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FREE VIBRATIONS OF A TAPERED CANTILEVER BEAM
WITH ECCENTRICALLY CONCENTRATED MASSES AND
INTERMEDIATE SUPPORTS

N.M. AUCIELLO (POTENZA), PM. BELLES
and C.P. FILIPICH (BAHIA BLANCA)

The dynamic behaviour of beams with linearly varying cross-section, concentrated masses
and intermediate supports has been investigated by means of two exact approaches. In the first
case, a general purpose variational method (the so-called Whole Element Method) has been
employed, whereas the second approach is classically expressed in terms of Bessel functions.
The agreement between these different methods of analysis is illustrated by means of numerical
examples.

1. INTRODUCTION

The free vibration frequencies of Euler-Bernoulli beams carrying concentrated
masses have been considered by various authors, following different analytical
and/or numerical approaches. The beam with constant cross-section has been
extensively examined in the presence of masses at arbitrary positions and non-
classical boundary conditions. Approximate solutions and effective numerical
procedures were presented by JAcQUOT and GiBsoN [1], PARNELL and CoOB-
BLE [2]. A simplified approach has been proposed by GURGOZE [3- 5], where a
powerful extension of the DUNKERLEY and SOUTHWELL [9] methods is shown
to be well adapted to the problem. An alternative procedure in terms of Green
functions has been proposed by Xu and CHEN [8].

Exact solutions are also available for cantilever tapered beams with a tip mass,
starting from the classical analyses of MABIE and ROGERS [7], where the particu-
lar tapered ratio allows a solution in terms of Bessel functions. Other solutions
by YANG [13], CRAVER and JAMPALA [17] and AUcCIELLO [14] should also be
noted, in which the influence of intermediate supports is taken into account.

A number of approximate variational solutions should also be mentioned, as,
for example, the very accurate result by GRossI and BHAT [19] and AUCIELLO
[16], who used a Rayleigh - Ritz method in terms of orthogonal polynomials.



238 N.M. AUCIELLO, P.M. BELLES and C.P. FILIPICH

The aim of the present paper is to examine the dynamic behaviour of beams
carrying concentrated masses in the presence of intermediate supports. A general
variational method is applied, the so-called Whole Element Method (WEM),
[10-12], which can be adopted to solve a wide range of linear and nonlinear
boundary value problems. The particular system of the paper has been chosen
in order to justify the name of the method, and even because it is possible to
compare the results with an exact data in terms of Bessel functions.

2. A VARIATIONAL APPROACH TO THE PROBLEM

A propped cantilever beam with intermediate support and eccentric tip mass
has been investigated. Basically, the method is attempted to minimize an ad hoc
functional by adopting trial function v(z) which is continuous with continuous
first derivative in the definition domain 0 < z < L.
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FiG. 1. Geometry of the system considered.

Let us consider a beam with linearly varying cross-section, whose geometrical
data can be deduced from Fig.1. Let E be the Young modulus, ¢ the mass
density, Jo and Fp the second moment of area and the cross-section area of the
beam at the abscissa z = 0, respectively. At the generic abscissa z, it will be:

J(&) = [1 +€ (% - 1)]3J0 = h(z)Jo,

(2.1) Fla).= [1 & (% = 1)] Fy = f(z)Fo,

where € = 1 — hg/h;. The presence of the applied mass is taken into account by
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means of the following nondimensional parameters:

R M M
(2'2) - QFOL, l’l’_ M-U’
i d :
TZ%, D:E, k2:D2+ZZOM7

where M, is the total mass of the beam, 7,057 is the radius of gyration and d is
the eccentricity with respect to the point O where the mass is attached.

If v = v(z) are the transverse displacements of the beam, and w the circular
frequency, the functional will be written as:

(2.3) ] = ITi[v] — 2%1T,[v),

where

(2.4) o] = Mulo] - M) = [Vav'|| - 2|7,
(2.5) M3fv] = R [v(a)r? + v*(a) + 20'(a)o(a) D),

and

(2.6) 02 = 2€f.

