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HARMONIC WAVE IN DISTURBED SYSTEM
OF PERIODIC ELASTIC LAYERS

Z. WESOLOWSKI (KIELCE)

The system of elastic layers periodic in space is considered. One extra cell situated between
the cells of numbers & and &+ 1 disturbs the system. Harmonic wave of frequency w propagates
across the layers. The transparency of the system is defined as the ratio of the transmitted
energy flux to the incident energy flux. Transparency depends on the position of the extra layer.
The analytic expression for the transparency is given. Transparency is a periodic function of
the position of the extra cell, and in general, a non-periodic function of w. Assuming that the
probability of finding the extra layer at the position k is given, the average transparency and
its standard deviation has been calculated.

1. HOMOGENEOUS LAYERS

The systems of layers were dealt with in many papers, e.g. in the already
classical papers [1-7]. System of two or more layers constitute the elementary
cell. If equal cells are repeated in space then the system is periodic. Properties of
such a system are defined by the number of cells and the properties of elementary
cell. In the present paper we consider the periodic system, disturbed by one extra
cell of other properties.

The investigations are motivated by the dynamics of a disturbed mechanical
system. In the fundamental papers [8 —10], the cristal lattice was approximated
by a chain of different interacting masses. Here we consider the chain of different
elastic layers. The situation is more involved, since the frequency enters the
equations via the trigonometric functions. Introduction of a new parameter ¢
and representation of the transition matrix M in the form satisfying the identity
M(p)* = M(nyp) simplifies the equations.

Consider the system of homogeneous elastic layers, Fig. 1. The layer situated
between zj and zjy; is identified by the natural number k, £ = 1,2,3,... .
Propagation speed, density and thickness of the layer k are denoted by c, o
and hy, respectively. In direction z perpendicular to the layers, two sinusoidal
waves of frequency w propagate, one of them of amplitude Ay, in the +x direction,
and the other of amplitude By, in the —z direction. The displacement uy in the
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layer k is
(1.1) ur = Agexpiw(t — (z — zx)/ck] + B exp iw[t + (z — xx) /ck),

where ¢ is time and z < z < Tg41.
The displacement uy satisfies the equation of motion

(1'2) C%uk,xm = Uk, tt -

Physical displacement is the real part of the complex-valued function ug(z,t).

On both sides of the boundary between layers, the displacement and the
stress vector must have the same values. This fact leads to the following relation
between the amplitudes in layer k and layer k + 1:

A Ap
(13) l k+1]=Mk[ k]’
Bi1 By,
where :
(1.4) ¥ i 1 (1+ Kg) exp(—z:ak) (1- nk)exp(z:ak) :
2 | (1 — kg)exp(—iog) (1 + ki) exp(iog)
(1.5) ap = whk/ck,
(1.6) Kk = OkCk/Qk+1Ck+1,
(L.7) hi = T1 — Tk -

The transfer matrix M, allows us to express the amplitudes A1, Bx41 by the
amplitudes Ay, By. In further calculations the above results will be chained to
express the amplitudes in the last layer in terms of the amplitudes in the first
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layer. The frequency w influences the transfer matrix M via the functions oy.
The determinant of M does not depend on the frequency w

(1.8) det My, = Ky, .

The energy flux Sy in layer k is the elastic energy transported in a unit of time.
The following formula holds,

(1.9) Sk = oxck(Ax Ay — BiBy,).

The bar over a complex quantity denotes complex conjugate value. The first
part corresponds to the wave running to the right, and the second - to the wave
running to the left. Since the material is elastic, there occurs no energy loss and
the energy flux in each layer is the same,

(1.10) Sp41 5,884

Easy calculations prove that an elastically supported, sectionally homoge-
neous string is governed by the same system of equations.

