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ON THE VALIDITY OF DIFFUSION/DISPERSION TESTS IN SOILS

J-L. AURTAULT and J. LEWANDOWSKA (GRENOBLE)

In the paper, the validity of dispersion/diffusion parameters identified in the column tests is
discussed. Using the experimental data reported in the literature it is shown that in some cases,
the continuum approach (the Fickian mode of transport) can not be applied to interpret the test
results. In such cases the transport parameters obtained by fitting the experimental results to
the macroscopic model (the advection-dispersion equation) are experiment-dependent and can
not be considered as intrinsic parameters. In order to illustrate the problem, the calculations of
the scale separation parameter introduced in the homogenization theory are performed in four
particular cases.

NOTATIONS

c(z,t) concentration of the pollutant,
D,, molecular diffusion coefficient,
D dispersion coefficient,
D" effective diffusion coefficient,
ERV an elementary representative volume,
I characteristic microscopic length,
sample length,
L characteristic macroscopic length,
Pe,, molecular Peclet number,
Peclet number,
mean pore water (or seepage) velocity,
z,t dimensional variables,
X,T non-dimensional variables,
homogenization (or scale separation) parameter,
€y geometrical scale separation parameter.

™

1. INTRODUCTION

The evaluation of transport coefficients for the dispersion equation is com-
monly made through laboratory measurements. Such tests, as for example the
classical column test, are typically performed with a view to applications in the
field of environmental engineering for describing the pollutant migration in soils,
or in the framework of the design of barriers for the waste storage.
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It is an important point to realise that prior to the parameter identification,
the choice of the dispersion equation as the relevant governing equation was
done. It means that the model, consisting of the dispersion equation and the
appropriate initial and boundary conditions, was chosen to be further applied in
order to derive the approximate behaviour of a particular system, with a known
precision of the modelling. Although it is beyond the scope of the paper, we would
like to stress the importance of this stage. The selection of the model should
be based on the estimations of the relative “weights” of different phenomena
existing in the system. This, in turn, is impossible unless the analysis of the
practical situation in situ, using all the information available about the current
and the anticipated states of the system, is done.

In the process of parameter identification, the laboratory tests are carried
out, in which the known initial and boundary conditions are imposed on the
selected sample of the medium. It provokes the transport phenomena to occur,
that means the propagation of the solute in the soil. The response of the system
i.e. the concentration as a function of space and time variables is monitored.
Then, the model coefficients are fitted so that the difference between the concen-
tration predicted by the model and that observed in the experiment is sufficiently
small.

In the paper, an important question related to the identification of trans-
port parameters is posed. It is well known that the macroscopic models, like
for example the diffusion/dispersion model, are valid, provided there exists a
good separation of certain scales. In the experimental studies, soil samples are
necessarily limited in size and are subjected to large concentration gradients,
especially during the early stages of the tests. As a consequence, the scale sepa-
ration weakens. Therefore, fitting the dispersion coefficient to the concentration
profile obtained from the macroscopic model is questionable and might give re-
sults that will be experiment-dependent, which practically means that they will
not be applicable in other conditions than the ones investigated. This problem
is studied in the framework of the multiple scale expansion method which is
often used to derive the macroscopic equivalent models for finely heterogeneous
materials, such like porous media, composite materials etc., BENSOUSSAN et al.
(8], SANCHEZ-PALENCIA [22], AURIAULT [2]. In order to make the paper more
comprehensive, it is proposed to base the analysis on the general findings of this
method, without going into details. As those results can be intuitively recognised,
the reader does not need to be familiar with the homogenization technique. Nev-
ertheless, the reader is encouraged to refer to the previous papers [5, 6].

The paper is organised as follows: in Sec. 2 the homogenization approach is
briefly presented. Section 3 contains the analysis of three column tests while in
Sec. 4 the effective diffusion experiment is investigated. Finally, Sec. 5 is devoted
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to the general discussion and the comparison between the deterministic and the
stochastic approach.

The problem is of great practical importance and might have serious con-
sequences for the conceptual preparation of the tests of identification of the
transport parameters. The aim of this paper is also to give to the laboratory
experiments a new aspect in view of the homogenization theory.

2. MODELLING OF DIFFUSION/DISPERSION IN SOILS BY MEANS
OF THE CONTINUUM APPROACH

Homogenization macroscopic
equivalent
continuum

F1G. 1. Micro-macro passage.

