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APPLICATION OF FLOQUET’S METHOD TO HIGH-SPEED
TRAIN/TRACK DYNAMICS (*)

T.KRZYZYNSKI (WARSZAWA)

The paper deals with the vertical dynamics of a railway track and a guideway for the mag-
netic high-speed system with contact-free levitation technology (Maglev). The conventional
railway track is composed of rails mounted on the equally spaced sleepers which rest on the
ballast, with a pad between the rail and sleeper. The guideway for Maglev system is composed
of simply supported girders which are mounted on piers. Usually, the span of adjacent girders is
equal and the guideway is composed of repetitive elements mounted with high positional accu-
racy. The track as well as the guideway form typical periodic systems which consist of a number
of identical flexible elements coupled in an identical way. In the paper the free wave propaga-
tion problems and the steady-state system dynamic responses to a moving harmonic force are
considered. In both cases the solution method proposed consists in the direct application of
Floquet’s theorem to the differential equations of motion of the periodic systems.

1. INTRODUCTION

The conventional track is composed of rails mounted on the sleepers which
rest on the ballast, with a pad between the rail and sleeper. One of the most
simple but reliable mechanical models of such a system is a continuous beam
resting on spring-mass-damper elements which allow to model the elasticity of
pad and ballast and the sleeper mass, Fig. 1. The beam can be modelled using
either the Bernoulli - Euler or the Timoshenko theory. Assuming high positional
accuracy, the system can be considered as one composed of repetitive elements.
Actually, the track forms a typical periodic system which consists of a number
of identical flexible elements (cells) coupled in an identical way (by means of the
sleepers).

In recent years the magnetic high-speed system with contact-free levitation
technology (Maglev) has been developed [1]. The guideways for Maglev systems
are composed of simply supported girders which are mounted on piers. Usually,
the span of adjacent girders is equal and the guideway is composed of repetitive
elements mounted with high positional accuracy. Although designed as rigid and

(*) This paper has been presented at the 1995 ASME International Mechanical Engineering
Congress and Exposition in San Francisco, California, USA.
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F1G. 1. Model of a periodic track.

insensitive to vibration, actually the guideway forms a typical periodic system
which consists of a number of identical flexible elements (girders) coupled in an
identical way (piers), Fig. 2.
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F1G. 2. Model of a periodic guideway for Maglev.
The present paper deals with the vertical dynamics of railway tracks and

guideways for Maglev modelled as a periodic Bernoulli - Euler beam. The free
wave propagation problem and the steady-state system dynamic response to a
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moving harmonic force are considered. In both cases the solution method pro-
posed consists in a direct application of Floquet’s theorem to the differential
equation of motion of the periodic system.

2. FORMULATION OF THE PROBLEM

The equation of motion of the beam resting on a viscoelastic foundation,
which is subjected to the load B(z,t) = poé(z — vt)exp(iwt), is taken in the
following form:

o* 9? 0 ;
(2.1) EI—-—l: + /L—% + n—zﬁ + qw = pob(z — vt) exp(iwt),
oz ot ot

where w = w(z,t) is the displacement function of spatial variable z and time t.
In Eq.(2.1) EI, p, ¢ and 7 denote the beam flexural stiffness, the beam
mass per unit length, the elasticity and viscosity coefficient, respectively. The
right-hand side in Eq.(2.1) represents the load in the form of a force travelling
with constant velocity v and oscillating harmonically in time with frequency w,
whereby the term 6(z — vt) denotes the Dirac-delta function. It is more con-
venient to analyze the problem by means of non-dimensional quantities. The
non-dimensional equation of motion reads
4 2
ZXW: + %Z + N%‘f + QW = 6(X — Vr)exp(if27),
where the notations are given in Table 1.
The periodicity of the railway track results in the following boundary condi-
tions for the function W = W(X, r):

(2.2)

W(nL— ’ T) = W(nL+7 T),

ow ow
(2 3) W(TLL_,T) = EX—(TLL.'.,T),
' O*w o*wW
ax2 (- 7) = =5 (nly,7),
PwW, »wW
E—Xg(nL_,r) = W(TI.L.HT) - R(nL,‘r) = 0,

where I = lag is the non-dimensional spacing of the sleepers, n is a subsequent
support number (n € {-o0,..,—1,0,1, ..., +00}). Equations (2.3) represent the
conditions of continuity of displacement, rotation, bending moment and the equi-
librium of shearing forces, respectively, for the n-th periodic support. In case of



202 T. KRZYZYNSKI

Table 1. Notations.