2. PERIODIC LAYERS

Consider now the case, when a set of layers is repeated periodically in space.
Such a set of layers constitutes the elementary cell. The elementary cell may
consist of arbitrary number of layers; the simplest cell consists of two layers
only. Confine the calculations to this case only, although the generalisation is
immediate. The first layer in each cell will be identified by the subscript a, and
the second by the subscript b. Denote

(2-1) K .7 (Qaca)/(gbcb)a Qq = ‘Uda/ca. ) ap = de/cb )
1| (1+k)exp(—iag) (1—k)exp(iag)
Ma S P : ; )
(22) 2 | (1 - k)exp(—iag) (1+ k)exp(ica)
. 1| (1+1/k)exp(—iap) (1—1/k)exp(ic)
My, = . . ;
2| (1-1/k)exp(—iap) (1+1/k)exp(ias)
Therefore
K="k, 1=, Qi = Qq, M, = M, for k=0,2,4,...,
Re = 11K, Ck = Cp, ar = oy, My, = M, for v k'="1"3"0 "

In the above relations M, is the transfer matrix from material a to material
b, and M, the transfer matrix from b to a.
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Instead of identyfying the layers by subsequent numbers, in further investi-
gations we shall identify them by the number of the cell and position in the cell.
Concentrate first on the displacements in the layers of material a. The ampli-
tudes in the layer a of the k-th elementary cell are Ay 4, By ,o. In accord with
(1.6), for each natural k there is

A A
(2.3) [ k’“]:M’“[ 0% M=MM, k=123,...
Bk,a BO,a

Here M is the transfer matrix for the elementary cell as a whole. From (2.2)
it follows that this transfer matrix M of one elementary cell has the following
components:

(2.4) 4My = 2+ Kk+1/k)expi(—aq —ap) + (2 — kK — 1/K) exp i(—aq + ap),
' 4Mz = (k — 1/K)expi(—aq — ap) — (k — 1/K) expi(—aq + ap),

(2.5) My = My, Mz = Ma;.
The above components prove, that

(2.6) det M = 1.

In general, the transfer matrix M is not a periodic function of w. Note that the
matrix M is non-Hermitean, since Mj; is not real. The matrix with the symmetry
(2.5) will be further called W-symmetric. The product of two W-symmetric
matrices is W-symmetric.

The displacement (or stress) at one end of the system of layers is a given
in advance, sinusoidal function of time. The displacement at the other end may
be calculated taking into account the properties of the system. Therefore the
frequency w is a known parameter, in contrast to the situation, when the ends are
subjected to homogeneous boundary conditions. In the latter case the frequency
must be calculated as the proper frequency of the system. We do not consider
here this case.

The bulk transfer matrix for a system of N equal cells equals M”. Instead
of such a perfect system, we consider here the system consisting of N equal
elementary cells and one extra cell of other structure (size and/or properties).
The extra cell is situated between the cells n and n + 1. Total number of cells of
the considered system is therefore N 4 1. The purpose of the further analysis is to
calculate the bulk transfer matrix and the parameter defining the transparency
of the set of layers. The transfer matrix for the extra cell will be denoted by M.,
and the wave amplitudes in the extra cell by A, Be. In accord with the above



HARMONIC WAVE IN DISTURBED SYSTEM 475

formulae, the wave amplitudes in the last cell are connected with the amplitudes
in the first cell by the relation

A A
(2.7) [ N“’“} = MN-rp M | T n=1,..,N,
BN+1,a Bl,a
A A
(2.8) [ N“"’] =MNMe[ °l.
BN+1,a Be

The above formulae give the amplitudes of the waves at the end of the im-
perfect system in terms of the amplitudes at the beginning of the system. The
extra cell may be situated at the beginning of the system, at its end, or inside.
Equation (2.8) governs the first case, and Eq. (2.7) the two others. Note that the
cell N + 1 is used only for measuring the displacement at the end of the system
consisting of N equal cells and one extra cell. Because of boundary conditions
(1.4), the displacement at the beginning of the cell N + 1 (in material a) equals
the displacement at the end of the cell N (in material b). Assume that the am-
plitudes in the first cell are given. Then the amplitudes in the last cell depend
on the number n defining the position of the extra layer.

Define the total transfer matrix

(2.9) My =MN""M,M", n=012,..,N,

which governs the amplitudes of the whole (disturbed) system. The bulk matrix
M7 depends on the position of the extra layer.