In these equations the primes denote differentiation with respect to the spatial
variable z. Moreover, we shall put:

1
(P.@) = [ POQE) e,
(2.7) 0

1PI7 = (P,P) = [ P)d < o0,
0

where £ = z/L and P = P(z), @ = Q(z) are two square integrable functions in
0<z<L.

2.1. The trial functions

We shall assume as approximate solution the following function:

(2.8) b= v fals Z ,82 sin f;z + Aoz + B, | B =4rx.
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As can be seen, it is an extended Fourier series, such that if v(z) and v'(z) are
continuous functions, in 0 < z < 1 and v”(2) is a square integrable function,
then:

(2.9) |v,, — v| = 0, M — o, Vaz,
(2.10) v}, = v| = 0, M — o, Ve,
(2.11) [vy — v"| —. 0, M - o, V.

In other words, uniform convergence of v and v’ and convergence in the mean
of v” must be assured, in the domain of interest. As usual,

(2.32) Ay = 2/ v(z)sin iz dz, Ao = v(1) — v(0), B = v(0).
0

A sequence which satisfies the above mentioned conditions will be called an
extreming sequence.

Following the outlined steps, we obtain v(z) and its derivative as functions
of the unknown parameter 2. This parameter can in turn be determined by im-
posing the stationarity of the functional F[v,,], thus allowing the determination
of the values A;, Ag and B.

Of course, the sequence v,, must satisfy the boundary conditions, which in
this particular case read:

(2.13) v(0) =0, v'(0) = 0, v(b) = 0.

From these conditions we can immediately deduce B = 0 and

(2.14) Ag — Z 0, Agb — Z ﬂ2 sin ;b =
1—1

It is worth noting that the W.E.M. cannot be considered as a particular
Rayleigh - Ritz method, because the geometric boundary conditions must be sat-
isfied only by the final sequence, but not necessarily by its single components.

According to Eq.(2.3) it is possible to write:

(2.15) H[vy] = Mivy] — 2 M[v,,] + s[v,,]

whereas

(2.16) I5[v,,] = —-2A (Ao - Z 5 ) -2u (Aob Z 7  sin 3; )

with A and p being Lagrange multipliers.
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3. THEOREMS AND COROLLARIES

3.1. Theorems

Generally speaking, an eigenvalue problem for a linear differential equation
leads to the following expression:

(3.1) ov]=0
and
(3.2) 2 _ AL[v] + M1 [v]

- Hz[v] 4 le[v] .

If v = v(z) is the solution of the problem, then §2 is the exact eigenvalue. As
a simple extension to the previous formula, it is possible to define the so-called
Rayleigh quotient:

2 _ Ihfvy] + Muv,] + I5[v,,]
(3.3) T e F R

for which it is possible to prove several interesting properties. For example, the
following theorems hold:

THEOREM 1. The eigenvalue £2? assumes an extremal value among the eigen-
values 22 if v,, is an extreming sequence, i.e. 22 = 2%, M — 0.

The proof can be read in several textbooks [10] and it is not given here for
the sake of brevity.

CoRrOLLARY 1. If 22 is an extremal value among the eigenvalues £22, also
22 will be an extremal value with an ad hoc choice of the constant.

The following theorem is also true [11-12].

THEOREM 2. If the eigenvalue 2% assumes an extremal value among the
eigenvalues .Qi! where v,, is a sequence not necessarily extreming but satisfying
the essential boundary conditions (i.e. involving only v and v'), then v(z) must
be the classical solution that satisfies the differential equation.