X =zao T = two W(X,r)=w/wo

2 =w/wo V =v/v N =1n/n0

Q=q/E no = vEu a0 = 3/1/1
wo =+/FE/p wo = poao/E vo = wo/ao

a steady-state motion with a frequency wp, the reaction force R = R(nL,T)
determined for the n-th sleeper reads

(2.4) R(nL,wp) = A(wp) - W(nL,wp),

where a generalized stiffness A = A(wp) of the flexible support depends on the
elasticity coefficient of the pad ¢p and ballast g and the pad and ballast viscosity
coefficient np, np, respectively, and reads

. . :
(2.5) Al L (gp +2cwo77P) (zwims + 45 + iwonp)
E —wims + qp + qB + iwo(np + 1B)

In Table 2 the system parameters used in numerical examples are presented.

Table 2. Periodic track.

E =2.110" N/m? I =3.05210"° m* u=60.31 kg/m

gp =2.610° N/m np = 6.3 10* Ns/m ms = 145 kg

¢gp =1.810° N/m np = 8.2 10* Ns/m 1=0.6m

According to the periodicity of the guideway for Maglev, Fig. 2, the boundary
conditions for the function W = W(X,7) read

I*w

6) W(nL_,7) = W(nLy,T), W(RL,T) &
' PW PwW
ﬁg(nL_,r) = a—Xg(nL+,T) - R(nL,7) =0,

which represent the continuity of displacements, zero bending moment and the
equilibrium of shearing forces, respectively, for the n-th periodic support. The
reaction force R = R(nL,T) is to be determined separately for the vertical and
lateral case of the system dynamics. In case of vertical system dynamics it is as-
sumed that (EA)pillar > (EI/lz)bay i.e. the pillar can be modelled as a rigid mass.
According to the design procedure for dynamically loaded foundations proposed
by RICHART et al. [2], an equivalent model of the foundation resting on an elastic
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half-space is applied in the present paper, see also [3]. The equation of motion
of the equivalent system is the equation for a simple spring-damper-mass-system
and we have

Y R(TLL,UJO) = A(wo) P W(nL,wo),
(2.7) . ,
A(wo) = ¢ + 2inEwo — MEwWg,

where W(nL,wy) — vertical displacement of the pillar, mg - equivalent mass
(pillar 4+ foundation + vibrating ground), ng — equivalent damping (“radiation”
damping + viscous damping), gg — elasticity coefficient (strong soil). In Table 3
the system parameters used in numerical examples are presented. The first eigen-
frequency of the bay reads w; = 6.03 Hz (the experiment shows 6.6 Hz) and the
corresponding logarithmic decrement — A = 0.05. The logarithmic decrement Ag
for the equivalent system equals 3.14.

Table 3. Periodic guideway.

E =4.6 10" N/m? I=05m* p=410° kg

¢ge = 1.5 10° N/m nE = 1.6 107 Ns/m mpg = 1.8 10° kg

g—0 n = 2.4 10° Ns/m l=25m

There are many methods used in the dynamical analysis of mechanical peri-
odic systems. For example, the transfer matrix method [4], receptance method
[5], space harmonic analysis [6], energetic methods (7], Fourier series method
(8], travelling wave method [9]. In the field of solid state physics and electrical
engineering, the approach using Floquet’s theorem in solving Hill’s equation is
applied, which is widely discussed in the classical book of BRILLOUIN [10]. In the
present paper the above named theorem is used to solve the equation of motion
of a periodic track and a periodic guideway. Also periodic guideways have been
investigated in papers [11, 12].

