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CHANGES IN THE EIGENPAIRS DUE TO THE STRUCTURE
MODIFICATION

THE CONTINUOUS APPROACH

M. SKRINAR and A. UMEK (MARIBOR)

During the past years, a great deal of time and efforts have been spent in analysing the
changes of eigenpairs of the structure due to the reduction of stiffness and especially of cracks
as well. These investigations are further used first to identify the crack location and then its
magnitude. The whole attention is focussed on cracks and similar types of damage, neglecting
the fact that the eigenpairs changes can be also due to other causes, for example variations of
the mass. The paper presents the comparison of eigenvector changes due to two types of struc-
ture modifications: stiffness and mass variations. The study covers both the discrete approach
using finite element method, and also continuous approach. It is evident from both cases that
eigenvectors changes different structure modifications exhibit regular patterns and therefore, it
is possible to identify not only the location but also to guess the type of the structure modifica-
tion. Once when the type of the modification is known, it is possible to obtain the magnitude
of the modification from the eigenfrequency change.

1. INTRODUCTION

The influence of location and magnitude of the structure’s change on the
response of the structure is an interesting engineering problem. YUEN [1] offers
a systematic study where he considers eigenshape’s change due to the stiffness
reduction. The study is performed on a simple cantilever beam and is limited
to the first eigenfrequency change only. In the extensive study PANDEY et al.
[2] observe the influence of the absolute change on eigenshapes (even higher).
A new parameter that indicates the presence of a crack is introduced. BARUH
and RATAN [3] present another criterion for the determination of irregularities
in the structure combining the dynamic characteristics of an original system
with the characteristics of a modified system. SKRINAR [4, 5] has analyzed and
expanded all these studies in two directions: first, by introduction of longitudinal
displacements and secondly, by considering also the mass variations.

Previous studies using solely the finite element models have proved that lo-
cations of the changes can be determined either directly from the eigenvectors
(modal shapes) or from the derivatives of their components. The scope of the
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present investigation is to perform the matching analysis using the continuous
approach and thus to verify the results obtained.

2. THE ANALYSIS PROCESS
2.1. Introduction

The analysis process in the paper consists in determination of eigenfrequencies
and the corresponding eigenvectors (modal shapes) of an undamped continuous
model of the mechanical system. The location of modification is in an arbitrarily
chosen point of the structure, and the influence of various changes at the same
location is examined.

SKRINAR [4] has extended the studies given by YUEN [1], PANDEY et al. [2]
and BARUH et al. [3] by involving detailed systematisation and generalisation of
the type of change. The modification of the structure was not limited to a local
reduction of stiffness only, but has included also a local variation of mass as
well a simultaneous variation of stiffness and mass. Another essential extension
was that all degrees of freedom (longitudinal and transverse displacements, and
rotational degrees of freedom) were considered in the finite element analysis,
yielding some interesting conclusions.

To complete the previous studies, the same cantilever beam structure will be
analysed again using a continuous approach.

The equation of free transverse vibration of a beam is written as follows:

0%y & 0%y B
{%:1) mw-l—w (Efa—xz-) =0,

where y — lateral displacement which is a function of the spatial coordinate z
and time ¢, m — the mass distribution of the unit of length, ET — flexural rigidity,
the product of the elasticity modulus and the moment of inertia.

The solution of Eq.(2.1) is assumed to be in the form:

(2.2) y(z,1) = v(z) - Y (1),

where v(z) denotes the eigenshape and Y (t) governs the behaviour of the struc-
ture in time.

Introducing Eq.(2.2) into Eq. (2.1), the latter can be separated into two ordi-
nary differential equations. Analysing further and introducing the actual bound-
ary conditions, the solution for the eigenfrequencies is obtained. Knowing eigen-
frequencies \; (i = 1,2, ...) it is possible to obtain continuous functions v;(z) that
correspond to the eigenvectors u; in the finite element analysis.
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The process can be repeated for the modified system to obtain the associated
eigenfrequencies A} and eigenshapes w;(z). From known eigenshapes v;(z) and
w;(z), the location and type of the modification should be determined.

2.2. The process of analysis

In the finite element analysis the discrete eigenvectors u and v are first nor-
malised with respect to the corresponding mass matrices u? -M:u; =1 and
vl .M -v; = 1, and further to the corresponding circular eigenfrequencies. Each
vector u and v is then divided into three vectors — the components of the longi-

tudinal displacements X7, transverse displacements Y and rotations ¢.