It is worth noting that this result yields the exact solution of the problem, i.e.
the frequencies and their corresponding modal shapes agree with those obtained
in the classical solution.
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3.2. Applications

According to Theorem 1, the extremal condition for Q§4 can be written as
(3.4) 6022 =0,

where 6 denotes the variation with respect to the series coefficients. Equation
(3.4) is equivalent to the following condition:

(3.5) §1[v,,] =
or, more explicitly:
(3.6)  (hv!,, 600 ) — 2%(f\v,6v,,)
+ R [rzv;l(a)évM(a) + v(a)&vM(a) + D(v,,(a)év,(a) + v (a)cSv' (a))]

4 (6Ao - E 6’[;4 ) (b6A0 Z ﬂ2 | sin B; )

=1 Mt i=1

M 4
L E) (AO—Z%) —bu (Aob ZW sin f3; ) = 0.
=1 "t

1=1

After some algebra it is possible to write
2 2 AJ
(3.7) - 0A0—2Aj'yj+R r AO—Z—.cosﬂja
J ! Bl
( 24, — az A; sm,BJ ) +D ((aAo - az%cosﬂja)
Pl ol

(az cosﬂj) (aAo—Xj:g—?jsinﬂja))}}—A—psz,

where we have denoted:

0 = (f(z)z,z), ;= ———f(z)wjﬂimﬂj

Moreover, the following quantities can be introduced

(f(z)sin Bz, sin B;z)

oij = (h(z)sin B;z,sin B;z), Tii = ﬂ2ﬂ2 :
~_ sin B;asin Sja k.. — 08 Bia cos Bja i cos B;asin B;a
,u‘tj ﬂ?ﬂ? 9 (%] ,Bzﬂj ) E¥] ﬂ?ﬂ] )
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so that Eq.(3.7) becomes:
(3.8) ZAJ'O','J‘ i {R [7‘2 ( cos ﬂ, ZA kz])
i

sin f3; in f;
t (—aAo—;;,f—“ P A]-u,-j) +D (—Ao S“;f =+ Y Ajxi
i J i

i

cos f3; A in ;b
—aAp ﬂﬁ $ 2 AJX”)jI + Z A;Tii — Ao‘r,} ,8 " “sn;éi o
1 ] 1 7

Equations (3.8) and (2.14) can be used in an iterative way, in order to find the
frequency parameters and the corresponding vibration modes.

4. THE CLASSICAL APPROACH TO THE PROBLEM

The equation of motion of the considered example can be written as
d? d?w; : .
(4.1) T 2 [EI(:E ) 122 ] QF(IL‘,')w2wi =0, 1=1,2:3;
where we have adopted the reference axes as in Fig. 1. Moreover,
0<z;<al, 0<z,<(b-a)L, 0<z3<(1-0b)L.

In order to simplify the procedure, it is convenient to adopt the following non-
dimensional quantities:

L L L

where ¢ = 1 — hg/hy, and consequently the area and moment of inertia of the
cross-section can be expressed as functions of the quantities at the free end as
follows:

(4.3) F(z;) = Fiui, J(z;) = J1ud.

(42) u1_1+5(—-.—> U2=1+5(a+2—1), u3:]_+g(b+2_1>’

Inserting Eqs. (4.2)-(4.3) into Eq.(4.1) and simplifying it is possible to write:
(4.4) w?olV 4+ 6u/ 460! —plo; =0, i=1,2,3,
where (I) = d/du; and

4 4 2QF1L4

(4.5) pﬂ. = —E ’ p = w EJl .
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The solutions of Eq.(4.4) are well-known, [18], and can be conveniently ex-
pressed in terms of Bessel functions. It is:

(4.6)  wi(u;) = u;%S [Cl,-Jl(zpau?-5) + CaiY1(2paul®)
+ Caili (2pau?®) + CaiK1(2pau?)],

where J, Y, I, K are the Bessel functions of order 1, C;; are 12 unknown con-
stants to be determined by imposing the boundary conditions at the clamped
end, at the mass, at the support, and at the free end. Therefore, it is:

Atz1=0 - uy=1-¢,
v =0, o =0.

Atzg=0and zy=al — uwy=us=1+¢(a-1),

I I
V1 = Vg (% :’02,
= 2—£ =
oI +3u11v1H + pp* 523 w3y — 3uy vl - vl =0,
O Bt
ofT — ull — g2pty=3y - of = 0.

