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NONLINEAR VISCOELASTIC ELLIPTICAL BAR
UNDER COMBINED TORSION WITH TENSION

D.M. DARWISH (ALEXANDRIA) and J.R.CANNON (ORLANDO)

In [1] DARWISH and CANNON considered the problem of twisting of a cylindrical bar
of elliptic cross-section. The bar was assumed to consist of a viscoelastic material. The
principal cubic theory of nonlinear viscoelasticity was used to obtain a nonlinear Volterra
integral equation of the second kind for the angle of twist 6(t) as a function of time ¢. In this
work we consider a cylindrical bar of elliptic cross-section which consists of a viscoelastic
material. At first, we subject the bar to torsion around the axis of the bar as we did in
the previous work [1]. After an interval of time, we subject the bar to a longitudinal axial
tensile force, in addition to torsion, for an additional period of time. We derive a system
of two nonlinear Volterra integral equations of the second kind for the angle of twist 6(t)
and the relative extension function y(t). We prove the existence and uniqueness of the
solution pair (8(t),¥(t)) and analyze a numerical procedure for the approximate solution
of the pair (6(t), 7(t))- Results of a numerical study of (8(t),¥(t)) are presented for both
the linear and nonlinear theory. The behaviour of the normal axial stress and the shearing
stresses are also investigated for each pair (8(t),v(t)), and the results for both the linear
and nonlinear theory are presented.

1. INTRODUCTION

In this article we consider a long homogeneous isotropic bar with a con-
stant elliptical cross-section. We assume that the bar consists of a nonlinear
viscoelastic material. The bar is first subjected to a twisting moment at its
ends for a certain time interval 0 < t < t;. Then for ¢ > t;, the bar is sub-
jected to the twisting couple combined with an axial longitudinal tension
force in the positive direction of the axis of the bar, which is taken to be
the positive z-axis. We assume that the cross-section is constant along the
bar and rotates uniformly with axial distance. We also assume that each
cross-section undergoes the same deformation.

FINDLEY et al. [4, 5, 6] have carried out many experiments on some vis-
coelastic materials under combined tension and torsion. DARWISH [3] has
considered the case of a circular bar of nonlinear viscoelastic material un-
der an abrupt change in the state of stress. For elastic bars of elliptical
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cross-section, SHIELD [7] has considered the combination of tension and tor-
sion.

The present article extends the work of DArRwWISH and CANNON [1] in
which a nonlinear viscoelastic bar of elliptic cross-section is subjected to a
twisting moment for a time interval 0 < ¢ < ;. This produces an angle of
twist 6(t) which is obtained as the solution of a nonlinear Volterra integral
equation of the second kind. This is assumed as the first stage of the problem
here. For t > t;, we consider the combination of a twisting moment from the
first stage with an axial longitudinal tensile force. The effect of the tension
leads to the relative extension function 7(¢) which is a function of ¢ only
like 6(t). For t > t,, we derive a system of two nonlinear Volterra integral
equations of the second kind for the pair (8(t),y(t)). We prove the existence
and the uniqueness of the solution pair (6(t),v(t)) and analyze a numerical
procedure for the estimation of the pair. For a few values of torsion and
tension, we calculate numerical approximations to the pair (6(t),~(t)) for
both the linear and nonlinear cases. We display the graphs of both cases for
comparison. Using these results, we investigate numerically the behaviour
of the normal axial stress and the shear stress. Finally, we conclude with a
discussion of the numerical results and the comparison between the linear
and nonlinear theory.

2. M/ATHEMATICAL FORMULATION OF THE PROBLEM

We assume that the bar is subjected to no body forces and is free of
forces acting on its lateral surface. We shall assume that the bar is of length
[ and that one end of the bar is fixed in the plane z = 0, with the axis of the
bar extending along the positive z-axis from 2z = 0 to z = [. We shall assume
that the bar has a uniform elliptic cross-section. We shall take the major
axis of the elliptical cross-section to coincide with the z-axis from z = —a
to z = a, while the minor extends along the y-axis from y = —btoy = b
(Fig.1). Hence, the boundary of any cross-section of the bar is given by the
equation

2
x
(2.1) S+a=L

In [1] DARwISH and CANNON derived the formulas for the shear stresses
in an elliptical viscoelastic bar under torsion. So, we consider here the com-
bination of torsion M(t) with an axial longitudinal tension T'(t) applied to
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FiG. 1.