Consider Ay 4, Bi,, and Any1,. as the amplitudes of the incident, reflected
and transmitted waves, respectively. In this situation it is necessary to take
Bn41,, = 0, since no incident wave is propagating from right to left. The other
possible choice, easier to handle, is to take A; 4 = 0, and consider BN 1,4, AN+1,a
and B;, as the amplitudes of the incident, reflected and transmitted waves,
respectively. Obvious change in the amplitudes must be made for n = 0, when
the first cell is the extra cell. The transparency 7 may be defined as the ratio of
the energy flux corresponding to B, and energy flux corresponding to Bnt1,a-
Elementary calculations lead to the formula for transparency 7:

— -1
(2.10) T= [(MT)u(MT)u] :

Expression in the brackets equals the squared modulus of (M7)11 which in turn,
in accord with (2.5), equals the squared modulus of (M7)22. The reflection co-
efficient A equals the ratio of the reflected energy flux and the incident energy
flux, and satisfies the relation A + 7 = 1.
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Further we confine the calculation to the case, when Re Mj; < 1. In accord
with the derivation given in the Appendix, the transfer matrix M for one ele-
mentary cell may be written in the following trigonometric form [13]:

(2.11) Mo | o8P iEsing (C+iD)sing
' ~ | (C-iD)sing cosp +iEsingp |’
(2.12) ¢ = arccos(Re M),

where ¢, E, C, D are real parameters. There holds the identity, essential for
further calculations,

coskep —iEsinky (C +iD)sinky

BFOE L0 iy
(C —iD)sinky coskp +iEsinke

(213) M*= [

Note that M* is given not by the reccursive formula M* = M M*-! but is
expressed as a function of k¢. This drastically simplifies the calculations and
analysis.

3. DISTURBED CHAIN

In order to simplify the notation, denote the components of the transfer ma-
trix M, for the extra cell (cf. Appendix) by

(3.1) M, =

P+iQ R+iS
R—iS P-iQ|

where P, Q, R, S are real functions of w and of the physical parameters of the
extra cell (do not confuse S with the energy flux Sj). Calculate the bulk transfer
matrix Mz for the whole system consisting of N cells and additionally, of the
extra cell situated between the cells n and n+ 1. In accord with (2.13) and (A.8),
there is

cosmep +iEsinme  (C +iD)sinmeyp

32 M= o .
(C —iD)sinmyp  cosmp —iEsinmyp

[P+iQ R+iS] [cosngo+iEsinn<p (C +iD)sinngp }
X )

R—-iS P-—iQ (C —iD)sinnp cosnyp —iEsinng

where, in order to shorten the formulae, we have denoted m = N — n. Evidently
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Mg = Mp(n). Performing the multiplications, we obtain

Re(M7)11 = Pcos No + (—EQ + CR + DS)sin N,
Im(M7)11 = Q cosmpcosny + (EP + CS — DR) cos mesinnep

(3.3)
+ (EP — CS + DR)sinmyp cosny
+ (-E*Q — C?>Q - D*Q + 2ECR + 2EDS) sin mpsin nyp,
Re(Mr)12 = Rcosmypcosng + (ES + CP — DQ) cos me sin ngp
+ (—ES + CP + DQ) sinmp cos nyp
(3.4) + (E®R+ C?R — D?R — 2ECQ + 2CDS) sinme sin ne,

Im(Mr)12 = S cosmypcosng + (—ER + CQ + DP) cos mgsinng
+ (ER — CQ + DP) sin my cos ne
+ (E?S — C?S + D*S — 2EDQ + 2CDR) sin mysinne.
The remaining components are determined by the W-symmetry of the bulk trans-
fer matrix Mr.

The trigonometric identities expressing the product of two trigonometrig func-
tions by the sums of trigonometric functions

2cosmepcos(N —m)p = cos Np + cos(2m — N)y, etc.
allow to express the functions (3.3), (3.4) in a simpler form, namely
Re(Mr)11 = Pcos Ny + (—EQ + CR + DS)sin Ny,

(35)  Im(Mr)i1 =[(1+C?+ D?)Q — ECR+ EDS]cos NoEPsin Ny
+ (-=C?Q - D?Q 4+ 2ECR — EDS) cos(N — 2n)¢ + (CS — DR) sin(N — 2n)ep,

Re(Mr)12 = [(1 — E* + D*)R+ ECQ — CDS]cos No + CPsin N
E?R - D?’R - ECQ + CDS) cos(N — 2n)¢p + (ES — DQ) sin(N — 2n)p,
Im(Mr)12 = [(1 — E* + C*)S + EDQ — CDR]cos Ny + DPsin Ng
+ (E®S — C?S — EDQ + CDR) cos(N — 2n)¢ + (—ER + CQ) sin(N — 2n)e.

