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MODELING OF SPALL FRACTURE IN BRITTLE SOLIDS(*)

M. BASISTA (WARSZAWA)

This is a synthetic and critical review of the selected theories of brittle spall fracture.
Since the main body of research done on spalling can actually be credited to a few research
institutions, the papers selected for this overview are classified according to their place of
origin with some effort to maintain their order of appearance. Emphasis is placed on those
models which were instrumental in the development of spall fracture modeling in brittle solids.
Consequently, early models based on the critical stress criterion are merely recalled whereas
micromechanical and phenomenological damage models of brittle spalling are discussed in more
detail. The methods developed in the physics of critical phenomena (e.g. percolation theory),
so far relatively unexplored in the modeling of dynamic fracture processes, are also outlined.

SPECIFIC NOTATION

D damage parameter (in general),
w Walsh (Budiansky—O’Connell) crack density parameter,
¢ microvoid volume fraction (porosity).

1. INTRODUCTION

Dynamic failure processes are typically divided into three main classes, e.g.
ZUREK and MEYERS [1]:

e dynamic failure in tension: uniaxial strain state (spalling) or uniaxial stress
state; both metallic and brittle materials are prone to this mode of failure,

e dynamic failure in shear (shear band instability); exhibited by many metals
and metallic alloys, ‘

e dynamic failure in compression; important in rocks, ceramics and brittle
metals subject to shock waves.

Spall fracture (spalling, spallation) is a specific type of dynamic fracture that
results from the tensile stresses generated by the interaction of propagating waves
of rarefaction. Spalling is produced by impulsive loads of high intensity and
short duration times, such as projectile impact onto the surface of a target,

(*) A critical review.
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air shock loading, explosions, etc. More specifically, in the case of plate (flyer)
impact, the initial compressive wave traveling across the target reflects back
at the free surface as a propagating decompression wave. A similar process,
oppositely directed, occurs in the thinner flyer plate. The superposition of the
reflected decompression wave fronts can cause partial and complete separation
of the material along a plane perpendicular to the direction of the traveling wave
fronts.

In general, the spall damage consists of the same basic phases as the static
damage process, i.e. nucleation, growth and coalescence of microcracks or voids,
whereas the overall failure is understood as a complete separation of a target into
disjoint elements. However, unlike the static case, duration of a shock impulse is
too short to allow for a long penetration of individual microcracks through large
material areas. Also, crack interaction effects are not so pronounced. Instead,
numerous microcracks (voids) nucleate, intersect and form complex clusters that
transform into a dominant macrocrack or lead to material fragmentation.

One distinguishes ductile and brittle spall damage. Ductile spall damage as-
sumes a form of small roughly spherical voids. Such voids are typically observed
in copper, soft aluminum and tantalum. Brittle spall damage is associated with
the development of planar microcracks. It occurs, for instance in ceramics, rocks,
Armco iron, beryllium and polycarbonates. In one-dimensional wave propagation
problems, the spall damage of either type usually occupies a major part of the
target volume. As time elapses, the concentration of voids (cracks) gets denser in
the narrow zones that are perpendicular to the impact direction and are localized
near the target center. In ductile spalling, the voids enlarge, coalesce and create
a macrocrack that runs through a heavily damaged material, leading finally to
a full separation of the impacted specimen. A transition from ductile to brittle
tensile fracture is possible at high strain rates since the yield stress is strain rate
dependent. This kind of behavior is observed in steels if the shock pressure ex-
ceeds 13 GPa. This particular value of pressure is related to the reversible phase
transformation in iron and steels.

In brittle solids, the process of fragmentation occurs as the microcracks link
up. Fragments of various sizes are generated by the intersections of microcracks
having different lengths. Since the fragmentation inevitably involves some empty
spaces among the separated parts, the stress in the effective cross-sectional area
must increase in order to sustain the external load. In turn, more and more mi-
crocracks get activated and new fragments are formed. The whole process reaches
a self-accelerating cataclysmic stadium which ends by a complete material dete-
rioration.

Spall damage has been a subject of intensive research for quite some time.
The first experimental studies of the phenomenon are due to HOPKINSON [2] who
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correctly identified spalling when gun-cotton was detonated in contact with mild
steel plates. After World War II, the spall research was basically determined by
the military purposes and concentrated in a few research centers. A pioneering,
systematic spall-oriented experimental program was carried out by RINEHART
[3, 4] on steel, brass, copper and aluminum. He proposed the first spall criterion
stating that spall fracture occurs whenever the normal tensile stress carried by
the reflected wave exceeds a critical value which is characteristic of the material.
He also investigated and correctly described the so-called multiple spalling that
occurs when a triangular pulse has an amplitude considerably higher than the
critical spall stress. A decade later, Rinehart’s simple spall criterion was proven
insufficient because different values of the critical spall stress were obtained for
different thicknesses of the same target material (e.g. SMITH [5]). A remedy for
this unphysical prediction was sought in introducing into considerations the du-
ration of tensile wave pulse, TULER and BUTCHER [6]. However, that could not
improve the situation either, for the problem was of more fundamental nature.
Both criteria entirely ignored the internal damage within the material, an impor-
tant factor that influences the magnitude and the duration of tensile stress pulse.
Therefore, not denying their merits in the historical development of constitutive
theories of spall fracture, these models were later abandoned in the literature and
will not be analyzed in detail in this paper either. It became evident, though,
that some measure of microdamage and its evolution are necessary in order to
capture the salient features of the material behavior at spall fracture.

The primary objective of this review is to give a synthetic and critical account
of the existing theories of brittle spall fracture. In terms of the dynamic failure
classification given at the beginning of this section, our objective here is confined
to the brittle regime within the first class of failure processes. Obviously, the
present study represents author’s own, and rather biased views on spall modeling,
and by no means it can be claimed complete. Extensive state-of-the-art papers
by GRADY and KiPP [7], MEYERS [8], EFTIS [9] are recommended to gain a
deeper insight into this intensively growing field of solid dynamics.