the end of the bar at 2 = [, and acting in the positive direction of the z-axis.
The state of strain for this case is given by the tensor

Exs(®: 9 1) 0 €22(2,y,1)
(2'2) (a,-j(a:,y,t))= 0 Eyy(x7y7t) 5yz($,y’t) ’
E22(2,Y,t) Exy(2,9,1) €2(z,y,1)
where
(23) 522(xsyat) =i ?’
and
(2.4) e2e(2,9,1) = £,y(2, Y, 1) = —g7(t),
and where
_ o) (av(w,y) )
(2.5) TR R 3 _—ay +z),
and
_0@) (0p(z,y) )
(2.6) Ex(2,9,t) = 3 (——ax y)-

Here (t) is the relative extension of the bar, v is Poisson’s ratio of the
material, 6(t) is the angle of twist, and ¢(z,y) is the torque function (called
also the warping function) and, according to SOKOLNIKOFF [8],

a? - H?
(2.7) e(z,y) = L



34 D.M. DARWISH and J.R. CANNON

In addition,

Now, the state of stress is given by the tensor

0 0 0z2(T, Y1)
(2.9) (o) = 0 0 TualTi¥si) |,
0o (2,9, 1) oue, 4:4) 0,:(2.y,1)
where
(2.10) T Okk = Opg + Oyy + 0 = 0.

The deviatoric strain tensor is given by

| o ax
(2'11) eij(x’yat) o= Eij(.’lf, y’t) - Egkk‘sij ’ L]=,Y,z2,

where §;; is the Kronecker delta function such that §;; =0, 1 # j,and
6;; = 1, i = j. Likewise, the deviatoric stress tensor is given by

(212) ,](Zt,y,t) = O',J(LE, y’t) "Ukk(ﬂv,y, )6ij, t’] =7,Y,%,
and the second invariant of the strain deviator is given by

1
(213) 62(:1:7 Y t) = Eij(xv Y, t)E,'j(IL‘, Y, t) = ggkkskk ’

where the summation convention holds for the repeated i and j subscripts,
while the last term in (2.13) denotes minus one third of the square of the
sum £x defined in (2.8). Now, the principal cubic theory of nonlinear vis-
coelasticity [2] postulates a stress-strain constitutive relation given by

b 1
(214)  Si(z,y,1) = 2Geis(z,9,1) + / J(t = Teij(z, y,7) dr
0

+ [ K@-né@y egapr)dn,  ij=ze,
0

where G is the instantaneous shear modulus of the material, and J(t) and
K (t) are the respective kernel functions for the linear and nonlinear relax-
ation functions of the material; functions J(¢) and A'() will be given below.
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The stress state (2.9) of the bar satisfies the equation of equilibrium
0ij,; = 0 which in this case becomes

004, + oy, 80,

2.15 =0,

( ) or oy 0z

and is subject to the boundary conditions

(2.16) aii(z,y,)n; = 0, 3 =&, %2,

where n; denotes the components of the unit outer normal, and where (z,y)
denote the coordinates of a point on the ellipse

2)2 y2
—+ﬁ=

The state of strain (2.2) in the bar satisfies the compatibility equations

Otz Oty _
(2.17) 9y 9z = —6(1)
and

Otz Oty
(2.18) B

3. DERIVATION OF THE SYSTEM OF INTEGRAL EQUATIONS
FOR 6(t) AND (1)

For the nonvanishing components of deviatoric strain we obtain from
(2.3)~(2.8) and (2.11) the following results:

cur(,,0) = (o) = ) (4 2),
€:x(,y,t) = €22(2,y,1) = 0(;) (ax y) y
exul,,0) = ea(e,,1) — 2wk = —27(0) — 3 (1 - 20)
(3.1) = —%v(t)(l +v),
n(®,0:1) = (@, 9,0) — zewk = —7 (DL +0),
€x2(2,91) = €:22(2, 9, 1) — gekk = 7—(;—) = % 7—2—)(1 - 2v)

(1)
3 —3_(1 + V),
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and from (2.13) we obtain
2 2
32 o= fororo s w0)|(52+2) + (52 ) I}