When a diffusion/dispersion equation is applied to calculate the concentration
of the solute in the soil column, it means that the continuum approach to the
problem is adopted. According to this approach, each of the two phases present
in the saturated soil, i.e. the solid matrix and the pore water in the void space, is
treated as a continuum field that fills up the entire volume. The two interacting
fields are superposed to form a macroscopic continuum model, for which the
macroscopic equation, governing the diffusion/dispersion phenomena is derived,
Fig. 1. The resulting model comprises the effective macroscopic parameters, for
example the dispersion coefficient, that characterise the averaged properties of
the model medium; they are to be determined in an experimental way. The main
advantage of this approach is that the diffusion/dispersion problem does not
have to be solved in the microscopic scale, for the complex pore geometry, that
is, in almost all cases, practically impossible. Instead, we shift to the macroscopic
problem in which the local scale is “forgotten”. This upscaling process, which
is called homogenization, requires one basic and necessary assumption to be
satisfied, i.e. the existence of a representative elementary volume (REV) of the
characteristic length [, very small with respect to the characteristic macroscopic
length £

(2.1) i
In order to quantify the scale separation, and thus the applicability of the macro-
scopic model, a small homogenization parameter ¢ is defined

l

(2.2) E-= Z < 1.
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If the condition (2.2) is not satisfied, it is concluded that the soil cannot be
treated as a continuum in the sense of the homogenization theory and the macro-
scopic model is not valid. Such “non-homogenizable” problems are frequently
encountered in the engineering practice, though not always recognised.

On the other hand, ¢ and €2 measure the approximation of the equivalent
macroscopic model for diffusion and dispersion, respectively. For the purpose of
this paper, ¢ < 0.1 was chosen as a criterion of homogenizability of the problem.
It means that we impose the approximation of the diffusion model to be less
than 10%, and 1% for the dispersion model.

The essential problem related to the modelling of diffusion/dispersion in soils
is the estimation of the parameter ¢, that can be performed only a posteriori.
The parameter ¢ can be calculated, if the two characteristic lengths involved,
l and L, are known. The experimental and numerical evidence shows that the
microscopic length [, which is identified with the dimension of the REV, could
be roughly approximated as (ANGUY et al. [1])

(2.3) I ~ 106,

where J is the mean grain size or, more generally, the dimension of the hetero-
geneity. Obviously, the proper evaluation of ! represents a great problem itself,
depending on many different factors, such as for example the geometrical fea-
tures of the medium in the microscale and the kind on the phenomenon being
investigated. Nevertheless, for the purpose of the paper, the approximation (2.3)
is assumed to provide a sufficiently good estimation of the order of magnitude of
l. Note that this approximation fails, when the grain size distribution is relatively
broad. The determination of the macroscopic length L is even less straightfor-
ward. The difficulty in the evaluation of £ arises from the consideration that
1t is strongly dependent not only on a particular phenomenon (diffusion or/and
dispersion) but also on the “intensity” of the phenomenon, expressed in terms of
the macroscopic gradient of the concentration. As the latter varies in the sample
and with time, it yields £ being a function of position and time. To capture
this problem, the reasoning proposed by BOUTIN and AURIAULT [9, 10] will be
adopted. According to this method, in the case of the column test, £ can be
calculated from the macroscopic concentration field by the following formula:

&13)
9z \ ¢

where ¢y means the concentration at the column inlet. The principle of this
formula is presented in Fig. 2b. Note that £ is generally different from the sample
length L. It coincides with the sample length when the concentration gradient
Jc/0x is constant all over the sample, Fig. 2a. Therefore, ¢ is generally different

-1

(2.4) L=
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F1G. 2. Macroscopic length. a) static flow, b) transient flow.

from the geometrical scale separation parameter ¢, = [/L. The sample length L,
which is naturally associated with the macroscopic characteristic length by many
authors, will appear explicitly in the estimation of ¢ for the particular initial and
boundary value problems considered in this paper (see the following chapters).
Finally, the homogenization parameter ¢ is expressed as

Q-f.¢
()|
It should be stressed that the value of ¢ plays a doubly fundamental role in the
modelling. On the one hand, it determines the domain of validity of the mod-
elling, that enables the correct choice between the diffusion/dispersion models
offered by the homogenization method using the asymptotic expansion technique
(5, 6]. On the other hand, it gives the precision of modelling that has to be kept
in mind in the process of test preparations or interpretation of the test results.
The concepts presented above will be discussed in more details by using the

experimental data of four investigations of dispersion/diffusion coefficients, re-
ported in the literature.