3.6)"

For the extra layer situated at the left end of the chain there is (N —2n) = N,
and for the extra layer situated at the right end there is (N — 2n) = —N. Note
that the real part of (Myr);1 does not depend on the positon of the extra layer. In
the important special case CS— DR = 0 (cf. Appendix), n enters the expressions
for (Mr)1:1 only via the cosine function. Consequently (Mr);; and the modulus
of (Mr)11 are even functions of n. In accord with (2.10), in this special case the
transparency is a symmetric function of (N — 2n). Therefore for CS — DR = 0,
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the transparency is a symmetric function of the distance of the extra layer from
the centre of the system.

The components of M7 depend on n via the trigonometric functions sine and
cosine only. Therefore the bulk transfer matrix My is a periodic function of n.
The spatial period L is determined by the formula

(1] L = x/p.

It should be remembered that n is integer. If L as given by (3.7) or (3.8) is an
integer, then L is the period of the functions (Mr)11, (Mr);2, as given by (3.5),
(3.6). In the opposite case the period in the exact sense does not exist.

The bulk transfer matrix Mz is a periodic function not only of n, but of the
total number N of elementary cells, too. From (3.5), (3.6) it follows that the
corresponding period equals 27". Concluding: for arbitrary integers ki, ks, we
face the identities

(3.8) Mr(N + 2k;T,n + koT') = Mp(N, n).

The periodicity of M has an important physical consequence: in accord with
(2.10), the transparency 7, which depends only on the first component of the
bulk transfer matrix, is a periodic function of n and N.

4. RANDOM POSITION

Assume now that the probability of finding the extra layer between the cells
n and n + 1 is p(n),

Zp(n) =1.
n=0

The average value (M) of the bulk transfer matrix My and the standard
deviation o may be calculated from the formulae

N
(4.1) (Mr) =Y p(n) Mg(n),
n=0
1 X
(4.2) 0= > _[Mr(n) — (Mr)]?.
n=0

The transparency 7 is given by (2.10). The expression in the brackets is the
modulus of (M7)1;. It follows that the the average value (7) of 7 and its standard
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deviation o, are given by the formulae

N
(43) (1) =3 p(n) {[Re(Mr)u]* + [m(Mr)n)}
n=0
1 2 21-1 4
(44 or =5 2 {{Re(Mr)u? + [m(Mr)u]?} " - (1)}
n=0

The case of equal probability for each position characterized by n is of special
importance. In this situation there is

(45) =L, (Mp =S Ma)
N +1 4~
n=0

It is easy to calculate the average matrix (M7) and its standard deviation for
each (given in advance) transfer matrix for an elementary cell and the transfer
matrix for the extra cell. In the above case the analytical summation in (4.1)
may be performed. However, the corresponding formulae are relatively simple
only for special values of N, in particular for N = 2P — 1, where p is an arbitrary
integer. Further simplification is obtained, if cos[(IV + 1)¢/2] = 0. Since neither
of the above simplifications posseses physical meaning, we do not explore them.

Here we present the numerical results for two limiting situations: first, when
the calculated 7(n) fits a smooth curve, and the second, when the 7(n) is spread
chaotically over some region.

We prefer not to consume space for introduction of dimensionless variables.
The data given below are valid in one arbitrary fixed system of units. Consider
the set of N = 200 elementary cells disturbed by the extra cell. Define the
elementary cell and the extra cell by the relations
(4.6) Cq = 1, Chp = 2; e =1,

he =1, hy =1, he = 2, Oa = 0b = 0e = 1.
The elementary cell has the total length 2 and consists of two layers: one layer of
propagation speed ¢, = 1 and other layer of propagation speed ¢, = 2. The extra
cell has the total length 2, but consists of one layer only, which is characterized
by the propagation speed the same as that of the layer a, namely c. = 1. We
consider therefore the special situation, when the extra cell could be obtained
from the elementary cell by replacing material b with material a.