Here ¢(z,y) is given by (2.7). Now, from Egs. (2.9), (2.10) and (2.12) we see
that

S:r;z(m, y,t) = Ua:z(xy y,t)7
Syz(x’ y7t) == O'yz(l‘, yvt)s

1
(3'3) S.’L‘.’L‘(zay7t) = _'3'0'22(3:7 yvt)a
1
Syy(l‘, y’t) . —50'22(1', yat),
2
Szz(zv yat) = §0'zz(.’t, y7t)‘

Substituting (3.1)s, (3.2), (3.3)s5 into the stress-strain constitutive relation
(2.14), we obtain

(34)  ou(z,9,t) = 2G(1 + u)@ + “—J;L)O/J(t _ry(t)dr

ne ; 4 /K(t — )X (2, y,t)y(r) dr

0

= E’y—g) + ) -‘2_ v) 0/J(t ~ 1)y(7)dr

) / K(t- r){(l +v)Iy¥(r)
2

+302(1-) [(%;2 + :r) + (g—: - )2} }7(1‘) dr,

where
(3.5) E =2G(1+v)

is the instantaneous value of Young’s modulus. Next, we substitute (3.1)s,
(3.2) and (3.3); into the stress-strain constitutive relation (2.14) and
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we obtain

(36) oz, y,t)= (%%:— + a:) [G()(t) + —;—/J(t —71)0(7)dr

- ] K(t——r)0(‘r){(1+1/)272(7')+302(7) [(%‘5 ¥ z>2+ (32- )2] }dr].
0

Likewise, using (3.1)2, (3.2), (3.3); and the stress-strain constitutive relation
(2.14), we see that

B7) oz, y,0) = (g—": A )[G()(t)+ % / J(t = )8(r) dr
0

+%]IX'(t—T)O(T){(1+V)2’72(T) +36%(7) Kg—z + (13)2 + (g—: - )2]} dr].

We note that we can obtain the stresses 0., 0, and o, for the linear theory
by taking K(t) = 0 in Eqgs. (3.4), (3.6) and (3.7).
From the equilibrium considerations we obtain

(3.8) T(t) = / / 022(2,, 1) dzdy,

and "’

(3.9) M(t) = / / (zoy, — yo.;)dzdy,
R

2 2
where R is the region bounded by the ellipse % + %2— = 1. Substituting
a

the right-hand side of (3.4) into (3.8) we obtain, after some elementary
calculations,

(1+v)
2

(310) T(t) = %E7(t)Io+ To / J(t— Piqlrydr

(1+v)3 (1 +v)

IO/I\ (t—1)3(r)dr + I /K(t — 1)y(7)6%(7) dr,
0

where

(3.11) Ty // daly = mah,
R
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and

(3.12) Ilzéf [(g—‘;+z)2+ (g_f_ )2] dzdy = UTZ?ZT)

Substituting the right-hand sides of (3.6) and (3.7) into (3.9), we obtain,
after elementary transformations,

(3.13)  M(t) =Go(t)I, + %Iz/J(t —7)0(r)dr

(1+u)2

+- Ig/Ix (t—1)3(r)dr + 12/1\ (t — )v%()6(7) dr,

where

_ [ _(9_30) 2 2] _ ma’h?
(3.14) I2_£/[<z3y—yam +(z° + y°) da:dy_———(a2+b2),

and

b [l ][
R

dyp : 4ra®b®
+ (8_:5 T ) J drdy = (a1 022

In [2], DARWISH obtained for polyurethane the following forms for the re-
laxation kernels:

(3.16) J(t) = —Amt™!

and

(3.17) K(t) = —Bmt™!,

where

(3.18) m=0.125, A =0.217x 104,
and

(3.19) B = 0.085 x 10®
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with units of kilogram-force per square centimeter-hour. Using the results
(3.10) through (3.19), we are able to rewrite (3.10) and (3.13) in the form

(3.20)

and
(3.21)

where

(3.22)

and
(3.23)

6(t) = a(1) + / m(t — 7)™ {B0(r) + 86°(7) + 08(r)y() } dr,
0

1(t) =

(o) + / m(t = 7" {Gy(r) + 1 (r) + €x(r)eX(r)  dr,

a(t) = M(1)/(GL),
A
/B = Ea
_ B
= m,
_ B(1+v)?
126G’

pu(t) = 27(t)/(Elo) = T(t)/(G(1 + v)lo),
_A(l+v) A
C - E - Q_G—;,
_ B(1+v)® B+ v)?
T 6E 126
BIL
4Gy’

£=

2G = 0.264 x 10°

in the units of kilogram-force per square centimeter. We note that (3.20)
and (3.21) is a nonlinear system of Volterra integral equations of the second

kind.

