relation accounting for the effect of
the Jeffrey parameter, Lewis number, nanoparticle’s Rayleigh number, modified
diffusivity ratio and medium porosity on the onset of thermal instability in
a porous layer saturating a Jeffrey nanofluid.

4. Stationary convection

For the case of steady-state (i.e., the principle of exchange of stability), we
put ω = 0 in Eq. (3.9), and obtain

(4.1) RaS =
1

1 + λ3

(
a2 + π2

)2
a2

−
(
NA +

Le

ε

)
Rn.
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Equation (4.1) expresses the Rayleigh number as a function of the dimension-
less resultant wave number a, the Jeffrey parameter λ3, the medium porosity ε,
the nanoparticle Rayleigh number Rn, the Lewis number Le, and modified-
diffusivity ratio NA.

Since Eq. (4.1) does not contain the particle increment parameter NB but
contains the diffusivity ratio parameter NA in association with the nanoparticle
Rayleigh number Rn. This indicates that the nanofluid’s cross-diffusion terms
approach is dominated by the regular cross-diffusion term.

In the absence of the Jeffrey parameter, that is, λ3 = 0, Eq. (4.1) becomes

(4.2) RaS =

(
a2 + π2

)2
a2

−
(
NA +

Le

ε

)
Rn,

which is in good agreement with the previous result of Nield and Kuznet-
sov [16]. In the absence of nanoparticles, that is, Rn = 0 and NA = 0, Eq. (4.1)
diminishes to

(4.3) RaS =

(
a2 + π2

)2
a2

,

which is in good agreement with the earlier result of Chandrasekhar [2] for
ordinary regular fluids.

5. Analytical and numerical results

To study the effect of the Jeffrey parameter, Lewis number, modified diffusiv-
ity ratio of nanoparticle, nanoparticle’s Rayleigh number and medium porosity,
we examine the behaviour of ∂RaS

∂Le , ∂RaS
∂NA

, ∂Ra aS
∂Rn , and ∂RaS

∂ε analytically. For
heavy nanoparticles (ρp > ρf ), according to the definition, Rn has a negative
value, and consequently NA also has a negative value according to the defini-
tion of NA.

In the following, values of Rn and NA were set to be negative for most cases
if not specified (i.e., bottom-heavy configuration).

From Eq. (4.1), we obtain

∂RaS
∂λ3

= − 1

(1 + λ3)
2

(
π2 + a2

)2
a2

,(5.1)

∂RaS
∂Le

= −Rn

ε
,(5.2)

∂RaS
∂NA

= −Rn,(5.3)
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∂RaS
∂Rn

= −
(
NA +

Le

ε

)
,(5.4)

∂RaS
∂ε

=
Le Rn

ε2
.(5.5)

From Eq. (5.1), we see that the partial derivative of Rayleigh number RaS
with respect to the Jeffrey parameter λ3 is negative, implying that the Jeffrey
parameter postpones the stationary convection. Thus, the Jeffrey parameter
has as destabilising effect on the system for both top-heavy and bottom-heavy
nanoparticle distribution, which is in agreement with the result derived by Sheh-
zad et al. [8], Imtiaz et al. [9], Hayat et al. [11] and Imran et al. [12].

The right-hand sides of Eqs. (5.2) and (5.3) are negative if nanoparticle’s
Rayleigh number Rn is positive, but for the bottom-heavy nanoparticle’s dis-
tribution, Rn is negative. Thus, the Lewis number Le and modified diffusivity
ratio NA have stabilising effect on the system for the bottom-heavy nanoparticle
distribution, which is in agreement with the result obtained by Sheu [24–25],
Chand and Rana [19–20], and Yadav et al. [21–23]. Equation (5.4) indicates
that nanoparticles’ Rayleigh number destabilises the system. The right-hand
side of Eq. (5.5) is positive but it will be negative if Rn is negative, implying
that the medium porosity has a destabilising effect on the system, which is in
agreement with the results derived by Nield and Kuznetsov [13], Chand and
Rana [19, 20] and Yadav et al. [21–23].