(2.5) £ =}
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3. THE DISPERSION TESTS

The dispersion tests that are traditionally performed in many different fields,
like for example: environmental, petroleum or chemical engineering, are the col-
umn tests. The purpose of the column tests is the laboratory determination of
the hydrodynamic dispersion coefficient. The general idea of this experiment
consists in placing the porous medium (e.g. soil) into a testing column, pumping
the water into it at a desired flow rate and, when the steady-state conditions
are achieved, introducing the solute into the column. The solute can be added
in two different ways, namely under the pulse-input conditions or the step-input
condition.

The following governing equation is commonly used to describe the one-di-
mensional solute transport through a homogeneous soil column

2
o) oy _yoe
ot Oz? Oz

where ¢ is the volume-averaged concentration of the solute, U is the average
pore-water (interstitial) velocity, z is the distance from the inlet to the column,
D is the dispersion coeflicient, ¢ is the time variable. The liquid is assumed to be
homogeneous (constant density and viscosity). The solution to Eq. (3.1) depends
on the initial and boundary conditions imposed on the soil sample, i.e. the type
of experiment being carried out.

Let us analyse four dispersion/diffusion experiments reported in the litera-
ture. The purpose of the analysis is to investigate the validity of the presented
results from the point of view of the continuum approach employed to interpret
the measured quantities.

3.1. The experiments of Bues and Aachib

The experiment conditions were the following [12]:

e soil quartz sand,

e mean grain diameter 0 = 1.425 mm,

e solution calcium chloride CaCls,

e column Plexiglas column L = 2m,
e stepwise input

e molecular Péclet number Pe,, = 300 (author’s notation),
where Pe,, = Ud/Dp,, U is the mean pore velocity, ¢ is the mean grain diameter
and D,, is the molecular diffusion coefficient.

The concentration c(z,t) satisfies the initial-boundary value problem (3.1) -
(3.4)

(32) C(:E,O) =0,
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)

(3.3) Uc— Da—; =Uc  at theinlet z =0,
P)

(3.4) g iy at the outlet z = L,
or

where ¢q is the constant concentration in the inlet reservoir.

Taking into account that the Péclet number is rather elevated, the available
asymptotic solution of BRENNER [11] for large Péclet number and/or small ¢ will
be applied to solve the problem:

- %erfc (P/T)/*(X = T)] + (4PT/x)"/? exp[-P(X — T)*/T]

(3.5)
o

b %[1 +4P(X + T)] exp[4PXJerfc [(P/T)V?(X +T)]
+2(4PT/7)/?[1 + P(2 — X 4+ T)]exp(4P — {[P(2 — X + T)*/T})
—2P[2(2 — X +T) + T + 2P(2 — X + T)? exp(4P)erfc [(P/T)*(2 — X +T)),

where the dimensionless variables X, T' and P are defined by

T Ut ; UL
(3.6) X 7 7 o AD S macroscopic éclet number,
and erfc is the complementary error function.
clco 1
0 . 8 \
0.6
T=0.07 \T=] 4
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F1G. 3. Concentration profiles in the soil column for the dimensionless times T' = 0.07
and T = 1.4. BUEsS and AACHIB experiment [12].

The calculations of the concentration profiles and the homogenization param-
eter ¢ (scale separation parameter) are performed for the test data given in Fig. 3
in [12]. For example: for Pe,, = (U - §)/Dp, = 300, the dispersion coefficient was
found to be D =~ 600 - D,,, where D,, = 1.335 - 107° cm?/s is the molecular
diffusion of CaCl, in water (SHACKELFORD and DANIEL [24]). The macroscopic
Péclet number P is then evaluated as

P "Dy 300 - Dy, - 200
i) o g T S £ 600 Dy

=175.4.
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In Fig. 3 the concentration profiles, Eq. (3.5), in the soil column for P = 175.4
and for two dimensionless times 7" = 0.07 and 7' = 1.4 are presented. These
times correspond to the real times ¢ = 498s and ¢t = 996 s, respectively. In Fig. 4
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F1G. 4. Variations of ¢ in the soil column for the dimensionless times 7 = 0.07 and T = 1.4.
Buks and AACHIB experiment [12].

the corresponding scale separation parameter ¢ is plotted. The calculations are
performed according to the definition of ¢ provided by the formula (2.5), for the
dimensionless times T' = 0.07 and 7" = 1.4. Remark that the geometrical scale
separation parameter 4 is very different from ¢

l 10 - 0.1425
3.8 =—=————=0. s
(3.8) Eg I 500 0.007125
The graphs in Fig.4 are cut on the level of 0.1. It means that only the parts of

the graphs corresponding to the value of the parameter ¢ in the interval
(3.9) 0<ex<01

i.e. the homogenizable zone, are shown. In other words, as it was already men-
tioned in Sec. 2, the value of ¢ = 0.1 is considered as the criterion (or as the
threshold) of the homogenizability of the problem.