2. BRITTLE SPALL MODELING: SANDIA NATIONAL LABORATORIES

Even a cursory inspection of a vast body of the existing literature on spall
fracture reveals the fact that research in this field concentrated mostly in several
institutes and national laboratories in the United States. Although it may not be
true now, it was undoubtedly the case in the seventies and the eighties. The spall
research activities at Sandia National Laboratories, Stanford Research Institute,
Los Alamos National Laboratory, Lawrence Livermore National Laboratory and
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Dayton Research Institute laid down the foundations for the modern theories of
spalling.

2.1. Davison and Stevens’ models

As pointed out in the preceding section, at rapid loading rates a single crack
with bounded growth velocity is not sufficient to relieve the increasing tensile
stress. Other cracks, inherently present in brittle solids, get destabilized leading
to a more continuous cracking patterns. Consequently, rather than the analysis
of a single crack propagation, a concept of spall damage seems to be more de-
scriptive of the spall fracture process. In continuum damage mechanics models,
some measure of the internal material deterioration must be defined.

Davison and Stevens were first who introduced the concept of continuous spall
damage. In their early paper (DAVISON and STEVENS [10]), the precise definition
of “damage” has been left open. In the examples considered, the damage was
described by a scalar parameter being the volume fraction of voids or fractional
reduction in tensile strength across the spall plane. DAVISON and STEVENS’ [10]
damage model was phenomenological in the sense that no detailed mechanisms
for initiation and growth of microflaws were offered. A year later, DAVISON and
STEVENS [11] published an important paper where fundamental concepts neces-
sary in a thermodynamically consistent continuum description of brittle spalling
were established. The authors introduced the spall damage in terms of a vec-
tor field characterizing the size and spatial distribution of small penny-shaped
cracks throughout the material volume. The crack was assumed to be fully char-
acterized by its position, orientation and area. In the reference configuration, all
these information of the crack at the material point X and time ¢ were stored
in a vector D(X,¢) normal to the plane of the crack and having the magnitude
equal to the crack area. In the actual configuration, D(X,t) is transformed into
d(x,t) since the crack is convected along with the body motion. The vectorial
damage parameters D and d were regarded as continuum field variables (inter-
nal state variables) defined over the entire body instead of at isolated cracks. In
other words, the orientations of these vectors represented the average orienta-
tion of cracks in the neighborhood of the considered material point, whereas their
lengths — the averaged projected area fraction of the material that is cracked. The
damage was allowed to occur gradually according to some specified damage accu-
mulation equation. The model was then completed by theoretical considerations
of the interaction between propagating waves and the accumulating damage.
However, numerical implementations of the theory into the existing wave prop-
agation codes were not yet given. Note that this theory was devised to describe
brittle spalling in the thermoelastic materials.
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Further extension of the above concepts to account for ductile spalling was
developed by DAVISON, STEVENS and KIPP [12]. The mechanical response of the
material was assumed to be viscoplastic. Based on the experimental evidence of
SEAMAN, BARBEE and CURRAN [13], the spall damage was modeled by small
spherical voids diffusely distributed over the material volume. Mathematically, it
can be represented by a scalar function ¢(X,t), the void volume fraction (poros-
ity). The number density of voids in very ductile metals is typically of the order
of 10*/mm3® whereas the void average volume can be estimated at 10~® mm3.
The central assumption of the constitutive framework in [12] was that the defor-
mation gradient tensor F can be decomposed as

(2.1) F=F° M-FP,

where FP is associated with viscoplastic flow, F€ with thermoelastic deformation,

M represents spall dilatation being related to ¢ by

(2.2) M= <—-1——> 1= M1.
155

The constitutive equation for viscoplastic response is modeled in terms of a
dislocation theory of plasticity. As for the reversible part of deformation, it is
assumed that the solid be thermoelastic and deformations remain small.

The evolution equation for porosity is obtained by postulating evolution equa-
tions for the number of voids per unit volume N and for the average void volume
V. Introducing some additional assumptions to preclude pore collapse to volumes
less than Vj, and performing simple algebraic manipulations, the final form reads

(2.3) - <fVo +3A’15—£) (1-£)%,

where the material functions f and A’ that depend on the hydrostatic stress and
temperature, must be determined experimentally. A few numerical examples of
spallation in plate impact tests for aluminum and copper were computed to verify
the proposed theory. In doing so, the authors incorporated their model into a
one-dimensional Lagrangian wave propagation code using the finite difference
method (WONDY code). The comparison showed a very good agreement with
the appropriate experimental data.

2.2. Grady’s models

The processes of spall fracture and fragmentation in rocks have found the
most elaborated mathematical description in the papers by GRADY and KIPP
(14, 7], and GRADY [15, 16].
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A brittle rock contains a certain initial distribution of cracks which can be
thought of as a material property. Under the action of dynamic tensile loading,
some of these cracks get activated, grow and intersect one another to form frag-
ments of different sizes. GRADY and KIPP [14] characterized the tensile fracture
in rocks by a scalar parameter D specified as follows

(2.4) D =NV,

where N is the number of penny-shaped cracks per unit volume, V = (4/3)mr3 is
a spherical volume surrounding the crack of radius r. This volume approximates
the stress-relieved region in the vicinity of the traction-free crack surfaces. The
concept of a stress-relieved volume in the continuum description of damage was
originally introduced by WALSH [17] in an approximate micromechanical theory
of the effective elastic properties of rocks. The scalar damage parameter (2.4)
takes the values

(2.5) 0<D<1,

such that D = 0 corresponds to an intact rock, whereas D = 1 represents the
final failure (fragmentation). Macroscopically, the damage D can be seen as the
reduction of the elastic modulus of a damaging material in a uniaxial tension.
Therefore, a one-dimensional stress-strain relation can be written as

(2.6) o = E(1 - D)e,

where E is the intrinsic elastic modulus of the material. Equations (2.5) and (2.6)
were among the first ideas promoted in the seventies in the early papers on con-
tinuum damage mechanics (see, for example, LEMAITRE and CHABOCHE [18]).

A dimensional analysis of “crack energy” in BUDIANSKY and O’CONNELL
[19] involves, in a natural way, a crack density parameter w given by

(2.7) w = N(r)?,

where N, as before, denotes the crack number density, (r) is the average radius
of a penny-shaped crack. In a two-dimensional case, a penny-shaped crack de-
generates to a slit, and (2.7) reduces to w = N(r)2. Note that the crack density
parameter (2.7) appeared earlier in WALSH [17].