For frequency w = 0.1, the spatial period T given by (3.7) is T' = 19.86. The
corresponding values of transparency 7 are shown at Fig.2. We face a set of
separate points situated on one curve. The maximum and minimum values of 7
are

(4.7) Tmax = 9911,  Tmin = .9154.
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The mean value of 7, and its standard deviation are

(4.8) (r) = 9489, o =.0052.

0 100 200
Fic. 3.

For frequency w = 10.0 the spatial period T' is T' = 6.639. The corresponding
values of transparency 7 are shown at Fig. 3. The calculated extrema, mean value
and standard deviation are

(4.9) Tmax = 997,  Tmin = .165,
(4.10) (r) = .447, o = .0804.
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The set of separate points shown at Fig.3 consists of points situated on one,
rapidly oscillating curve. This fact becomes evident if 7 is imagined to be cal-
culated for each real n, not only for the physically allowed integer n. However
also for integer n, the apparent chaos may be ordered, if only the values of =
for equally spaced n > 1 are plotted. For example, if only the values of 7 for
n =0,13,26,39,... are plotted, then the set shown at Fig.4 is obtained. Similar
regular curves are obtained for other equally spaced n, e.g. n = 2,12,22,32,... .

4
T

14

0 100 200
Fic. 4.

If the period T is close to an integer, then the values of 7 are not so chaotic
as in Fig. 3. For w = 6 there is T' = 7.011, and the values of 7 are given at Fig. 5.
The points are situated on seven relatively flat sine curves.

.
T

l—.--q-.-

.............................

FicG. 5.
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Essential for the the function 7(n) is the behaviour of the modulus of (Mr);;
i.e. the value of [Re(M7)11]? + [Im(Mr)11)? as a function of n. In accord with
(3.5), it consists of constant part, independent of n, and a part depending on the
trigonometric functions of (N —2n). If the last part is small when compared with
the first one, then 7,,x does not differ very much from i, and the discrete set
of points 7(n) fits one, relatively smooth curve. In the opposite case Tmax, Tmin
are far apart and the dependence 7(n) is chaotic, as shown in Fig. 3.

APPENDIX
A.1. Representation of the transfer matriz

Consider the 2 x 2 complex-valued matrix M satisfying the relations

(A1) My = Mo, Msy = My,
(A.2) det M = 1.

The matrix with symmetry (A.1) will be called W-symmetric. The product of
two W-symmetric matrices is W-symmetric, [13]. In general, the W-symmetric
matrix is non-Hermitean.

There is either —1 < Re Mj; < 1, or Re M1; > 1, or Re My; < —1. Consider
first the physically important case

(A3) —1<ReM;; < 1.

Without loosing the generality, assume the range 0 < ¢ < m, and write the
matrix M in the following form:

(A4) 2 = coscp—'iEs.ingo (C+il?)si.ncp )
(C —iD)singp cosp+iEsing

where the real constants ¢, C, D, E are uniquely determined by the relations
(A.5) ¢ = arccos(Re My;),
(A.6) Esing =1ImMy,, C'sinp = Re Mj2, Dsinp = Im M.
The relation (A.2) leads to
(A.7) Bt -DF=1
By mathematical induction we prove now the formula

(A.8) A | cosnip = iEsinng (C +1iD)sinng '
' (C —iD)sinng  cosny + iEsinng
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Multiplying by M we get

(M™1)1; = cosnpcosyp — (E2 — C? — D?)sinngpsing — iEsin(n + 1),

(M"*1)21 = (C —iD)sin(n + 1), M3 = M, M = My
Taking now into account (A.7) we get

cos(n + 1) —iEsin(n + 1)p (C+iD)sin(n+ 1)y

(Ag) M Bl = . . 3 5 )

(C —iD)sin(n + 1)p cos(n + 1) + iEsin(n + 1)¢
therefore exactly the formula (A.8) for the power (n + 1). The fact that (A.8)
holds for n = 1 completes the proof.