At the support 22 = (b—a)L, 23 =0 — ug=uz =14+¢(b-1),
vy = 13, v%:vg, v%l—véI, v = 0.
Finally, at the free end 23 = (1-b0)L — uz =1,
vl = 0, v 4+ 30l = 0.

An homogeneous system of linear equations is obtained by substituting Eqgs. (4.6)
and their derivatives into these conditions. A nontrivial solution is obtained by
assuming

(4.7) det A=0

whose non-zero terms are given in the Appendix.
Equation (4.7) is the frequency equation, and can be numerically solved with
respect to the nondimensional parameter p by applying the usual procedure.

5. NUMERICAL RESULTS

As already mentioned in Sec.3, it is possible to find frequencies and vibra-
tional modes in an iterative way, by using Egs. (3.8) and (2.14). The coefficients
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Ag, A;, A and p can be calculated for each value of £2. This procedure has been
applied to the beam in Fig. 1, by using a series as in Eq.(2.8) with 1000 terms.
The results have been given in Table 1, and a comparison with the classical
results are also given, as obtained from Eq.(4.7).

It is interesting to note that the W.E.M. results are always slightly greater

than the exact results, in compliance with the variational nature of the procedure
[20-21].

Table 1. Non-dimensional frequency for o =2, k =0, a = 0.4.

P P2

b I Exact W.E.M. Exact W.E.M.
0 6.04322 6.04401 8.65786 8.65890

0.8 0.2 5.60499 5.60606 8.33893 8.34055
1 4.63604 4.63703 8.02837 8.02853

0 4.95987 4.96064 8.66341 8.66499

1§ 0.2 4.70599 4.70690 8.10953 8.11060
| 4.04872 4.04919 7.46482 7.65245

Some noticeable discrepancies can be noted for the second free frequency, and
for b= 1, p = 1. This is due to some numerical inaccuracies of the W.E.M.

For the sake of completeness, in Tab.2 the exact nondimensional frequencies
have been reported as functions of the parameter k.

Table 2. As Tab.1 for p =1, a = 0.8 and various k.

k 41 P2 P3 y 2
0.2 4.474557 8.260157 13.366113 16.140356
0.4 5.131388 8.212645 13.316203 16.109490
0.6 5.003794 8.205683 13.307044 16.103904
0.8 4.968777 8.203356 13.303844 16.101959
1 4.954117 8.202297 13.302365 16.101060

The influence of the a and k parameters on the first three nondimensional
frequencies has been illustrated in Figs. 2, 3, 4 for a particular taper ratio a = 2.
It is interesting to observe the curves p, and ps as functions of k, where they
practically coincide for £ > 0.4. On the other hand, noticeable discrepancies can
be observed for 0 < k£ < 0.2.
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FIG. 2. First exact frequency coefficients for @ = 2, b =1 and various k, a.

x/L

Il 1 1 1 ' Il

0.1

02

03 04 0s 0s 07 os 09
FIG. 3. As Fig. 2; second frequency coefficients.
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F1G. 4. As Fig. 2; third frequency coefficients.

6. CONCLUSIONS

The proposed general-purpose variational method is particularly useful for the
dynamic analysis of structures subjected to heavy masses. A single trial function
can be used, so that its application to complex structures is almost immediate.
Moreover, the essential boundary conditions must be satisfied only by the fi-
nal sequence, but not by its individual terms, as in the classical Rayleigh - Ritz
approach.

In this paper no attempts have been made in order to deduce the vibrational
modes, because the problem turns out to be not self-adjoint, and a cumbersome
Gram - Schmidt-like procedure should be adopted in order to render the eigen-
vectors orthonormal. On the other hand, the emphasis of the paper has been
placed on the adopted variational procedure.