According to GRADY and KIPP [14], the accumulated damage at time ¢ in
the dynamic case is the superposition of the stress-relieved spherical volumes of
all penny-shaped cracks which were activated at past times 7. Therefore, using
(2.4) one gets

t
(2.8) D(t) = / N(r)V(t-7)dr,
0
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where N is the rate of crack activation, V(¢ — 7) is the stress-relieved volume
around the crack activated at time 7. In (2.8), an assumption is hidden that in
the stress-relieved region no subsequent crack activation is allowed. The authors
further assume that crack activation is governed by a two-parameter Weibull
distribution

(2.9) == ke™,

where n is the number of flaws which will activate at or below a tensile strain level
€; k and m are material constants characterizing fracture activation. Since the
cracks will actually activate in the material outside the stress-relieved regions,
the number of such cracks must be reduced by a factor of (1 — D). Hence, the
rate of crack activation becomes

(2.10) N =n/()é(1 — D) = kme™ (1 - D).

The volume of a stress-relieved region V is calculated assuming that cracks, once
activated, quickly approach a constant growth velocity c,, which is treated as
an additional fracture property of the material. Consequently, the authors claim
that

4 3 3
(2.11) Vit-71)= gwcg(t - 7)°,

where it was tacitly assumed that initial crack radius is negligibly small. Finally,
the following integral equation is obtained for the damage D

t
(2.12), D(¢) = %'ncs / w(e)R(1 D) (b P,
0

or, upon inserting the rate of flaw activation based on the Weibull distribution
(2.10),

t
(2.12), D(t) = %ﬂkmcg /Em"lé(l — D)(t —7)%dr.
0

GRADY and Ki1PP [14] further specialized equation (2.12); for a constant strain
rate £(t) = ¢ot. Hence,

t
(2.13) Dity= %ﬂkmczég‘/fm_l[l — D(7)](t — 7)%dr.
0
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Clearly, this assumption is a restriction of the presented theory. On the other
hand, it may be justified by the fact that it admits a closed-form, though approx-
imate, solution which facilitates interpretation of the theory. It is also convenient
when designing an experimental program to verify the obtained theoretical re-
sults. Solving Eq.(2.13) by a series expansion and neglecting the higher order
terms, the authors obtained that

(2.14) D(t) = aeM™+3,
where

8mke3
(2.15) a= il

(m+1)(m + 2)(m + 3)

is a combined constant involving three material fracture parameters k, m, Cg-
Inserting the solution (2.14) into the stress-strain equation (2.6) gives

(2.16) o(t) = Béot (1 - acft™*?).

The dynamic fracture stress, defined as the highest stress in the material prior
to failure, is obtained from (2.16) by maximizing it with respect to time:

(2.17) e = E(m + 3)(m + 4)~(m+4)/(m+3) o =1/(m+3) ;3/(m+3)
The fracture stress (2.17) is reached at the time
(2.18) te = (m+ 4)‘1/(m+3)a‘1/(m+3)égm/("‘”),

To make a brittle spall model complete, a fragmentation criterion is necessary.
GRADY and KIPP [14] postulated that fragmentation occurs when their scalar
damage variable reaches the upper limit, i.e.

(2.19) D(t;)=1.

This is expected to happen at a time t¢ (time to fragmentation) when coalescing
cracks form such a pattern that the material is no more able to transmit tensile
stresses. The time to fragmentation is computed from Eq.(2.14) on which the
side condition (2.19) is imposed. The mean fragment size is then approximated
to be Ly = cy4ty. Performing a somewhat more detailed analysis of crack size
distribution, GRADY and KIPP [14] obtained, in the constant strain-rate case,
the following mean fragment size:

6c o fis 3
(2.20) L= m__:_z_a 1/(m+3)€0 m/(m+3)

)
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where, again, three fracture parameters ¢y, m, k are involved. The three fracture
constants cg, m, k are difficult to obtain from direct experiments. Instead, they
were inferred from the test data by the best fitting. Material properties such as
the fracture stress and fragment size were measured for different loading rates and
intensities using several experimental methods. These included: a gas gun impact
technique, a capacitor discharge technique, explosions in cylindrical samples, a
split Hopkinson bar method. The rock under investigation was an oil shale from
Colorado for which a vast body of the above data existed. Using the obtained
experimental data regarding the fracture stress vs. strain rate, GRADY and KIpP
[14] performed a linear fitting using Eq. (2.17). From the slope and the intercept
of that linear fit they determined the fracture parameters. For the oil shale they
obtained m = 8 and o = 9.48 - 103, The strain-rate dependence of the fracture
stress was found to be o, o £J?". However, the separate fracture parameters
k and ¢4 could not be singled out using the fracture stress data only. In order
to do that, additional experimental data concerning the nominal fragment size
vs. strain rate were needed. Using the fragmentation data for the Colorado oil
shale, a value for the crack growth velocity of ¢, = 1300 m/s was obtained. This
is about 0.4 of the longitudinal wave velocity — a reasonable upper bound for the
fracture velocity.

Before closing the discussion of the GRADY and KIPP’s [14] model, the fol-
lowing point should be addressed. In addition to the integral equation (2.12);
from which the damage parameter D is to be determined, the authors give a
following rate equation:

1/3

2
87r(m+3) an(€)1/3D2/3,

(m+1)(m + 2)

(2.21) D=

which has an advantage of being computationally simpler. They claim that (2.21)
is derivable from (2.12);, and for the particular case of a constant strain-rate load-
ing it agrees exactly with the integral equation (2.13). The first statement is not
straightforward to verify. As far as the second one is concerned, the differential
equation (2.21) can be integrated directly giving

87rk:c2
(m+1)(m + 2)(m + 3)

é(r]ntm—i—S.