REMARK. The value for v for polyurethane is found below to be 0.389,
which yields a value for E of 0.367 x 10°.

4. THE SYSTEM OF INTEGRAL EQUATIONS

In this section we shall discuss the system of integral equations

6(t) = o(t) + /m(t {ﬂ&(r) + 663(7) + 08(7)y }dT
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and
10 = u(t) + [ m(t = 1) {er(r) + 1) + Ex(r)8(r)  dr,
0

and the numerical approximation of its solution (8(¢),v(t)), where m, 3, 6, o,
¢, n and £ are known positive constants, and where a(t) and p(t) are known
functions of time ¢. It is well known that there exists an interval 0 < t < k for
reasonable a(t) and y(t) such that the system of integral equations possesses
a unique solution pair (6(t),v(t)) which depends continuously upon the data
m, B3, 6, 0, (, n, € a(t) and p(t). We shall sketch the essential part of
the argument here, since we must use it in our discussion of the numerical
method.
Consider the mapping

(FO)(t) = oft) + / m(t — 7)™ {B8(r) + 86°(r) + 08(r)7*(r) } dr,
(4.1) °t
(FNW) = u(®)+ [m(t =)™ {er(r) + 1) + Ex(r)e¥(m)  ar,
0
of the continuous functions 6(t) and v(t) defined in the interval 0 < ¢ < k,

where k will be determined below. If a(t) and u(t) are continuous, then
there is a positive constant C such that

(4.2) la(t)] < C,
and
(4.3) lu(®)] < C,

for 0 <t < k. Then, for the continuous functions 6(¢) and y(t)on 0 < t < k,
which are bounded in absolute value by 2C, we see that (F8)(t) and (Fy)(t)
are equi-continuous for all such 6(¢) and y(¢) and that for 0 <t < k

(4.4) |(FO)(t)| < C + k™ {28C + 8(6 + 0)C°}
and
(4.5) (PO < C + k™ {20C +8(n +£)C?).

Selecting k so that

(4.6) k< min {{2ﬂ +8(6 + 9)02}‘1/"% ’ {QC +8(n+ £)C,z}—l/m} ,
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we find that for 0 <t < k,

|(F6)(?)| < 2C,
and

[(Fy)(1)] < 2C.

Thus, as the set of continuous function pairs (8(t),7y(t)) on 0 < t < k, satis-
fying |6(t)| < 2C and |y(t)| < 2C, is convex and closed under any uniform
vector norm, and F is a continuous operator on that set whose image is pre-
compact and contained in that set, from Schauder’s Fixed Point Theorem
[10] follows the existence of a fixed point (8(t),v(t)) = ((FO)(t),(Fv)(t)),
0<t<Lk.

Let

106(2), YDl = max {1611k, 1711},
where
Ixllk = sup |x(?)]-
0<t<k

Then, we see that

(4.7 ||(Fb1, Fy1) — (Fb2, Fy2)llk
< k™ max{{B +12(6 + 0)C?}, {¢+ 120+ )C?}}(61,m) = (62, 72)]lx
for 8y, 71, 62, and v, continuous for 0 < ¢ < k and bounded in absolute value
by 2C. Thus, if
. -1/m -1/m
@) k<min{{p+i26+00?) ", {c+ 120+ 907",

then F is a contraction, and by a continuation argument the fixed point
(8,7) = (F8, Fv) is unique over its interval of existence.

One point remains to be discussed in this section. For our application,
u(t) =0,0 <t <ty < k. In this case, it follows that, for all ¢ satisfying
0<t<ty <k,

(4.9) () < t™{¢ +4C*n + O}y (0)]-

From (4.6) it follows that there exists a positive number &, 0 < k < 1, such
that for 0 <t <t <k,

(4.10) ()] < &ly(2)l,

which implies that y(¢) = 0 for 0 <t < t; < k. We summarize this result in
the following statement.