APPENDIX

aj; = Jl(aa), ajg = Yl(aa), a13 = Il(aa), a4 = Kl(aa),

as = —Ja(aa), az; = —Y3(aa), a3 = Iy(aa), ayq = —Ks(aa),
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azi
azs
a4

a45

as1

as52

as3

a54

ass

Gs6

as7

as8

ae1
ae2
a3
Q64

ags

ars =

arg
ass

asgg

ags

agr

agg

ag,10
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= Ji(abd), a3z = Yi(ab), asz = I1(ab), azq = K1(ab),

= —Ji(abd), azg = —Yi(ab), az7 = —I;(ab), aszg = —K;(ab),
= —Jy(ab),  asg = -Yy(ab), a3 =ID(ab),  as = —Kj(ab),
= Jy(ab), ase = Ya(ab), as7 = —I(ab), asg = Ky(ab),

= 214 e(a = 1) Ju(ab) + 3[1 +e(a — 1] Jo(ab) + ,up222_86J1(ab),

2 —
2¢e

= _’g” [1+e(a— 1)]"° Iu(ab) + 3[1 + e(a — 1)] Is(ab) + up22§8—511(ab),

£ Yi(ab),

= £+ e(a— 1)]"* Ya(ab) + 3[1 + e(a - 1)] Ya(ab) + up®

£
Ky(ab
26 1(0’ )’

= P14 e(a - )" Ka(ab) + 3[1 + e(a — 1)) Ka(ab) + up’
= [1+e(a - DI'* 2Jy(ab) - 3[1+e(a - 1)] Ja(ab),

= —[1+e(a— 1) §Y4(ab) — 3[1+e(a — 1)] ¥s(ab),

= [1+¢e(a—1)° §I4(ab) — 3[1 + e(a — 1)] Is(ab),

= —[1+¢&(a- 1) §K4(ab) — 3[1 +¢e(a — 1)] K3(ab),

= Ja(ab) - KL + e(a — 1)) p2(2 - e)Ja(ab),

= Ya(ab) — k2u (1 + ¢(a — 1)]72° p?(2 — ¢)Ya(ab),

= I3(ab) + K’u[1 + e(a — 1)] 7% p*(2 - €) Iz(ab),

= Ka(ab) — K’u[1+ e(a — 1)]7*° p*(2 — €) Ko(ab),

= —J3(ab), age = —Y3(ab), ag7 = —I3(ab), agg = —K3(ab),
—Ja(ba), azg = —Ya(ba), az7 = Iy(ba), azg = —Ks(ba),

= Ja(ba), az10 = Ya(ba), az711 = —Iz(ba), az,12 = Ks(ba),

= J1(ba), age = Y1(ba), agr = I;(ba), agg = K1(ba),

= —Jl(.ba), ag 10 = —Y1(ba), ag11 = —I(ba), ag12 = Ki(ba),

= p% [1+e(b-1)]"Ji(ba),  ags= p% [1+e(b - 1) Y;(ba),
= Ap%__ 1 +e(b-1)]""°I(ba), aos= p% [+ &(b— 1) Kq(ba),
= —§J4(ba) — 3[1 + (b — 1)]"5 Ja(ba),

= —§Y4(ba) -3 [1 + E(b = 1)]_0.5 YS(ba’)a
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ag11 = 514(1"1) ~3[1 + (b~ 1)]7°° Ix(ba),

ag12 = —§K4(ba) - 3[14¢(b-1)]7%° K3(ba),

a105 = J3(ba), a1 =Ys(ba), a7 =I3(ba),  aios= Ks(ba),
a109 = —J3(ba),  aj010 = —Y3(ba),

ajoq1 = —I3(ba), a2 = —K3(ba),

a9 = J3(c), a11,10 = Ya(c), a11,11 = —Iy(c), a11,12 = Ky(c),

a12,9 = 3J3(c) + §J4(C), a12,10 = 3Y3(c) + §Y4(C),

a12,11 = 3I3(c) - 514(6), a12,12 = 3K3(c) + §K4(C),

where
aa = —25(1 — &), " ab= —2%” i+ e(e = BPS,

ba = -2’8-’ (4 cfprs alfjpBes biipid —2%’.
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