(2.22) D(t) =

Surprisingly, this solution is identical to the expression (2.14) obtained in GRADY
and K1PP [14] by a series expansion under the assumption that higher order terms
be neglected. This is rather unexpected since no assumption regarding higher or-
der terms was declared when arriving at Eq. (2.21). However, when D(7) from
(2.22) is inserted into the integral equation (2.13), it turns out that (2.13) is
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not satisfied identically. The only case when the expression (2.22) becomes a
solution for (2.13) is when the term [1 — D(7)] in (2.13) is set equal to 1. Recall
that [1 — D(7)] is a factor that reduces the number of activated cracks as the
damage proliferates within the material volume. Setting D(7) = 0 in Eq. (2.13)
physically means that an apparent decrease of the number of activated cracks
as the undamaged volume shrinks, is counter-balanced by a possible increase of
the number of activated cracks in the remaining undamaged volume. A plausible
explanation of this scenario may be related to the fact that higher stress levels
and crack interaction effects may amplify the crack activation rate. In such cir-
cumstances, the integral equation (2.13) reduces to a determined integral and
the above indicated inconsistency vanishes. Note also that this is equivalent to
what GRADY and Ki1pp [14] did when they neglected the higher order terms in
their series solution to Eq. (2.13). The influence of those higher order terms was
estimated to be less than 5%, even at the overall damage levels close to 1.
Another shortcoming of the GRADY and KIPP’s [14] model is that the un-
derlying energetic background of the brittle spallation was entirely ignored. This
aspect was later addressed by GRADY [15], and refined in [16]. Claiming that
primitive spall properties such as spall strength, time to failure, and nominal
fragment size are less sensitive to microstructural details of the material, Grady
concentrated on the energy balance analysis involving the elastic strain energy,
the kinetic energy, and the fracture surface energy, in order to assess the theoreti-
cal values of these properties at brittle spall. For a brittle spall to be energetically
permissible, the fracture driving energies (the kinetic energy due to volumetric
expansion and the elastic stored energy) within an element of mass M must
overcome the resistance of the material, i.e. exceed its fracture surface energy

(2.23) U+T>T,

where U, T, I" denote the elastic-, local kinetic-, and fracture surface-energy
density, respectively. The individual terms in (2.23) are given by:
L Pl X: 3K?
= :—“Q6252, y Ic
2 ocg 120
where P is the mean tension stress within an expanding elastic body, o is the
mass density, ¢y is the sound speed, s is an average fragment size, ¢ = —p/p is
the dilational strain rate (assumed constant), K. is the fracture toughness.
The mean tension in the expanding body is related to the time according to

(2.24) o

(2.25) P = pcaet,

where gcg = By, with By being the bulk modulus of the material. Assuming,
for simplicity, that cracks propagate from the sites of a rectangular lattice, the
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nominal fragment size was deduced to obey the following inequality
(2.26) s < 2¢qt .

To compute the minimum time to fracture, the criteria (2.24) and (2.26) were
taken in their equality forms. Combined with Eq. (2.25), they were solved for the
three primitive spall properties in question, giving

(2.27) P, = /30co K¢ (brittle spall strength),
1 3K?
2.28 ty = — (| —L¢ time to spall fract
(2.28) e = (time to spall fracture),
gt
(2.29) g 28 Ic mean fragment size).
N b o

The contribution of the kinetic energy in (2.24) was found to be small as com-
pared with the elastic stored energy, and was neglected in the above computa-
tions. Incidentally, in an earlier paper (GRADY [15]) it was the kinetic energy
that was neglected in the energy balance equation (2.23). The utility of the model
predictions (2.27), (2.28), (2.29) was assessed in [16] by confronting them with
the extensive impact spall data on rock materials. The calculated spall strength,
time to failure, and mean fragment size were generally consistent with the ex-
perimental evidence.

A similar analysis was performed in [16] for ductile spall. The differences in
ductile and brittle spall are due to different mechanisms of energy dissipation.
The most part of the fracture energy in a ductile spall results from the local
plastic dissipation during void growth. Unlike the brittle case, the surface energy
of newly created voids is negligible in comparison with the plastic dissipation.
To estimate the energy dissipated in ductile spall, Grady relied on the Gurson’s
model [20] of a spherical cavity growth in a rigid-plastic solid, with the subsequent
modifications by TVERGAARD and NEEDLEMAN [21]. In a recent study [22],
Grady extended the above outlined energetic theory of spall fracture to account
for the influence of temperature on spall and fragmentation in solid and liquid
metals.

Grady’s energetic approach to spall fracture may be summarized as follows.
Although the need for microscopic studies of spall fracture cannot be overempha-
sized, it is likewise important to investigate the primitive spall properties (2.27),
(2.28), (2.29). These properties might be less sensitive to microstructural details,
depending more on the driving and opposing energies during the transcient wave
loading. Continuum energy concepts provide bounds on the micromechanical
theories of nucleation and growth of spall fracture.
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3. STANFORD RESEARCH INSTITUTE

The names of L. Seaman, D.R. Curran and D.A. Shockey, in all possible per-
mutations, are usually encountered when referring to spall damage investigations
at the Stanford Research Institute (SRI). Their research work was basically con-
cerned with modeling the nucleation and growth of microvoids and microcracks
in damaged solids. They also performed experiments and collected systematic
statistical measurements of defect size distributions at different stages of spall
damage development. This data was then employed to establish nucleation and
growth rate equations for spallation in ductile and brittle solids for a variety of
loading conditions.

In the classical paper of SEAMAN, CURRAN and SHOCKEY (23], computa-
tional models were formulated for both ductile and brittle dynamic fracture, and
implemented in one- and two-dimensional wave propagation problems. Although
the primary objective of this review is the brittle spall, we shall briefly outline
the SEAMAN et al. [23] model of ductile spall because their brittle part utilizes
the same basic concepts. From the observations of the polished cross-sections of
copper and aluminum targets after impacts, these authors concluded that the
number density of nearly spherical voids can be approximated with a sufficient
accuracy by the following expression

(3.1) N(R) = Nge~(B/En),

where N is the cumulative number of voids (per unit volume) having radii larger
than R, Nj is the total number of voids per unit volume, Ry is a parameter
of the distribution. The total void volume follows from the integration over the
entire distribution assumed to be spherical in shape

AN
(3.2) Vi s / N(R)dN = (4/3)r / 305 AR = 8TNoRY, .