The conclusions may be formulated as follows:

1. From the point of view of the homogenization theory, we are interested
in such experiment conditions that would authorise us to apply the continuum
approach (the homogenised macroscopic model) to interpret the results. In other
words, we are searching zones, in which the concentration gradients are relatively
small, thus the measurements could be used to fit the dispersion-advection equa-
tion and to determine the dispersion coefficient. We also say that in these zones
there exists good separation of the two scales present in the problem (the micro-
scopic and the macroscopic scale), so the homogenizability condition is satisfied.
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As it can be seen from Fig.5, the dispersion zones, where the problem is ho-
mogenizable, are very narrow at 7' = 0.07. The presence of non-homogenizable
zone renders the front propagation description incompatible with the continuum
approach. Therefore, the concentration front at 7 = 0.07 can not be used for the
determination of the dispersion coefficient. The situation improves when 7' = 1.4
because the whole concentration front reveals homogenizable features.

l T=0.07

T=1.4

dispersion zone: homogenizable zone
m dispersion zone: non-homogenizable zone

FiG. 5. Evolution of the homogenizable zones in a soil column for the experiment of BUES
and AACHIB [12].

advection zone c=co

2. The homogenizable zones spread out as the concentration front propa-
gates in the soil column, Fig.5. At the same time the non-homogenizable zone
also increases. However the maximum value of € in the non-homogenizable zone
decreases with time. So, for longer time, for example 7" = 1.4, the non-homoge-
nizable zone completely disappears, as it is shown in Fig. 5. As a consequence of
this, it can be concluded that the experiment conditions at the end of the soil
sample, where the front arrives later, can be considered as correct.

3. The boundary condition (d¢c/0z = 0) imposed at the outlet of the column
implies that ¢ = 0 for every time instant. This condition, though questionable
and criticised, is widely used throughout the literature. It seems to be difficult
to comment this assumption on the basis of the homogenization theory.

3.2. The experiments of Han, Bhakta and Carbonell

The experiment conditions were the following [17]:

e porous medium urea formaldehyde spheres;
e mean grain diameter § = 0.35cm;
e solution sodium chloride NaCl;

e column Plexiglas column L = 1.50 m;
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e stepwise input,

¢ molecular Péclet number Pe, = 980 (authors notation),
where Pe, = U lg/ Dy, U is the mean pore velocity, lg is the characteristic length
lg = 6n/(n — 1), where n is the porosity (n = 0.41) and D,, is the molecular
diffusion coefficient, D, = 1.545 - 10~% cm?/s.

Since in this experiment again the Péclet number was relatively high, we
applied the solution of BRENNER [11], i.e. Eq.(3.5). In order to evaluate the
values of the dimensionless numbers of the problem, the data presented in Fig. 5
in [17] were taken: the Péclet number Pe, = 980, Probe 5 : z = 147.6 cm. Then,
we get

_ PewDn  Pe,Dy, 980 1.545 105
Tl T g G004

The macroscopic Péclet number P was estimated by fitting the appropriate value
to obtain the measured concentration for the Probe 5 and time ¢t = 1000s. It
was obtained that P = 335. Thus, the dispersion coefficient is evaluated as

_ UL _ 0.0622-147.6
T 4P T 4335

c/co: \ \
\

TL0.094 \ 40.94

(3.10) U

= 0.0622cm/s.

(3.11) D =6.85-10"3cm?/s = 443 - Dy, .

o

0.2 \\
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F1G. 6. Concentration profiles in the soil column for the dimensionless times T' = 0.094
and T = 0.94. HAN et al. experiment [17].

In Figs. 6 and 7 the concentration profile and the homogenization parameter
¢ are shown, for the dimensionless times 7' = 0.094 and T' = 0.94 (the corre-
sponding real times are t = 226 s and ¢t = 2226 s, respectively). The geometrical
scale separation parameter ¢, is estimated as

_10-0.35
150

Figure 8 presents the homogenizable zones at the beginning and at the end of
the experiment. In comparison with Fig. 5, the conditions of this experiment are

(3.12) & = 0.023.
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F1G. 7. Variations of € in the soil column for the dimensionless times 7' = 0.094 and 7' = 0.94.
HAN et al. experiment [17].

even less favourable: the dispersion homogenizable zones are very narrow, being
the results of higher Péclet number, greater mean grain size and shorter column.
Such conditions make the laboratory investigations questionable. The dispersion
coefficient may not be the intrinsic parameter of the transport problem. The
situation would diametrically improve, if for the same porous medium (soil) and
for the same Péclet number, the column was longer.