LEMMA 1. If p(t) =0, 0<t<t; <k,theny(t)=0for0<t<t; <k.

P roof. See the discussion preceding the statement of the Lemma.
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5. NUMERICAL METHOD

We turn now to a numerical method of approximating 6(t) and ¥(1).
Let k be a given positive number that satisfies (4.6) and (4.8). Let N be
a positive integer. Set h = k/N and let t; = ih, i = 0,..., N, denote grid
points. At ¢; we see that

t;
CRVIR N r (s / m(t; = 7" {BO(r) + 86%(r) + oB(r)y*(r) } dr
' 0

ti

=a(t;) + zl: / m(t; — 1')’“_1 {ﬂB(T) 4 603(1') ¥ 90(7')72(1')} dr

3=14_,
= o(t;) + Z {(t = t;-0)™ = (i = ;)™} {B6(77) + 66(r7) + o8(r 7 (5)},
j=1

where we have employed the mean value theorem for integrals, which means
that ¢;_; < 77 <tj,j=1,...,i In a similar manner we obtain

(52) (1) = u(t) + YA~ o)™ - (6 - 1))

AT+ M) + (e},

where ¢;_; < LY, j=1, 04
Let

(5.3)  U;={B6(r) +66%(r) + o8(r1 17¥(})}
— {BO(tj-1) + 66%(t;1) + 08(t;-1)*(tj-1)}
and
(54) Vi = {Cr(m) + () + Ev(reA () )
~{ri=0) + 17420 + Ev(ti)R ()}

Since k satisfies (4.6) and (4.8), which implies that |(t)| < 2C and lv(2)] <
2C for 0 <t < k, we see that

Uil < {B+12(6 4 0)C?} w(8,7, 1),

(5.5)
Vil < {¢+ 120+ £)C*} (8,7, h),
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where
(5.6) w(8,7,h) = max {w(8, h), w(y,h)},
and
(5.7) w(x,h)= sup [x(m1)— x(m2)|
0<r <mp <k
Irp—m2|<h

is the modulus of continuity for a function x defined on 0 < t < k. Conse-
quently,

(L) = a(ts) + 3 4t — )™ = (ki — )™}
i=1 '
{BO(t1) + 86%(t; 1) + 86%(t5-1) + 00(t-1 )77 (ti-1) |
+ 2:: {(t: — tj-1)™ = (& = t;)™} U5,

5.8 g
(58) v(t:) = p(ti) + Z {(t: = tj-)™ — (8 = 5)"}

: {C'Y(tj—l) +73(tj-1) + E'r(t,-_l)(ﬂ(tj_l)}
% Z {(t: — tj—1)™ = (ti = t;)"}V;.
7=1

Now, we see that

(5.9)

S o {(ti —tjim)™ = (L - 4)"}U;
3=1

< k™ {B+12(8+ 0)C*}w(6,7,h) < w(6,7,h)

as k satisfies (4.6) and (4.8). Likewise, we find that

(5.10)

i: {(t = t-1)" = (L =)™}V

<k {C+12(n+ 6)C?pw(8,7,k) < (6,7, h).

Let u; denote the approximations to 6(t;), ¢ = 0,...N, and let v; denote the
approximations to ¥(¢;), ¢ = 0,...N, which are obtained from the system of
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recursion relations
uo = 6(0) = a(0),
Vo = 7(0) = :u(O)’

u; = a(t;) + 21: {(ti —tj—1)™ = (t; - )™}

j=1
(5.11) . {ﬂu]-_l + 6u3°-’_1 + QUj_l'UJ?_I} ;
= Alt) + 3 (= o) = (- 1))
j=
-{Cvj._l +nv?_1+vj_1u?_1}, t=1,...,N.
As (5.11) is an explicit scheme, (u;,v;), i =0, ..., N, is well defined. More-

over, as k satisfies (4.6) and (4.8), it can be shown as for (4.4) and (4.5)
that

(5.12) luil, |vi] < 2C, R B e
Let
(5.13) w; = 0(t;) — u;, 1=0,1,...,N,
and
(5.14) Z=vt)-v, i=0,1,...,N.
Then
|wo| = 0,
|| = 0,
(5.15)  |wl < w(e,v,h>+_il {(t = t50)™ = (6= "} 58, ) fu, ),
j=
] < (0,7, )+ (ki ~ ti-)”
j=1