X X! e YE Yy e e

u v 7 u v ?
w; w; w; w; ) i

X =

1

where ¢ stands for the frequency, indices u and v stand for the original and
modified structure, respectively.

In the continuous approach, the eigenshapes v;(z) and w;(z) are therefore first
normalised over the mass. Normalised eigenshapes %;(z) and w;(z) are computed
from:

L L
/ Ti(z)-m(z) Ti(z) - de =1 and / Bi(z) - m(z) - Wi(e) - de = 1.
=0 =0

Normalised eigenshapes are further normalised over the corresponding circular
eigenfrequency

vi{e) = # and wi(z) = i

Normalised eigenshapes w}(z) of the modified structure are afterwards compared
with normalised eigenshapes v}(z) of the original structure:

(2.3) &i(z) = vi(z) - wi(2).

In the finite element analysis, the vector of rotational components ¢} is obtained
by dividing the eigenvectors into three vectors (X}, Y} and ¢}) according to the
degrees of freedom. In the continuous analysis, a vector equivalent to the vector

of rotations components ¢? is obtained as the first derivative of vector &;() from
Eq.(2.3).
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3. NUMERICAL STUDIES FOR DIFFERENT STRUCTURE MODIFICATIONS
3.1. Numerical example

As a demonstration example, a simple cantilever beam with a rectangular
cross-section, fixed at one end, is chosen (Fig.1). In previous studies [4, 5] the
same cantilever was discretized with 21 nodes and 20 elements, and the stiffness
and mass matrices were obtained from the finite element theory, using 2-noded
beam elements with Hermite polynomials as interpolation functions.

b=h=1 .92174? cm,
E=208 GN/m

J
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‘ _L=075m ki
FiG. 1. Cantilever beam.

In further examination the following two modifications of the structure are
considered:

1) local reduction of stiffness or cracked part of the structure,

2) added mass of the structure — the increase of the mass of the structure
without affecting the stiffness of the structure.

3.1.1. Damaged part of the structure. The simplest way to model the local
damage in a finite model is to reduce the modulus of elasticity of the damaged
finite element (Edamaged < Fintact)- This approach, widely used in the literature
requires only a minimal change in the mathematical model of the structure with
the finite elements and does not require any implementation of a special element.
In the continuous approach such method cannot be easily used.

For more realistic description of the crack, a special finite element for plane
beams of a rectangular cross-section with a uniform transverse crack was in-
troduced [6] in previous analysis [4, 5]. The implementation of such an element
requires precise information about the crack location and crack depth. The com-
putational model of this element consists of two elastic beams (representing
uncracked part of the beam), connected by a rotational spring, representing the
crack. This model embodies the computational model that has been widely used
in the preceding literature, where also a large variety of rotational stiffness spring
constants is given.

Figure 2 compares vectors Y; and ¢} with the corresponding vectors &(z)
and £'(z) from the continuous approach. In the FEM model, vector ¢} clearly
indicates the influence of the modification of the structure by discontinuity of
vector ¢} at the damaged element. The modification of the structure is evident
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FIG. 2. a. Vectors Y] and ¢} for the damage at element 11 (FEM model). b. Vectors & (z)
and &;(z) for the damage at element 11 (continuous model).
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F1G. 3. a. Vectors Y} and @i (FEM model). b. Vectors &;(z) and &;(z) (continuous model).

also in higher frequencies (Fig.3a). Comparing Fig.2a with Fig.2b it is evident
that similar behaviour can be detected also in the continuous approach, even in
higher eigenmodes (Fig. 3).

To locate the damage, PANDEY et al. [2] introduce the approximations of
second derivatives of transverse displacements, called curvature mode shapes.
The maximum absolute differences of the curvature mode shapes change in fact
indicate the location of the damage in the structure, but there is no physical
interpretation of absolute values. In their study they consider only transverse
displacements (neglecting longitudinal displacements and rotations as well). Fur-
ther, eigenvectors are not normalised over the corresponding eigenfrequency be-
fore the comparison of modal shapes.
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Using FEM model, the damage location is clearly indicated in the bending
components by a jump (not only a simple change of the sign) of vector ¢¥. The
derivative of vector ¢}, denoted as 6;, — equivalent to the second derivative of
the displacements, i.e. curvature mode shape — in fact plays a significant role in
the detection of the damage. Figures 4a and 5 a clearly point out element 11 as
the element where the value of the derivative is discontinuous (local maximum
or minimum).