0

Nucleation of new voids with a size distribution defined by (3.1), occurs at a rate
given by

(3.3) N = Noe(”’””")/‘”, for o5 > op,

where oy, is the nucleation threshold, o, is the tensile pressure in the solid ma-
terial, N o is the nucleation rate at o,, o7 is an additional material constant,
the dot denotes time derivative. The growth of the existing voids is assumed to
proceed at the following rate:

(3.4) et o Ll
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where o, is the growth threshold stress, n is the material viscosity. The total
change in void volume comprises the contributions due to nucleation and growth
alike. Therefore, integrating (3.3) and (3.4) for the time interval At, and inserting
the results into (3.2) gives

(35) VVOid = SWNOR?Ve(O's—Un)/UlAt =l %06(3/477)(0'5—-03)At’

where Vj is the void volume at the beginning of the time interval At, and Ry =
R, at nucleation, with R, being the nucleation size parameter. Having quantified
the nucleation and growth of voids, the constitutive equations accounting for the
presence of voids were formulated for the volumetric and deviatoric parts of
the stress tensor. Without going into the details of these stress-strain relations,
it suffices to say that they were successfully implemented in the stress wave
numerical codes to account for ductile spall fracture in aluminum and copper.

A brittle spall model in [23] was formulated on the basis of a careful micro-
scopic inspection of the fractured targets made of Armco iron, beryllium and
transparent plastics, where the primary damage mode appears as cracks. Unlike
the ductile spalling where spherical voids were dominant, in modeling brittle spall
damage both the size and orientation distributions of cracks are of importance.
From the target observations, surface distributions of crack sizes and orienta-
tions were constructed, and then transformed statistically into three-dimensional
distributions of idealized penny-shaped cracks. Based on these observations, a
relation similar to (3.1) was assumed for the cumulative crack density in brittle
solids:
(3.6) N¥(R) = Ni e~ (RIRY),
where the indices ¢ and j uniquely designate a spherical surface element in the
array of orientations distribution, Ny’ is the number density of cracks contained
in the ij-th element, and RY is a shape parameter of the ij-th element. Only
Mode I penny-shaped cracks with no plastic zones around crack perimeter were
considered. Thus, assuming that a penny-shaped crack, when opened, forms an
ellipsoid with the semi-axes R, R, J, the elastic opening J is given by a familiar
formula:

4(1 —+?)

(37) 61,] = Tr—ERO"p,‘p,

where UW is the normal stress acting on a crack with angular coordinates ¢; and
;. Computing the volume of a single crack, and combining it with the cumulative
crack concentration (3.6), the ensuing total volume of the crack distribution
becomes

(3.8) Vie 1_” Z wiped
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Nucleation of new cracks and growth of the existing set were considered next.
Similarly to what the authors did for ductile spall, the nucleation rate in the
brittle case is governed by

(3.9) N = N¥elopp=ono)/ar,

where No, ono, 01 are fracture parameters. On the basis of (3.8), the entire
volume of newly nucleated cracks follows to be

32(1 — v?

(3.10) Vo= 22

ZN”AtR3 g

ij

where NiAt gives the total number of cracks nucleated in the ij-th element
within the time step At, R, is the nucleation distribution parameter. The rate
equation for crack growth deduced from the experimental data has the same
functional form as in the ductile case

(3.11) R=Gi(0—0,)R,

where Gy is a growth coefficient, 049 is the growth threshold stress assumed
constant for impact problems. Integrating (3.11) over a time step At yields the
final crack size

(3.12) R = R16G1(5¢¢—090)At)

where R; is the initial crack radius, and G,y the average stress in the At interval.
The crack volume associated with the growth is obtained from (3.8) and (3.12), as

32(1E_v )Né](RlJ)3 ;]¢ 3G1( oV Uyo)At‘

The total number of cracks contained in the ij-th surface element at the end of
At, reads

(3.13) Vi =

(3.14) Ny = Ni’ + NJAt,
whereas the corresponding total crack volume is simply
(3.15) VY =V + Vg,

with the individual terms given by (3.10) and (3.13).

A model for fragmentation in [23] makes use of a string of experimental facts.
For example, it has been observed in rocks and brittle metals that fragments
are usually chunky objects having six to eight sides, each of which being prob-
ably generated by one crack. Consequently, the number of cracks involved in
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the fragmentation may be estimated from the number of fragments. Also, each
large fragment contains quite a lot of tiny cracks that do not participate in the
fragment formation. Finally, the fragment-size distributions exhibit similarity to
the crack-size distributions, thus they can be approximated by the same distri-
bution function (3.6). The fragment volume is represented as TyR%, where the
proportionality factor Ty depends on the shape of the fragment. A criterion for
fragmentation is based upon the concept of a crack range V,;. Roughly speak-
ing, Ve, is defined as the volume surrounding a crack that experiences magnified
strains due to stress concentrating effect of the crack (SHOCKEY et al. [24]). Once
the crack ranges of two cracks intersect, the cracks interact strongly. Unfortu-
nately, the authors did not offer a precise definition of V;; except for stating that
it is a sole function of the crack size. Therefore,

(3.16) Ver = TuR3,

where T, is a material constant which may range from 1 for very ductile mate-
rials, to much higher values for very brittle ones. The crack range concept bears
some resemblance to the excluded volume concept in the percolation theory (cf.
Sec.6), and plays a similar role as Grady and Kipp’s stress relieved region (cf.
Subsec. 2.2). The onset of fragmentation is controlled by the condition V; = 1.

The theoretical spall model by SEAMAN et al. [23] was thoroughly tested
against exhaustive data obtained by the authors from tapered-flyer impact ex-
periments on brittle and ductile targets. The comparison of the predicted and
measured damage distributions, void and crack concentrations, cumulative num-
ber of fragments, showed fairly good agreement for various materials, impulse
intensities and load duration. In conclusion, this is a workable computational
model of spall fracture that is firmly rooted in the experimental evidence and con-
tains a dependence on microstructural parameters. Its efficiency and tractability,
though, is sometimes traded against mathematical rigor. Nevertheless, it is often
recalled as one of the important models that gave rise to numerous extensions
and improvements (e.g. GRADY and KIPp [14], PERZYNA [25]).