The dispersion relation (4.1) is also analysed numerically. Graphs have been
plotted by giving some numerical values to the parameters to depict the stability
characteristics, e.g., the Lewis number (102 ≤ Le ≤ 104), nanoparticles’ Rayleigh
number (−1 ≤ Rn ≤ 10), and porosity parameter (0.1 ≤ ε ≤ 1) (Rana et al.
[26–28]).

In Figs. 2, 5, and 6, it is observed that the Rayleigh number increases with the
decrease in the Jeffrey parameter, nanoparticles’ Rayleigh number and medium
porosity, implying that the Jeffrey parameter, nanoparticles’ Rayleigh number
and medium porosity postpone the stationary convection. In Fig. 3, the varia-
tions of the thermal Rayleigh number with the wave number for three different
values of the Lewis number are observed, which shows that the Rayleigh number
increases with the increase of the Lewis number. Thus, the Lewis number ad-
vances the stationary convection, which verifies the analytical result. In Fig. 4,
it is found that the Rayleigh number decreases very slightly with the decrease
in the modified diffusivity ratio, implying thereby that the modified diffusivity
ratio has a slightly stabilising effect on the system. Thus, the effect of increasing
NA is to stabilise the system when Rn is negative.
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Fig. 2. The stationary Rayleigh number (RaS) versus wave number (a)
for different values of the Jeffrey parameter (λ3).

Table 1. Numerical values of the stationary Rayleigh number (RaS) with respect
to wave number (a) for different values of the Jeffrey parameter (λ3).

a λ3 ε NA Rn Le RaS

1 0.3 0.2 −5 −0.1 1000 590.4261

2 0.3 0.2 −5 −0.1 1000 1091.614

3 0.3 0.2 −5 −0.1 1000 2965.213

4 0.3 0.2 −5 −0.1 1000 8737.886

5 0.3 0.2 −5 −0.1 1000 23885.42

1 0.6 0.2 −5 −0.1 1000 573.3775

2 0.6 0.2 −5 −0.1 1000 980.5923

3 0.6 0.2 −5 −0.1 1000 2502.892

4 0.6 0.2 −5 −0.1 1000 7193.189

5 0.6 0.2 −5 −0.1 1000 19500.56

1 0.9 0.2 −5 −0.1 1000 561.7126

2 0.9 0.2 −5 −0.1 1000 904.6304

3 0.9 0.2 −5 −0.1 1000 2186.567

4 0.9 0.2 −5 −0.1 1000 6136.29

5 0.9 0.2 −5 −0.1 1000 16500.39

Fig. 3. The stationary Rayleigh number (RaS) versus wave number (a)
for different values of the Lewis number (Le).
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Table 2. Numerical values of the stationary Rayleigh number (RaS) with respect
to wave number (a) for different values of the Lewis number (Le).

a λ3 ε NA Rn Le RaS

1 0.3 0.2 −5 −0.1 1000 590.4261

2 0.3 0.2 −5 −0.1 1000 1091.614

3 0.3 0.2 −5 −0.1 1000 2965.213

4 0.3 0.2 −5 −0.1 1000 8737.886

5 0.3 0.2 −5 −0.1 1000 23885.42

1 0.3 0.2 −5 −0.1 2000 1090.426

2 0.3 0.2 −5 −0.1 2000 1591.614

3 0.3 0.2 −5 −0.1 2000 3465.213

4 0.3 0.2 −5 −0.1 2000 9237.886

5 0.3 0.2 −5 −0.1 2000 24385.42

1 0.3 0.2 −5 −0.1 3000 1590.426

2 0.3 0.2 −5 −0.1 3000 2091.614

3 0.3 0.2 −5 −0.1 3000 3965.213

4 0.3 0.2 −5 −0.1 3000 9737.886

5 0.3 0.2 −5 −0.1 3000 24885.42

Table 3. Numerical values of the stationary Rayleigh number (RaS) with respect
to wave number (a) for different values of the modified diffusivity ratio (NA).