I T=0.094

dispersion zone: homogenizable zone

T=0.94

dispersion zone: non-homogenizable zone

advection zone c=co

1]

F1G. 8. Evolution of the homogenizable zones in a soil column for the experiment
of HAN et al. [17].

3.8. The experiments of Shackelford and Redmond

The experiment conditions were the following [23]:

e porous medium processed kaolin,
e mean grain diameter assumed § = 0.002 mm (39% silt, 61% clay),
e solution sodium chloride NaCl,
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e sample length L = 3.05cm,

e stepwise input,

® average pore water ,

(seepage) velocity Test 1: 7.1 - 10~6 cm/s and Test 2: 71077 cm/s.

In this case the experiments were carried out in completely different conditions
with respect to the previously discussed ones. Both seepage velocities (Test 1 and
Test 2) were programmed at such a level as to get the macroscopic Péclet number
P of the order O(1). In such a case the solution (3.5) is no more valid and we
have to look for a solution to the one-dimensional solute transport problem in a
soil sample of finite length. This problem is formulated as follows:

Oc d%c dc
(3.13) 5~ Pz ~Us

with the initial and boundary conditions

(3.14) glae ) = A,
(3.15) e(0;2) = ¢g,
(3.16) %(L,t) =

Remark that in this case we use the concentration continuity condition at the
inlet to the sample. The solution to the problem (3.13) - (3.16) can be obtained
in the form

(3.17) @ =1 exp[2PX — PT]
0
i 4Pwy, sin(wm X) ox [—wz i}
= (2P + sin®(wn X)) (w2, + 4P2) P [ T¥mzp |

where the wp, (m =1,2,3,...) are the positive roots of the equation

1
(3.18) tan(wp,) + Zp¥m = 0.
The dimensionless variables appearing in Eq. (3.17) are defined by
UL Ut x
(3.19) Pz Togis ¥e 3

When T is small, the convergence of the series (3.17) is very slow. To overcome
this difficulty, Eq. (3.17) is replaced by the solution for the semi-infinite medium
with the boundary condition (3.20) instead of (3.16)

(3.20) ¢(00,t) = 0.
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This approximation is acceptable because when T is small, the outlet of the sam-
ple does not influence the behaviour of the solute. The solution to the problem
(3.13)-(3.15), (3.20) is written after Ogata and Banks (1961) as in the paper
by BEAR and VERRUUIT [7], and after Lapidus and Amundson (1952) as in the
paper by VAN GENUCHTEN and PARKER [15]:

. 1/2
(3.21) (LCOT-)- 4 %erfc {(X _T) (-5-) ]

1
+ 3 exp[4P X]erfc

P 1/2
X+7T) (= .
(x+7)(7) ]
The macroscopic Péclet numbers are calculated using the values of the dispersion
coefficients obtained for the ions Cl~ [23]

7.1-107%-3.05
.22 : = ——— =1.38;
(3.22) Test 1 r 5. 98 08 38;
7-1077-3.05
i g = ——— =0.19.
(3.23) Test P 1.5.8.10-5 0.19
The geometrical scale separation parameter is estimated
10 - 0.002
.24 = ——— = 0.00066 .
el 9= 7305
c/eo 1

0 0is:2 0.4 0.6 0.8 1 X

F1G. 9. Concentration profiles in the soil sample for P = 1.38, for the dimensionless times
T =0.001, 0.01, 0.1 and 1.0. SHACKELFORD and REDMOND experiment [23].

The concentration and the homogenization parameter as a function of X for
the dimensionless times 7' = 0.001, 0.01, 0.1 and 1.0 for the Test 1 and the
Test 2 are plotted in Figs. 9-12. The calculations were performed in accordance
with Eq. (3.21) for T' = 0.001 and 0.01, and with Eq. (3.17) for T'= 0.1 and 1.0.
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F1c. 10. Variations of ¢ in the soil sample for P = 1.38, for the dimensionless times 7' = 0.001,
0.01, 0.1 and 1.0. SHACKELFORD and REDMOND experiment [23].

c/co l
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F1G. 11. Concentration profiles in the soil sample for P = 0.19, for the dimensionless times
T =0.001, 0.01, 0.1 and 1.0. SHACKELFORD and REDMOND experiment [23].

It can be seen that in these tests the concentration curves, Fig.9 and 11, have
different characters in comparison with Fig. 3 or 6. It results in the homogeniz-
able conditions all over the two experiments (Fig. 10 and 12). So, the “correct”
measurements can be taken during the whole process and the dispersion coeffi-
cients fitted to the transport equation on the basis of these measurements can
be considered as the intrinsic parameters.