3. FREE WAVE PROPAGATION IN PERIODIC STRUCTURES

In case of free wave propagation (pg = 0) the solution can be written in the
following form

(3.1) W(X,7) = A(X, ) exp[i(AX + 2o7)]-

We assume that the function A = A(X, A) describes the dynamically admissible
displacement field and, according to Floquet’s theorem, is a periodic function, i.e.
is a function which is independent of the choice of a cell of the periodic structure,
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A(X+L,\) = A(X, )). Introducing the relation (3.1) into Eq.(2.2) in which the
right-hand side equals zero, yields the equation for the function A = A(X, A),

(3.2) [DA(X,2) - §%- A(X,)) =0,
where
(3.3) DA(X,A) =) + 29?5(" §t=02-iNQ - Q.

3.1. The case of a periodic railway track

The conditions for the function A = A(X, A) which follow from the boundary
conditions of the displacement W = W(X, ), Eqgs.(2.3), read
A(nL) = A[(n+ 1)L],
D4(X)-A(nL) = Da(X)- Al(n +1)L],
D%(X)- A(nL) = D4(X) - Al(n +1)L],
Di(X)-{Al(n+ 1] - A(nL)} - A- A(nL) = 0.

(3.4)

The solution of the ordinary differential equation (3.2) satisfying the conditions
given by Eq.(3.4) reads

(3.5) W(X, )= A(£, ) - exp[i(AnL + 2o7)],
where

(3.6)  A(E,)) = [sin S€e™ 4 sin S(L — €)](cos AL — cosh SL)
— [sinh S&e**L + sinh S(L — €)](cos AL — cos SL),
for /

X e<nL, (n+1)L>, E=X—nlL, £e<0,L>.

Equation (3.5) represents a travelling wave in the periodic system, its “shape”
being given by Eq. (3.6). The dispersion relation, i.e. the relation “frequency (2o
— wavenumber A” can be written in the following way:

(3.7)  f(\ $2%) = cos? AL — cos AL |cos SL + cosh SL

A

+ 4—S3(SinSL —sinh SL)| + cos SL cosh SL

+ 4—?‘—5(sinSLcoshSL —sinh SL cos SL) = 0.
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Equation (3.7), which can also be written in the following form
(3.8) f(X, $20) = [cos AL — fi(£20)] - [cos AL — fo(20)] = O,

yields two values of the wavenumber A for a given frequency 2y. In the general
viscoelastic case the dispersion relation (3.7) is satisfied by a complex wavenum-
ber A = Ag + i);, with Ag = Re()A) - the wavenumber, A\; = Im(X) - the
attenuation number. The solution given by Eq.(3.5) takes the following form:

(3.9) W(X,1)= A(£, ) - exp[-AnL + i(ArnL + £2o7)].

In the pure elastic case (N = 0, A(f2) = const) one can distinguish two char-
acteristic cases: When A\; = 0, Ap # 0 — a travelling wave given by Eq.(3.9)
can propagate in the whole infinite structure, which corresponds to so-called
“passing bands” in the ({29, A)-plane [10], and when A; # 0 — a wave cannot
propagate and its attenuation in space is determined by the term exp (—Arnl),
which corresponds to “stopping bands” in the ({29, A)-plane.
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F1G. 3. Railway track: Dispersion relations in the pure elastic case.

In Fig. 3 the dispersion relations (3.7) calculated for the pure elastic case are
illustrated. The curves representing the attenuation number A; (dashed lines)
and the wavenumber Ag (continuous lines) are symmetrical with respect to both
2 and A axis. The first Brillouin zone (or propagation zone, [10]), for I = 0.6 m
reads A\gp € < —7/l,7/l > = < —5.24rad/m,5.24rad/m >. The case shown in
Fig. 3 illustrates negative-going waves corresponding to the first Brillouin zone. In
case of the first mode we have passing bands in the following frequency ranges (in
Hertz): (156.2, 263.9), (481.4, 1422.4), (1547.1, 5690.0), and stopping bands for
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(0, 156.2), (263.9, 481.4), (1422.4, 1547.1). For the frequency equal to 277.0 Hz,
which is an eigenfrequency of the system pad-sleeper-ballast, the contact force
in a pad tends to infinity and flexible supports become rigid ones which results
in uncoupling the adjacent cells of the periodic system. In the frequency range
(277.0, 481.4) Hz in both wavemotion modes we have so-called “propagating and
attenuating wave” for which A; = Ag, Fig.3. The second mode of wavemotion
is always attenuated (A7 > 0 for any value of {2). The frequencies 1422.4 Hz and
5690.0 Hz are eigenfrequencies of a simply supported beam of the same length
and the same other parameters as the periodic structure cell. The corresponding
eigenforms are so-called “pinned-pinned” modes [13], with nodes at the periodic
supports. A discussion of eigenforms corresponding to the cases Ar=0,Ag =0
or \; = 0, Ag = 7/ L, can be found in the paper [14].