—(ti—tj)m}lgj(077)_gj(u’v)l, 1= Ly oo 3V

where

(5.16) fi(0,7) = BO(t;—1) + 66°(t;_1) + 00(t;—1 )v(t;—1),
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and

(5.17) 9i(8,7) = (v(tj—1) + m°(tj—1) + &y(tj-1)0%(ti-1),

with the obvious substitutions for f;j(u,v) and g;(u,v). Using |6(t)| < 2C,
lv(t)| € 2C, |u;] < 2C and |v;| £ 2C,i=0,..., N, we see that

(5.18) 15i(0,7) = fi(w,0)| < k™ {8 +12(5 + 0)C?} l|(w, 2)||
and

(5.19) 19i(8,7) = 93w, 0)| < k™ {¢ +12(n + )C?} [|(w, 2)]]
where

(5.20) l(w, 2)|| = max {|wil, |z, i=0,...N}.

Since k satisfies (4.6) and (4.8), there exists a number £,0 < & < 1 such
that from (5.15), (5.18) and (5.19) it follows that

(5.21) ll(w, 2)|| < w(8,7,k)+ &l|(w, 2)||,
whence
(5.22) ll(w, 2)| < (1= k)" w(8,7, h).

Consequently, as h — 0., w(8,v,h) — 0 and ||(w,2)|| — 0 implying con-
vergence of the numerical approximation to (8,7). We conclude this section
with an estimate of w(6,v,h). It is easy to see that

(5:23)  w(6,7,h) < w(B,h) +w(y,h) < wla,h)+ [{26C +8(6 + 0)C%}
+{2¢C + 8(n+ o} {2nm + mht™ '} 4 w(p, b).

Namely, for smooth «(t) and p(t) the modulus of continuity for § and v
is 0(h™). For our application here with m = 0.125 we use double precision
arithmetic to obtain 3 to 4 significant digits.

6. THE NUMERICAL STUDY

When we consider the formulas (3.6) and (3.7) for ¢y, and 0., and equa-
tion (3.13) for 6(t), we see that the term

v)? /
———(1 +12) ) /Ix"(t — 1)0(t)yi(r)dr

0

6.1)  GO(t) + % [a-npmyan+
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in (3.6) and (3.7) can be replaced by the expression

t
Mt) 11 S
(6.2) T o LA Iz/K(t 7)6°(7) dr.
0
Thus the terms inside the brackets become
M(t ;
(63) 284wz, [ K-y ar,
2
0
where
(6.4 @ =i -1(58-0) + (%+a)
’ X\l = 4I, 4 |\ oz ¥ dy ’

Utilizing (2.7) and some elementary algebra we see that

a*(b? - 3y?) + b*(a? - 322)
3(a? + b2)? )

(6.5) x(hip) =

Formulas (6.3) through (6.5) were derived by DArRwIsH and CANNON in (1].
As observed there, when we consider the positive y-axis, x(0,y) = 0 for

b2(a? +b2)\ '/ \/5
(66) Y= (T < §b,

which means that, starting at y = 0 and moving up the y-axis, the absolute
value of the component of stress o,,(0, y, t) for the above nonlinear case will
climb above the absolute value of the corresponding component of linear

stress, and then fall below beyond y = ;b. Likewise, when we consider the

positive z-axis, x(0,y) = 0 occurs when

(6.7) z:\/%@a<a

or

(6.8) (%)2 P gk Y.

Thus, we see that for a < /2b, starting at = 0 and moving to the right
along the positive z-axis, the nonlinear stress component o,,(z,0,t) will
climb above and then fall below the corresponding component of linear
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stress. Next, when we consider the line y = bz/a, where 0 < z < a/\/ﬁ,
x(z,bz/a) = 0 when

(6.9) m:a/\/§<a/\/§.

Thus, for increasing z values beginning at z = 0, the absolute values of
the components o, and oy, of the nonlinear stress will climb above the
absolute values of the corresponding components of the linear stress and
then fall below beyond z = a/ V3.

When we consider formula (3.4) and 0., and Eq.(3.10) for (t), we see
that the term

e TICAY
(610) £20, 020 0/ st = ryp(ryar+ L 0/ K(t = ryy(r) dr

in expression (3.4) can be replaced by the term

t
I

(6.11) 4K L g / K(t = 1)y(r)6%(r) dr.