During the next 20 years, the SRI group established a family of computational
models for spall fracture and fragmentation. These models were given a generic
name of NAG/FRAG, for Nucleation And Growth of damage to FRAGmentation
(CURRAN and SEAMAN [26]). The NAG/FRAG family has the following mem-
bers: SHEAR for shear banding, BFRACT for brittle cracking (see CURRAN et
al. [27] for details), DFRACT for ductile void growth, and FRAGBED for pen-
etration of granulated materials (CURRAN et al. [28]). The common feature of
all family members is that they require a laboratory-generated input data for
the nucleation- and the growth rate equations of the intrinsic flaws in the ma-
terial. The SRI group was able to develop effective techniques for measurements
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of crack orientations, lengths, and numbers on a polished specimen’s surface,

and transform them to true orientations, lengths and numbers required in the
NAG/FRAG computer codes.

4. DAYTON RESEARCH INSTITUTE

The impact behavior of glass and ceramic materials was investigated by Ra-
jendran, Bless and coworkers (see BLESS and RAJENDRAN [29], and references
contained therein). These authors modeled the whole spectrum of impact-in-
duced fracture phenomena such as nucleation, growth and coalescence of micro-
cracks (damage), dynamic propagation of a macrocrack, and failure by moving
fracture front. For ceramics, it is often assumed that intrinsic microcracks ex-
ist within the material prior to any impulse loading, thus nucleation process is
not considered in the modeling. Typical features of spall damage in ceramics
are: stiffness loss, small inelastic strains resulting from microcracking and from
the microplastic zones due to dislocation motions in the neighborhood of the
microcrack tips.

The total strain is typically decomposed into elastic and plastic portions

(4.1) €ij = Mijpi(w)ow + 5?;‘ )

where M;;y; is the effective compliance tensor, w = Nya3 is the crack density
parameter with Ny being the average number of pre-existing cracks per unit
volume, and a the maximum microcrack size. The proposed dynamic damage
model is very simple. The pre-existing cracks extend independently from each
other, according to Griffith criterion generalized for a dynamic case. The crack
density parameter w is treated as an internal state variable whose evolution de-
pends only on the increase in crack length. Two material constants are involved:
Ny and ap which must be provided from experiments. The evolution law for
w = Noa® follows from the crack stability condition for a dynamic Griffith crack,
ie.,

(4.2) o= 3n%)CR(1 LG,

where G. is the critical strain energy release rate (related to fracture toughness),
G is the actual strain energy release rate (related to dynamic stress intensity
factors), Cg is the Raleyigh wave speed, and n < 1 is a parameter that puts
bounds on the crack growth rate. RAJENDRAN [30] assumed that at w = 0.75
the microcracks have reached the coalescence stage leading to disintegration of
the ceramic. RAJENDRAN et al. [31] developed also a constitutive-damage model
for spallation in ductile materials.
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5. OTHER MODELS

Meyers with coworkers (AIMONE et al. [32], LOURO and MEYERS [33], MEY-
ERS [8]) studied experimentally and theoretically the brittle spall damage and
fragmentation in rocks and ceramics. They made an interesting observation that
only a small fraction (ca. 15%) of the total energy expended during fragmenta-
tion is actually consumed in the creation and acceleration of the fragments. The
remaining part of the blast energy was spent on producing microcracks contained
within fragments. The measured surface area of those microcracks substantially
exceeded the external surface area of the fragments. Consequently, it was con-
cluded that “most of the damage is in the form of contained cracks, and the
fragment size is not really a good measure of the damage produced” (MEYERS
[8]). Another important observation was that compressive pulse in the plate im-
pact experiments creates crack initiation sites that may accelerate damage caused
by the reflected tensile wave. Such compression-induced mechanisms of tensile
cracking are well known in the literature of static crack growth (e.g. sliding crack
mechanism, or squeezed pore mechanisms). LOURO and MEYERS [33] showed ex-
perimentally that less damage is produced if a tensile stress pulse runs through
an intact material than if the material was previously subject to a shock (com-
pressive) wave. Unlike the static crack growth in compression (cf. experiments
by HoRIl and NEMAT-NASSER [34]), the microcracks loaded by a shock wave
do not seem to develop wings but they rather tend to grow in their own planes
(self-similar growth), DIENES [35]. Another argument supporting the in-plane
crack growth in dynamic tests is related to the strain rate level. High strain
rates seem to favor nearly hydrostatic stress states. In hydrostatic stress states,
the cracks grow in a self-similar mode, as noted by HoRIl and NEMAT-NASSER
[34]. At low strain rates, on the other hand, a tendency for wings to form pre-
vails, KALTHOFF and WINKLER [36]. Based on the above observations, LOURO
and MEYERS [33] formulated a theoretical model for spall damage and fragmen-
tation in ceramics. They assumed that damage develops from the pre-existing
microcracks as the shock wave travels across the material. The microcracks be-
come larger but remain in their own planes. Then, a tensile wave makes them
grow (again in their own planes) at a rate predicted by the fracture dynamics,
i.e. less than the Rayleigh wave speed. Other cracks, which were not activated by
the shock impulse, may also get moved by the tensile impulse and contribute to
the increasing damage. The growing cracks form a complex pattern of straight
lines that create fragments upon intersecting. The sizes of these fragments can be
computed from the model. Noteworthy, Louro and Meyers incorporated, under
the name of “shielding factor”, the WALSH [17] concept of an unloaded region
around a crack.
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Ductile spall models were beyond the scope of this review. They were re-
called only sporadically if a ductile spall model was helpful in explaining its
brittle counterpart (vide the SRI models). For the sake of completeness, how-
ever, a few newer works on ductile spall will now be mentioned. JOHNSON [37]
proposed a model for microvoid evolution due to tensile mean stress and used the
derived equations to describe the ductile spall in impacted copper plates. Based
on the pioneering work by SEAMAN et al. 23] and its subsequent modification by
PERZYNA [25], EFTIS and NEMES [38] used a hollow sphere model to calculate
the rate of increase of the void volume fraction. KLEPACZKO [39] proposed a
cumulative spall criterion making use of the Boltzmann statistics and verified it
experimentally for some aluminum alloys in plate impact tests.

A state-of-the-art in modeling of adiabatic shear banding is given in ZUREK
and MEYERS [1], where an exhaustive list of references is also appended. As
for the dynamic fracture under shock wave loading (compressive stresses), the
research in this field is still in an adolescent phase. Some initial efforts based on
the static micromechanics of local tensile cracking under overall compression are
due to DENG and NEMAT-NASSER [40] and MEYERS [41].