3.2. The case of a periodic guideway for Maglev

The conditions for the function A = A(X,\) which follow from the boundary
conditions of the displacement W = W (X, ), Eqgs.(2.6), read

A(nL) = Al(n+ 1)L},
(3.10) D%(X)- A(nL) = D%(X)- Al(n+1)L] =0,
DY(X)- {A[(n+ 1)L] - A(nL)} - A+ A(nL) = 0.
The solution of the ordinary differential equation (3.2) satisfying the conditions
(3.10) is given by means of Eq.(3.5), where
(3.11)  A(,N) = [sin S¢e +sin S(L ~ €)] -sinh ST
- [sinh SeeME 4 sinh S(L - f)] -sin SL.

The dispersion relation for waves propagating in the periodic guideway reads

sin SL cosh SL — sinh SL cos SL
sin SL — sinh SL
A(§%) sinSLsinhSL
T 783 sinSL-sinhSL

(3.12)  f(A, %) = cosAL —

0,

which yields one mode of the wavemotion.

The dispersion relation in case of vertical system dynamics is illustrated in
Fig. 4, where continuous lines correspond to the wavenumber Ag, dashed lines
to the attenuation number A; and the shaded areas represent passing bands in
the (20, A)-plane. As follows from Fig. 4, the stopping bands, i.e. the frequency
ranges where the propagation of free harmonic waves is not possible, dominate
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F1G. 4. Vertical dynamics of the guideway: configuration of the ({20, A)-plane.

in the (2o, A)-plane. Narrow passing bands can be found in the vicinity of bay
eigenfrequencies. The property of small “transmissibility” of the structure is due
to weak dynamical coupling (by means of pillars resting on strong soil) between
adjacent bays.

4. PERIODIC SYSTEMS UNDER A TRAVELLING DISTURBANCE SOURCE
4.1. Solution method
The solution for a periodic system subjected to a moving harmonic force can

be written in the following form:

(4.1) W(X,r)= — / A(X, N explid(X — VT) + if27]d).

— 00

Introducing the relation (4.1) into the Eq.(2.2), yields the following non-homo-
geneous equation for the function A = A(X, \):

(4.2) [D4(X,A) = 8- A(X,)) =1,
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where

(4.3) Da(X,\) =i+ 5‘9)—(, St=1"-iNR-Q.
The frequency

(4.4) N==-V+0

can be seen as a “forced” frequency of travelling waves generated in the system
by the disturbance source.

Solving Eq.(4.2) with the boundary conditions given by Eq.(3.4) in case
of the periodic track, and by Eq.(3.10) in case of the periodic guideway, and
introducing the result obtained into Eq.(4.1), yields
i A(E,N) - ei(AnL+07) 1 °°ei(,\x+ﬁf)

(45) W(X’T)Z%_ 1530 — SN T ax ) Ni- s

),

where the terms A(£, A) and f(), 12) are given by Egs. (3.6) and (3.7), for the pe-
riodic track, and by Eqs. (3.11) and (3.12) for the periodic guideway, respectively,
which now depend on the frequency 2.

Solving Eq.(4.5) by means of Cauchy’s theorem and taking into account a
certain finite number of poles of the integrand, yields the solution for cells ahead
of or behind the load which can be written in the following form:

Nae: Ko
(4.6) W(X,r)= Z E Qmi(V, 02)- Apk(€, M)
M=1 k=1
- expi(Amk - nL + 2k - 7),

for
X e<nL, (n+1)L>, E=X-nlL, £e<0,L>.-

The solution obtained is a superposition of waves travelling in the periodic sys-
tem. The “shape” of the waves which correspond to two modes M, (Ny = 2) in
case of the periodic track is given by Eq. (3.6) and one mode M, (Ny = 1) in case
of the periodic guideway is given by Eq.(3.11). In Eq. (4.6) we have Qum«(V, 2)
- the wave amplitude, Kps = Kpr(q) — number of waves ahead of the load
[nL > V], Kp = Kpgy — number of waves behind the load [(n + 1)L < V],
for a given mode M.
The wavenumber A is determined by means of the following relation:

(4.7) FO\ks 2mk) = 0, Qmrk = =AMV + 2,

where f = 0 is the dispersion relation given by Eq.(3.7) for the periodic track
and by Eq.(3.12) for the periodic guideway.
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The solution for the actually loaded cell [nL < VT < (n 4+ 1)L] is composed

of terms where A satisfies Eq.(4.7) and terms where A satisfies the following
relation:

(4.8) Mo (=AV4+ 22 +iNEAV+2)+Q =0,

which is the characteristic equation of a continuous and non-periodic beam under
a moving harmonic load [15].

4.2. Periodic track under a travelling load

In Fig. 5 the dynamic track response to aload moving with the velocity 50 m/s
is illustrated. As follows from Fig.5, the system displacement is a wave with

A .3
- amplitude 5- 10~ m

fi A A
l=06m

F1G. 5. Track displacements for selected times and V = 50m/s and 2 = 0.
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wavelength of ~ 3.8 m which travels with the load velocity yielding the frequency
of ~ 13Hz at the fixed rail point. In Fig.6 the rail deflection at a fixed point
X = 51 is shown in case when the moving force “starts” at the point X = 0 and
travels during the time ¢ = 0.12s. As follows from Fig. 6, for the considered load
velocities the dynamic system responses are qualitatively similar.

4.8. Periodic guideway under a travelling load

The dynamic responses of the guideway to aload in the form of a concentrated
force po = 3.3 -10° N and a load distributed over a section of the length of 48 m
are illustrated in Figs. 7 and 8, respectively. Actually, the load distributed over a

<

3 4 8

5 5
SUPPORT NUMBER
F1G. 7. Guideway displacements due to a concentrated force for selected times,
V =150m/s, 2 =0.
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guideway length of Ly = 48 N is modelled as a superposition of 49 concentrated
forces yielding the total force of 106 N, which approximately corresponds to the
Maglev weight. When the travelling forces leave the bay, this vibrates with its
first eigenfrequency. As follows from the investigations carried out in the paper,
the dynamic response of a single bay is very similar to the case of a simply
supported beam with zero initial conditions.

Ly =480 m.

>

5 . 6.
SUPPORT NUMBER
FIG. 8. Guideway displacements due to a distributed load for selected times,
V =150m/s, 2 = 0.

-2 -

3 8 i

4.4. Critical parameters of the load

As follows from the investigations carried out in the paper, for certain values
of load velocity and frequency, the dynamic response of a viscoelastic system
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takes maximum values, and displacements of the pure elastic system increase
infinitely in time. This phenomenon takes place when the load moves with the
group velocity of the travelling wave which is generated. In the pure elastic case,
the energy supplied to the system cannot be radiated which results in an infinite
increase of wave amplitudes. For the same load parameters the amplitudes of
waves propagating in a viscoelastic system can reach their local maxima. This
problem is discussed in details in papers [15, 12, 14]. '

5. CONCLUSIONS

Application of Floquet’s theorem has enabled us to find the solution for free
and forced vibrations of a periodic railway track and periodic guideway for Ma-
glev. The problem of free travelling waves has been studied at first. Such an
analysis is needed in order to illustrate the fundamental properties of the pe-
riodic structures under consideration. In case of the periodic track, there are
two “degrees of freedom” in which adjacent cells interact, namely deflection and
rotation of the beam, and there are two modes of wave propagation. One of
them is an “attenuation” mode, the other a “continuation” mode which trans-
fers the energy throughout the system. In case of the periodic guideway, there
is only one mode of wave propagation and the vertical coupling between adja-
cent bays is very weak and results from the “strong-soil-foundation” assumption.
The steady-state system response has been determined for a moving disturbance
source in the form of a harmonic force. Direct application of Floquet’s theorem
to the differential equation of motion has made it possible to obtain an exact
analytical solution describing the displacement field for an arbitrary cell of the
periodic structure.
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