Apparently with increasing number of elements (and with simultaneous re-
duction of length of each element), the peak will become more and more narrow.
Therefore in the continuous model, the peak vanishes (Figs.4 b and 5b) and thus
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FIG. 4. a. The derivation of vector ¢} over the elements (FEM model). b. Vector £;'(z)
(continuous model).
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F1G. 5. a. The derivation of vector ¢} over the elements (FEM model). b. Vector £{'(z)
(continuous model).
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the essential information is omitted: the continuous approach neglects the fact
that there is increase of stresses at the crack location.

3.1.2. Additional mass on the structure. In the second case, the local varia-
tion of the mass of the structure is considered. In the FEM analysis an additional
mass is introduced as an increase of the mass of a single element without affecting
the stiffness. In the continuous model the mass is introduced as a concentrated
mass at an arbitrary point. Since such a modification decreases the eigenfrequen-
cies (similar to a damage), eigenfrequencies alone cannot be a unique indicator
of the structural change.

Figure 6a shows vectors YT and ¢} (and Fig.7a shows their counterparts
£1(z) and £j(z) in the continuous approach) for the case of an additional mass
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FIG. 6. a. Vectors Y{ and ¢L (FEM model). b. Vectors &;(z) and &](z) (continuous model).
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FI1G. 7. a. Derivative of vector ¢j. b. Vector £;'(z).
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on element 11. Vectors do not indicate the location of the modification so clearly
as in the case of the damaged structure. However, vectors ¢} and £](2z) also in
this case offer enough information about the location of the added mass. While
the local reduction of the stiffness is reflected as a discontinuity of the vector ¢*
and £;(z) at the point of the damage, an added mass is manifested by a reflection
point at the added mass position. In the case of vector 6; the reflection point
is again represented as an extremum at the point of modification (Fig.7a). The
essential difference is in the way in which this extremum is reached. While in the
case of the stiffness reduction the extremum is reached only at the position of the
modification, in the case of an added mass the values are smoothly increasing
(or decreasing) to reach finally the extremum value at the element where the
added mass actually appears. Similar behaviour is detected also in higher modal
shapes. Figure 8 a presents vectors Y3 and ¢3, and Fig.9a displays vector 6.
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FIG. 8. a. Vectors Y3 and @3 (FEM model). b. Vectors 3(z) and £;3(z) (continuous model).
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FIG. 9. a. The derivative of vector ¢3. b. Vector &5'(z).
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Using the continuous model we see that the corresponding eigenshapes (Figs.
6b, 7b, 8b and 9b) behave in the same way as the eigenshapes belonging to the
FEM model. Therefore we can assume that also all conclusions drawn before are
valid for this case.

4. DISCUSSION OF THE RESULTS AND CONCLUSIONS

From the presented study it is once more evident that each modification is
clearly reflected in the modal shapes. Either eigenvectors or their derivatives give
enough information not only about the location of the structure modification,
but also indicate the type of modification. The continuous approach shows that
the effect of change of the mass is completely different than that of the variation
of the stiffness.

Since the derivative of vector ¢, and its counterpart £/(z) are proportional
to the specific deformations:

0w O(-y-p) 9%

T 0z Vo2
it seems reasonable that by measuring the specific deformation we obtain a vec-
tor, comparable to vectors 6; and ¢/(z) in FEM model and continuous model,
respectively.

Therefore, for the determination of the location and type of modification
it is enough to know the vector of specific deformations that belongs to the
corresponding modal shape. From previous examples it is evident that in case of
stiffness variation, the stresses should be measured very close to the crack what
may prove to be difficult in practice. On the other hand, the vector of transversal
displacements can be used to locate the position of the modification.

Considering the variation of mass, it is obvious that this type of the modi-
fication is much easier to detect by means of the vector of specific deformation
than by the vector of transverse displacements.

Once the location and the type of the modification are known, the magnitude
of the modification can be identified by the methods known from the references.
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