a λ3 ε NA Rn Le RaS

1 0.3 0.2 −5 −0.1 1000 1090.426

2 0.3 0.2 −5 −0.1 1000 1091.614

3 0.3 0.2 −5 −0.1 1000 2965.213

4 0.3 0.2 −5 −0.1 1000 8737.886

5 0.3 0.2 −5 −0.1 1000 23885.42

1 0.3 0.2 −50 −0.1 1000 1085.926

2 0.3 0.2 −50 −0.1 1000 1087.114

3 0.3 0.2 −50 −0.1 1000 2960.713

4 0.3 0.2 −50 −0.1 1000 8733.386

5 0.3 0.2 −50 −0.1 1000 23880.92

1 0.3 0.2 −95 −0.1 1000 1081.426

2 0.3 0.2 −95 −0.1 1000 1082.614

3 0.3 0.2 −95 −0.1 1000 2956.213

4 0.3 0.2 −95 −0.1 1000 8728.886

5 0.3 0.2 −95 −0.1 1000 23876.42
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Fig. 4. The stationary Rayleigh number (RaS) versus wave number (a) for different values
of the modified diffusivity ratio (NA).

Table 4. Numerical values of the stationary thermal Darcy-Rayleigh number (RaS) with
respect to wave number (a) for different values of the nanoparticles’ Rayleigh number (Rn).

a λ3 ε NA Rn Le RaS

1 0.3 0.2 −5 −0.1 1000 590.4261

2 0.3 0.2 −5 −0.1 1000 1091.614

3 0.3 0.2 −5 −0.1 1000 2965.213

4 0.3 0.2 −5 −0.1 1000 8737.886

5 0.3 0.2 −5 −0.1 1000 23885.42

1 0.3 0.2 −5 −0.3 1000 1589.426

2 0.3 0.2 −5 −0.3 1000 2090.614

3 0.3 0.2 −5 −0.3 1000 3964.213

4 0.3 0.2 −5 −0.3 1000 9736.886

5 0.3 0.2 −5 −0.3 1000 24884.42

1 0.3 0.2 −5 −0.5 1000 2588.426

2 0.3 0.2 −5 −0.5 1000 3089.614

3 0.3 0.2 −5 −0.5 1000 4963.213

4 0.3 0.2 −5 −0.5 1000 10735.89

5 0.3 0.2 −5 −0.5 1000 25883.42

Fig. 5. The stationary Rayleigh number (RaS) versus wave number (a) for different values
of the nanoparticles’ Rayleigh number (Rn).
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Table 5. Numerical values of the stationary Rayleigh number (RaS) with respect
to wave number (a) for different values of the medium porosity (ε).

a λ3 ε NA Rn Le RaS

1 0.3 0.2 −5 −0.1 1000 590.4261

2 0.3 0.2 −5 −0.1 1000 1091.614

3 0.3 0.2 −5 −0.1 1000 2965.213

4 0.3 0.2 −5 −0.1 1000 8737.886

5 0.3 0.2 −5 −0.1 1000 23885.42

1 0.3 0.2 −5 −0.3 1000 1589.426

2 0.3 0.2 −5 −0.3 1000 2090.614

3 0.3 0.2 −5 −0.3 1000 3964.213

4 0.3 0.2 −5 −0.3 1000 9736.886

5 0.3 0.2 −5 −0.3 1000 24884.42

1 0.3 0.2 −5 −0.5 1000 2588.426

2 0.3 0.2 −5 −0.5 1000 3089.614

3 0.3 0.2 −5 −0.5 1000 4963.213

4 0.3 0.2 −5 −0.5 1000 10735.89

5 0.3 0.2 −5 −0.5 1000 25883.42

Fig. 6. The stationary Rayleigh number (RaS) versus wave number (a) for different values
of the medium porosity (ε).

6. Conclusion

The onset of thermal instability in a layer of porous medium saturating
a Jeffrey nanofluid was investigated analytically and numerically for free-free
boundaries. The behaviour of various dimensionless parameters on the onset
of stationary convection was analysed analytically and graphically. The main
concluding remarks are as follows:

• The Jeffrey parameter stabilises the stationary convection for both top/bot-
tom-heavy configurations. The Rayleigh number for a Jeffrey dielectric nano-
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fluid saturated porous layer is always smaller than when a regular nanofluid
is involved.

• The Lewis number and the modified diffusivity ratio destabilise the phy-
sical system slightly for both the top/bottom-heavy distribution.

• The nanoparticles’ Rayleigh number destabilise the system for both top/bot-
tom-heavy configurations.

• The medium porosity postponed/advanced the stationary convection for
bottom/top-heavy nanoparticles’ distribution.
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