The dynamic failure research in the countries of the former Soviet Union
concentrated mostly on the penetration mechanics and fracture front propagation
in impact phenomena (e.g. CHEREPANOV [42], NIKOLAEVSKI [43], ZILBERBRAND
et al. [44], KANEL et al. [45].

6. PERCOLATION MODELS

Quite independently of the research conducted by the continuum mechanics
community, brittle fracture processes are also investigated by statistical physi-
cists who use an entirely different methodology. Instead of analyzing stress fields
at the crack tips (fracture mechanics) or introducing a priori damage variables
into a continuum constitutive description (damage mechanics), they simulate
continuous brittle matter by means of discrete (regular or random) lattices which
are subject to initial quenched disorder. The essential feature of the representa-
tion of a solid by a discrete graph is that it provides an opportunity to model the
inhomogeneity of the microstructure by assigning appropriate statistical proper-
ties to the lattice bonds. The disorder can be introduced, for example, into elastic
constants or into fracture thresholds of individual lattice elements. Out of several
theoretical techniques available for dealing with the highly disordered systems,
the percolation model seems to be particularly appealing. The intellectual ad-
vantage of the percolation model resides in its almost game-like mathematical
structure, and in the fact that it provides a transparent and intuitively satisfy-
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ing description for spatially random processes. Succinctly stated, the percolation
disorder is bi-modal in the sense that a defect either occupies a considered site
(or bond) of a lattice with a probability p or is absent there with the probability
1—p. As the bonds start to break under external tensile loading, the spatial pat-
terns of defects (clusters) and their sequence of appearance are believed to mimic
a real breaking process. The central questions that are posed in the percolation
and other statistical theories of disordered solids, are:

e What is the critical defect concentration p. at which an infinite cluster
appears spanning the opposite sides of the specimen (percolation threshold)?

e How do different processes and transport properties of the material behave
in the vicinity of the percolation thresholds (scaling laws)? Is there any universal
law that is common to all initial defect distributions? Does the total number
of ruptured bonds at the overall failure and the maximum stress follow any
universal law?

To get a deeper insight into the lattice modeling of disordered systems, the
excellent monographs by ZALLEN [46], STAUFFER [47], HERRMANN and ROUX
(48] should be consulted. Some specific conclusions concerning the links between
the lattice models and the continuum damage mechanics were formulated in
BasistA and KRAJCINOVIC [49], KRAJCINOVIC et al. [50], KRAJCINOVIC [51].
The latter provides also an exhaustive list of original papers on statistical physics
modeling of brittle fracture.

In the present section, we shall focus only on those aspects of the percolation
theory that may have effect on the modeling of spall fracture. When examining
the existing literature on applications of the percolation theory to brittle frac-
ture modeling and confronting it with the damage mechanics findings, several
interesting observations can be made.

An crack density parameter identical to that of Walsh - Budiansky - O’Connell
(2.7) also appears in the percolation models. However, its genesis is different from
that of (2.7). It was shown by SHER and ZALLEN [52] that the critical volume
fraction of spherical or circular hard-core (non-overlapping) voids at percolation
is a dimensional invariant independent of the lattice type. To visualize this state-
ment, consider a simple case of circular voids whose centers are randomly located
on the nodes of a regular two-dimensional lattice. The critical void surface area
fe can be determined directly using a site percolation model

(6.1) fo'=plv;

where p is the site percolation threshold, v is the filling (packing) factor for the
considered lattice. The percolation threshold p{ denotes the critical fraction of
sites occupied by voids at the moment when an infinite void cluster transects a
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two-dimensional specimen. Consequently, the equality (6.1) can be rewritten as
(6'2) fe= (NAvoid)c-

According to SHER and ZALLEN [52], f. was found to be equal to 0.45 + 0.03
irrespective of the lattice type (Table 1). Moreover, the critical porosity f. does
not depend on the void shape. A similar universality of f, was also confirmed for
a bond percolation model (ZALLEN [46]).

Table 1. Critical void area fraction f, for site percolation in two-dimensional
lattices (after Zallen [46]).

LATTICE SITE PERCOLATION FILLING CRITICAL
THRESHOLD p; FACTOR v LACUNITY f.
Triangular 0.500 0.907 0.45
Square 0.593 0.785 0.47
Honeycomb 0.698 0.605 0.42

In the case of overlapping (intersecting, permeable, soft-core) voids, the prob-
lem becomes somewhat more complicated. It is first necessary to determine the
probability of overlapping of neighboring voids. The percolation threshold will
then coincide with the appearance of an infinite cluster of overlapping voids
whose centers need not occupy the nodes of a regular lattice. Obviously, two
voids of equal radii r will overlap if the distance between their centers is smaller
than 2r. SHANTE and KIRKPATRICK [53] have shown that the probability that a
randomly selected point does not belong to a circular void is equal to e~™, where
n is the mean number of circular voids within a distance r from that point. At
percolation, the critical value of n becomes n, = zp$/4, where z is the coordina-
tion or connectivity number denoting the number of closest nodes. The critical
fractional area of voids in a 2D case is (BALBERG [54])

(6.3) i B-migmPeld,

where the parameter B, is the average critical number of circle centers within
a given circle (mean number of object intersections). In three-dimensional case,
the critical fractional volume for permeable spherical voids becomes

(6.4) fo=1—¢Be/8,

Similarly as the critical lacunity (6.2) for hard-core voids, for soft-core voids
the critical values of B, hence f., given in (6.3) and (6.4) manifest a universal
behavior. This universality was demonstrated by PIKE and SEAGER [55] in an
extensive program of numerical simulations.
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Geometrical interpretation of the universal parameter B, is quite instructive.
BALBERG et al. [56] have found that

B = N {Aex) (in two dimensions),

(6.5)
B = NV (in three dimensions),

where N, is the critical number of defects at percolation, and (V) is the so-called
mean excluded volume.