4. EFFECTIVE DIFFUSION TESTS
There are several methods of the laboratory measurements of effective diffu-

sion coefficient, like the half-cell method, the steady-state method, and both the
column and reservoir methods with constant and decreasing source concentra-
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F1G. 12. Variations of € in the soil sample for P = 0.19, for the dimensionless times 7' = 0.001,
0.01, 0.1 and 1.0. SHACKELFORD and REDMOND experiment [23].

tions. Let us consider the test called single reservoir with decreasing source con-
centration (SRDC) method. Such tests are frequently performed in the geotech-
nical and environmental laboratories because they are relatively easy to use and
the experimental set-up and the boundary conditions are analogous to the en-
vironmental applications in which contaminants are contained by soil mineral
barriers (SHACKELFORD and DANIEL [24]). In the SRDC method a reservoir
containing the solute of the initial concentration cgg is placed on top of a cell
of soil. Due to the gradient of the solute concentrations between the reservoir
and the soil pore water, diffusion of the solute to the soil occurs. The changes in
the concentration are monitored and utilised to evaluate the effective diffusion
coefficient.

The mathematical formulation of this problem (i.e. the macroscopic diffusion
model) is the following

2
(4.1) g s,
0z ot

where c is the concentration of the solute in the soil sample, D* is the effective
diffusion coefficient of the solute in the soil, z is the distance from the inlet and
t is the time. The initial conditions are expressed in the form

(4.2) c(0,z) = 0,
(4.3) C(0,0) = Co0,
cgo 1s the initial concentration in the inlet reservoir.

The assumption of a uniform concentration cg in the inlet reservoir leads to
the flux boundary conditions
8CR aCR

(44) V"é’;‘ = D*——a;'S, C=CR for z = 0,
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while the impermeability condition at the end of the soil sample yields
Oc
Oz
V' is the total volume of the liquid in the inlet reservoir, and S is the average
cross-section of the pores.

(4.5) =0, for z = L;

The solution to the problem (4.1) - (4.5) is as follows:
(X, T) ( X ) H
4.6 ——= =erfc =
(4.6) €00 2VT rA=ar
+§ T (H cos \p X — Apsin A, X)

H+H?+ )2 !

where the dimensionless variables T', X and H are defined as

T Dt V;
4.7 == N i bl
(4.8) Vo=iSLh,
and the )\, are given by
(4.9) Htghp + An =0, where'tii= 1,2,3,5.. -

Then, the definition (2.5) can be used to calculate the scale separation parame-
ter

e X*/MT 2 9x e T (H sin A X + Ay cos AnX)

4.10 = )
( ) § : \/ﬁ " n=1 H + H? + /\%
where ¢, is the ratio of the geometrical scales ! and L,
(4.11) Eg = l
: N

With a view to see the changes of ¢ as a function of time and position in a soil
sample, let us now analyse the experimental results of a diffusion test performed
by SHACKELFORD and DANIEL [24]. Since the volume of the liquid in the reser-
voir V' is not given by the authors explicitly, it has to be deduced from the other
information provided in the paper. As an example, we take the test results pre-
sented in Fig.5 (a) in [24] (Test Series 1, Test 1) and we note that for ¢ — oo
(the end of the test) the solution to the problem, Eq. (8) in [24], reduces to
o6 o

4.12 = =
i) c l+a’
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where « is a dimensionless coefficient, depending on the “effective length of the
reservoir, the length of the diffusion cell and the volumetric water content of the
soil”. The needed test parameters estimated in this way are

<

V = 1038.86 cm?, Vp = 540.01 cm?®, H = Vp = 0.5198.
Further information about the test:

e the effective diffusion coefficient determined from the Cl~ analysis is D* =
4.5-107%cm?/s,

o the soil sample of L = 58 mm is made of kaolinite (100% silt and clay). The
geometrical scale separation parameter can be estimated as

10-0.075
0 gy

= 0.0129.

0.08 T=0.001

0.
0.
¥ T=1.0

0.8 1 X

F1G. 13. Scale separation parameter € versus space variable for different dimensionless times.
L =116 cm. SHACKELFORD and DANIEL experiment [24].