In the cases Re Mj; > 1 and Re Mj; < —1, the above results may be used
provided that we allow complex-valued ¢. In the practical calculations however,
it is more convenient to introduce the hyperbolic functions and real parameter
1 and re-define the other constants.

Consider next

(AlO) Re My, > 1.
Defining
(A.11) ¥ = Arch(Re Myy),

we can represent M in the form

chy —iEshy (C+iD)shy

(A.12) M=\ (C-iD)sh¢ chy+iBshy]’

where the constants E, C, D (other than in the trigonometric case) are defined
by the relations

(A13) ESh’l,b = ImM22 , CSh¢ = Re M12 , DSh’(,[) = ImM12 y
(A.14) -E?+C*+D*=1.

It may be proved that

chnyp —iEshny (C +i¢D)shny

(A15) M" = (C . lD)Sh nrd) ch n¢ + 1Esh mﬁ .

The remaining cases are discussed in [13].
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A.2. Extra cell

The extra cell may consist of one or more layers. The formulae given in Sec. 1
allow to calculate the transfer matrix for arbitrary number of layers in the extra
cell. We present here the expression for M, for the important case when the extra
cell consists of one layer only. Denote the elastic modulus, density and thickness
of the extra layer by E., g, and he, respectively. Its left-hand neighbour is the
layer b of the cell n, and its right-hand neighbour is the layer a of the cell n + 1.

In accord with the formulae (1.7), there is

Qala . ha QaCa . hg
e e lree). b S mmlung)
[An,b:l o ( gt T AT, acr ) “P\e,

h
Bnyp " (1 = —-Qaca) exp (—iwﬁ) (1 + ___gaca) exp (zw—a)
O6Cp Ca bCb Ca

h h
(1 4 chb> exp (—z’w—b) (1 - chb) exp (iw—b>
QeCe Cp QeCe Cp

A 1
(4:16) [Be} 2 h ¢ h
R (1 - gbcb) exp (—iw—b) (1 i b) exp (iw—‘b>
Qece cb QCCe Cb
An b
X "
|:Bn’b4

B\ ]
(1 + —-Qece> exp (—iwk) (1 e _gece) exp (zw—e>
I:An+1,a:| _ l QaCa Ce QaCa Ce
g

h
(1 - gece) exp (—iwﬁ—i> (1 + Qece) exp (zwi>
QaCa Ce QaCa Ce / |

Multiplication proves that
A 1 An a
A.17 nthe | = MM, @
( ) l Bn+1,a :l < [ Bn,a :|
where M is the transfer matrix for a single cell, and M, is given by the following
formulae:

h
(A18)  4(M)y = (2 irfetory "“—c“) exp (-iw-i)
QaCa QeCe Ce

h
n (z _ QeCe _ &) s (,-w_e) ,
OaCa OeCe Ce
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A.18
(AL8) . cogpp . (gc_ " Q) e (_iwﬁg)
[cont.] QaCa OeCe Ce

+ (—% + Qf_lfg) exp (in) 5
QaCa QeCe Ce
4(Me)a2 = (Me)11,  (Me)ar = (Me)1a.
In the special case, when density and propagation speed in the extra layer satisfy
the relation gece = p4cq, the above expressions are considerably simplified to

yield
exp (—iwk> 0
(A.19) M, = e

0 exp <iw Ef—)
Ce

Note that this case corresponds to removal of the layer b from an elementary cell
and appriopriate change of the thickness of the layer a in this cell. Similar result
holds for the special case gece = 0pcp-

If the extra cell consists of more than one layer, then decomposition and the
formulae discussed in Sec.1 allow to express M, by the physical constants of
separate layers. The calculations may be simplified, basing on the known fact,
that the layer of arbitrary properties but zero thickness, does not influence the
behaviour of a set of layers. Between the cell n and the extra cell, a virtual layer
of E = E,, 0 = 04, and of thickness h = 0 must be added. Between the extra
cell and the cell n + 1 must be added a virtual layer of E = Ej, ¢ = g5, and of
thickness h = 0. In each case the transfer matrix M, possesses the W-symmetry.
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