The mean excluded volume (Vex) (or area (Aex) in 2D) of an object (A) is
enveloped by the locus of points formed by the centers of all surrounding geomet-
rically similar objects (B) which just touch the object (A) without intersecting
it. In other words, if a center of an adjacent object (D) is within the excluded
volume of a similar object (A), two objects will penetrate each other, Fig. 1.

For the circular holes of equal radii shown in Fig. 1, the excluded area is simply
(Aex) = mdr2.

Fi1G. 1. Excluded area (dotted line) for a circular void A.

In the case of slits, the average number of intersections B, is, indeed, a dimen-
sional invariant, but the critical crack density parameter N.r? is not (ROBINSON
[67]). As for disks of constant radius r and vanishing thickness (penny-shaped
cracks) uniformly distributed in a homogeneous, elastic material, the critical
crack density is w, = N.r® = 0.182, whereas the crack intersections density at
percolation equals B, = N (Vex) = m2N.r® = 1.80, CHARLAIX [58]. Note that
the percolation threshold denotes here the one when an infinite cluster first pen-
etrates a 3D specimen from one side to the opposite one (conductivity percola-
tion threshold). It should not be confused with the second percolation threshold
(elastic percolation threshold) at which the specimen looses its integrity and the
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secant elastic modulus drops to zero. Naturally, in a two-dimensional system
both thresholds coincide. However, in the considered 3D case, the elastic perco-
lation threshold, leading to fragmentation, should occur at a substantially larger
density of penny-shaped cracks.

Concluding this section, it seems justified to say that the percolation studies
confirm the utility of the Walsh - Budiansky - O’Connell crack density param-
eter (2.7) in damage modeling, at least for non-intersecting defects. Although
the starting points for continuum and percolation theories of brittle damage
were quite different, both types of modeling ended up with virtually the same
parameter quantifying the evolving material deterioration. For non-intersecting
defects, the critical value of this parameter was even proven to be a universal
quantity. In other words, upon recognizing that the emergence of an infinite clus-
ter in a two-dimensional case means the final disintegration (fragmentation) of
a specimen in a strain-controlled tensile test, a far-reaching conclusion furnished
by the percolation theory is that the rupture always happens at the constant
value of the Walsh - Budiansky - O’Connell damage parameter. Another conclu-
sion drawn from the above analysis is that for spherical or circular hard-core
voids, the Walsh - Budiansky - O’Connell parameter w = N(r)® (w = N(r)? in
2D) is apparently proportional to the volume (area) fraction of defects, i.e. to
the porosity. This interpretation is coincidental and may be misleading, though,
because the same damage parameter w = N(r)? is also derived for slits, and
w = N{r)?® for penny-shaped cracks, where any relation to material porosity is
irrelevant.

Despite unquestionable successes of the percolation theory in the description
of critical phenomena, a certain amount of caution is advisable when applying it
to model fracture processes. It seems that in a static case, this is not a correct
model to represent the damage-fracture process of brittle solids. It is a common
knowledge that in such a case microcracks start to grow from the pre-existing
flaws. The longest and most favorably oriented crack, i.e. the one located perpen-
dicularly to the maximum tensile stress direction, is the first to move provided
that its elastic strain energy release rate reaches a critical value. This, however,
does not have much in common with the simple bi-modal disorder in the percola-
tion models. Also, the existing percolation models are almost exclusively confined
to tensile loading conditions whereas for brittle solids compressive stress states
are of primary importance.

On the other hand, the percolation models seem to be more suitable for the
description of dynamic fracture processes. Short duration times and high inten-
sity of stress impulses amplify the random character of microcrack nucleation
and proliferation. In particular, brittle spall damage, which by its very nature
involves random nucleation of defects under the action of tensile stress waves,
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offers a promising and yet unexplored field of possible applications of the perco-
lation theory. Some initial efforts in this direction can be found in DIENES [59]
and TONKS [60].

7. CLOSURE

Certain conclusions regarding particular spall models have already been drawn
in the preceding sections. Here, more general comments will be added and de-
velopments of future research will be outlined.

It is now widely accepted that a realistic spall fracture model must quantify in
some way the presence and evolution of microcracks or voids within the material.
The early models based on the critical stress criterion (spall threshold), and not
accounting for the initial damage, turned out to be insufficient. Among the spall
models that survived and proved useful in the contemporary fracture dynamics,
two main streams can be distinguished: 1) mesomechanical models incorporat-
ing the number density and size distributions of microdefects in the formulation
of rate equations for the microdefects nucleation and growth (SRI models, and
alike); 2) continuum damage mechanics models introducing a continuum mea-
sure for an intrinsically discontinuous field of spall damage (Sandia models, and
alike). A step deeper, into a microlevel (atomic scale) of spall processes, although
interesting, has not been seriously attempted yet. Possible reasons for that were
pointed out by DIENES [34]. On the other hand, some useful information with
regard to the constants entering mesomechanical spall models can be furnished
by the atomic scale simulations based on the molecular dynamics.

In many spall and fragmentation studies, a high precision in predictions is
actually not needed. Thus, the existing meso- and CDM models may provide
efficient tools for spall analysis. These models have grown up to the level where
they can be used in FEM codes and the obtained predictions of spall damage,
time to fracture, size of fragments, etc., are quite satisfactory for engineering
purposes. These models will probably get refined as more data is available. How-
ever, more sophisticated models require more computing power. Consequently, in
order to keep the balance between sophistication and applicability, some models
may actually have to be simplified.

For ductile metals in low to moderate shock conditions, the knowledge of the
microvoid volume fraction (porosity) £(x,t) seems to be a sufficient prerequisite
for the construction of a workable model of spall fracture. In other words, a single
damage parameter is expected to perform well here. In high shock conditions,
temperature has to be also accounted for since thermomechanical couplings may
be significant.
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While ductile metallic materials can sustain large compressive stresses with-
out failure, the brittle solids are susceptible to failure both under tensile and
compressive stresses, even though the compressive strength of such solids is typ-
ically of the order of magnitude higher than the tensile one. In brittle spalling
(tension states), it is necessary to account for the distributions of crack sizes
and orientations which rules out a single parameter damage model. Under the
action of shock waves (compression states), the failure modeling is even more
complicated for one has to start with mesomechanical cracking mechanisms that
produce local tensile stresses needed for the cracks to grow.
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