In Fig. 13 the scale separation (the homogenization) parameter ¢ in the soil
sample is shown, for different dimensionless times 7' = 0.001, 0.01, 0.1 and 1.0.
It corresponds to the real times ¢t = 8.3h, 83h, 830 h and 8300 h, respectively.
It can be deduced that at 7" = 0.001, the part of the curve where ¢ < 0.1 is a
narrow segment in the sample, while for 7' > 0.01 the situation is homogenizable
all over the sample. In Fig. 14 the isolines of ¢ as functions of X and T are
presented, so the homogenizable zones as functions of position and time can be
easily distinguished.
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0 0.2 0.4 0.6 0.8 X

F1G. 14. Contour plots of the scale separation parameter . L = 116 cm. SHACKELFORD
and DANIEL experiment [24].

5. DISCUSSION
5.1. Summary

The analysis presented in the preceding chapters can be summarised in the
following way:

We consider a sample of the porous medium and we assume that we can treat
it macroscopically as a homogeneous material (with no pores and no grains). It
means that we have passed from the microscopic (or “pore scale”) of observation
to the laboratory (or “Darcy scale”) of observation. Therefore, according to [5,
6] we can apply the “homogenised” advection-dispersion equation (3.1) (or the
“homogenised” diffusion equation (4.1)) to describe the chemical transport oc-
curring in this medium. This equation can also be used in the inverse problem of
fitting the experimental data (the concentration measurements) to determine the
transport parameters. The only constraint is the condition of scale separation.
Using the homogenization approach we say that Eq.(3.1) is valid, and thus the
experimentally determined transport coefficients are the intrinsic parameters, if
the scale separation condition is satisfied in each point of the wave front. How-
ever, this condition can only be verified a posteriori, based on the laboratory
test results and the calculations of £(z,t) presented in this paper.
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5.2. Field applications

The important question that has not been directly posed in this paper is
whether the classical advection-dispersion equation (3.1) with the laboratory-fit-
ted dispersion coefficients provides an intrinsic description of the solute transport
through natural aquifer materials which exhibit broad range of heterogeneities.
The attempts to apply this model to field conditions have led to several diffi-
culties. The examination of over 130 longitudinal dispersivities D/U (reported
in NEUMAN [19]), deduced by means of the continuum Fickian theory expressed
by Eq. (3.1), from laboratory and field tracer studies in a variety of porous me-
dia proved that there is a systematic increase in the longitudinal dispersivity
with the scale of the study, known in the hydrological literature as the “scale
effect”. The experimental data recalled in NEUMAN et al. [21] show that in the
laboratory the longitudinal dispersivity ranges from 10~4 to 10 'm for relatively
uniform fine-to-coarse gravel. In the field tracer experiments it varies from 10:78
to 10m and may exceed 102 m. When the longitudinal dispersivity is obtained
based on the documented cases of aquifer pollution or chemistry on a regional
scale, its value ranges from less than 10 m to more than 100 m. It is clear that the
“scale effect” is related to the heterogeneities which appear at the scale larger
than the one considered. Thus, the laboratory sample will not be representative
for the “next order scale” i.e. the sample will not contain the sufficient num-
ber of large scale heterogeneities. This macro-problem can be treated following
the same general framework of deterministic homogenization method by intro-
ducing the multiple scale concept, MEI and AURIAULT [18] and AURIAULT and
BOUTIN [4].

5.3. Stochastic approach

There exists substantial stochastic literature on the modelling of the chem-
ical transport within a heterogeneous porous medium, regarding the Fickian
dispersion, micro-macroscale processes and the REV. Efforts to understand the
physical mechanism and to describe the scale dependence of the dispersion pro-
cess observed in field situations have led to a conclusion that chemical transport
in geological media is strongly influenced by spatial variations in permeabil-
ity. Such variations produce fluctuations in the subsurface fluid velocity which
in turn cause the solute to disperse over distances considerably greater than
those normally observed in laboratory column experiments (NEUMAN [20]). The
stochastic approaches focus on the transport theories that could be applied to
highly nonuniform geological media as encountered in the hydrological practice.
Several theoretical studies have analysed the dispersion mechanism as depen-
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dent on three-dimensional correlation structure of the medium. Among many
contributions, the stochastic methods proposed by GELHAR and AXNESS [16],
DAGAN [14] and NEUMAN [19, 20] should be mentioned. GELHAR and AXNESS
[16] developed a stochastic predictive model of macrodispersion in aquifers. This
model is applicable to transport within identifiable geologic unit and suitable
to describe long-term, large displacement behaviour. This theory indicates that
a “classical gradient (Fickian) relationship” is valid for asymptotic condition of
large displacement. NEUMAN [19] considered a fractal analysis of the scale ef-
fect and proposed a universal scaling rule that accounts for self-similarity of log
hydraulic conductivities in the mean sense over a large length scales in a broad
variety of geological media under diverse conditions of flow and transport. In
1993 NEUMAN [20] analysed the transport of solute in a random velocity field
and developed a non-local theory using the ensemble moments conditions on
local hydraulic measurements. His results apply to “multiscale velocity fields of
the kind expected to arise in geologic media with evolving heterogeneities, in-
cluding fractal media above some cut-off”. In 1994 DAGAN [14] derived an exact
nonlinear correction to the transverse macrodispersion coefficient for transport
in heterogeneous formations. All these intensive research studies are oriented
toward large-scale field applications.

In the stochastic framework it was found that the Fickian mode of dispersion
(the classical advection-dispersion equation i.e. Eq. (3.1)) is attained asymptoti-
cally in a homogeneous medium of infinite extent i.e. the longitudinal dispersivity
tends asymptotically to a constant, as the distance increases. Consequently, the
Fickian behaviour is not expected to be valid near the solute sources [16]. As
stated by Neuman (1993): “Stochastic analysis of transport often admits the
applicability of Fick’s law on some “local scale” [Gelhar and Axness (1983),
Dagan (1987), Neuman et al. (1987), Sposito and Barry (1987), Neuman and
Zhang (1990) see [20]]. However, this scale is seldom specified in an unambigu-
ous manner.” It should be pointed out that the question of applicability of the
continuous Fick’s model can be answered both qualitatively and quantitatively
in the framework of the homogenization upscaling technique (see for example:

6, 3]).

9.4. Deterministic versus stochastic approach

Although generally it is difficult to compare the deterministic and stochastic
approaches, one can find some common points when interpreting the column
test results. The results published in the literature show that in a given tracer
experiment, the dispersivity coefficient grows with the distance from the sampling
point towards an asymptotic value [see for example: Martin ( 1971), Peaudecerf



ON THE VALIDITY OF DIFFUSION/DISPERSION TESTS IN SOILS 415

and Sauty (1978), Sudicky and Cherry (1979), Sudicky et al. (1983) cited in
NEUMAN et al. [21]]. This behaviour is consistent with the results of the stochastic
analysis (DAGAN [14]). In the experiment of Bues and Aachib we can observe the
asymptotic value of the dispersion coefficient for the regime Pe,, = 300 at the
end of the sample (Fig. 3 in BUES and AACHIB [12]). In all the other cases i.e. for
other Péclet numbers, the asymptotic behaviour is not well pronounced. On the
other hand, according to the deterministic homogenization analysis presented in
Sec. 3.1, the asymptotic behaviour corresponds to a “homogenizable condition”,
Fig. 5, and therefore it provides the dispersion coefficient that can be considered
as the intrinsic parameter. The two methods converge to the same conclusion.
Similarly, the experiment conditions of HAN et al. [17] for Pe,, = 980, can not
be called “homogenizable conditions”, see Sec. 3.2 and Fig. 8, and indeed Fig.9
in HAN et al. [17] shows that the asymptotic value has not yet been achieved.

6. CONCLUSIONS

The existing experimental data on dispersion/diffusion in soil columns were
exploited to analyse the validity of the continuum approach employed to interpret
these results. The obtained values of the homogenization (or scale separation)
parameter proved that some experimental situations do not ensure the conditions
of good scale separation, that is the necessary condition of the existence of the
macroscopic transport model (the Fick’s transport equation). In such situations
the parameter identification test is not correct and will lead to the estimation
of the parameters that are not the intrinsic parameters. The results will be
experiment-dependent and thus, it will not be applicable to practical situations.
This fact implies that in order to work out the concept of an adequate parameter
identification test, it would be helpful to repeat the analysis proposed in this
paper in a similar manner but for the particular test conditions.

It should be recognised that at present it is very difficult to answer many
questions related to the problem of transport in porous media. One of the fun-
damental questions is the problem concerning the REV. Although in the recent
stochastic framework “one must question the utility of associating medium prop-
erties with the REVs as has been the custom in subsurface hydrology for several
decades” (NEUMAN [19]), the deterministic homogenization approach is inher-
ently related to the REV through the scale separation condition. Therefore, it is
hoped that substantial efforts will be devoted to the development of techniques
of determination of the REV for the transport problems. The other important
issue that has not been addressed in this paper concerns the measuring technique
which is connected to the question of scale. CUSHMAN [13] posed the question:
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“what is actually being measured by an instrument, i.e. are we measuring a
“point” property, a weighted spatial average, a temporal point average, a spa-
tial and temporal average etc.?”” Throughout this paper it was silently assumed
that the measurements of concentration (the chemical analyses) were done in the
conditions enabling us to obtain the proper input values for the model equation
(3.1) or (4.1), i.e. the proper average concentrations c.
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