I 4 Iy J
Thus, the formula for the stress 0., becomes

T(t) ok 2
(612)  ouleyt)= o +day) [ K= ryy(n)(r)dr,
0
0

where

(6.13) d(z,y) = (1:”) [% = {(%%-FZ)Z i (Z—;’ - )2}] .

Application of Eq. (2.7) and some elementary algebra yields

1+ v [ b*(a? — 42?) + a?(b? — 49?)
4 (a? + b%)? ’

(6.14) d(zyy) =

When we consider the positive y-axis, d(0,y) = 0 for

b2
i (4+ —2>
N VIS SV N

(6.15) y = 1

Thus, starting at y = 0 and moving up the y-axis, the nonlinear compo-
nent o,, starts above the corresponding linear component, decreases and
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then falls below beyond y = b/+/2. When we consider the positive z-axis,
d(z,0) = 0 for

(6.16)

when
(6.17) a<V3b

which means that if @ < v/3b and z increases from z = 0 along the z-axis,
the nonlinear component o, of stress starts above the corresponding linear
component of stress, decreases, and then falls below near z = a. When we
consider the line y = bz/a, 0 < z < a/v/2, d(z,bz/a) = 0 for

(6.18) z=a/2<aV2.

Thus, as (z,bz/a) moves out from the origin toward the boundary of the
bar, the nonlinear component of stress o,, starts above the correspond-
ing linear component of stress, decreases and then falls below beyond the

oint [ —, = J.
Pt l\ais
We perform some numerical calculations to illustrate the behaviour of
the stress components and to compare the behaviour of the 6(¢) and ¥(t)

for the linear and nonlinear cases. In our calculations below we shall use the
value

(6.19) v =0.389

to complete the data set for polyurethane where we recall the definitions of
a(t), B, 8, o, u(t), ¢, n, £ given in (3.22), G given by (3.23), A and B given
by (3.18)—(3.19), Ip given by (3.11), I; given by (3.12), I, given by (3.14),
and I3 given by (3.15). Recall that we are interested in the behaviour when

the tension
0, 0<t<ty,
T(t) = =
() {T, fy £,

The selection of the numerical procedure was made with this case in mind
since the computations will yield y(¢;) = 0 as long as T(t;) = 0. We note
also that the solution (8(t),7(t)) exists and is unique, what can be shown
by applying the above results for 0 < ¢t < ¢; and then applying the above
results for ¢; < ¢. This will result in a jump for (¢) while 6() remains con-
tinuous. See CANNON [9] for the solution of similar problems with piecewise
continuous data.
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F1G. 2. 4 for torsion 50 kgf-cm and tension 500 kgf added at one hour; @ = 0.75 cm
and b = 0.5 cm.

We considered the case of a = 0.75 cm and b = 0.5 cm with an initial
constant torsion of 50 kg/cm and tension 500 kg added after one hour. We
calculated # and v up to k = 2 hours using N = 1000 and h = 0.002. The
behaviour of # is shown in Fig. 2. Note the influence of the tension applied
at one hour for the nonlinear case. The behaviour of v is shown in Fig. 3.
Note that v is identically zero for the first hour and jumps at ¢ = 1 with
the application of the tension. Note that v for the nonlinear case climbs
above 7 for the corresponding linear case. In Fig. 4, we display the graph of
the normal stress 0,,(0,y,2) as a function of y to illustrate the effect of the
function d(z,y) in (6.13). Note that the normal stress o,, for the nonlinear
case starts above the o, for the corresponding linear case at y = 0, then it
decreases, and falls below the linear case as y tends to b. In Fig. 5, we display
the effect of the applied tension on the shearing stress Uyz(a/\/i, b/\/2,t) as
a function of time. We note that as a function of time, Uyz(a/\/i, b/\/2,1) for
the nonlinear case drops away from the linear case value. Note the impact
of the application of tension at ¢ = 1 hour which changes abruptly the
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FIG. 4. Stress 0. at two hours on the y-axis for torsion 50 kgf-cm and tension 500 kgf
added at one hour; ¢ = 0.75 cm and b = 0.5 cm.
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FIG. 5. Stress oy, at the point (a/v/2,b/V/2) as a function of time for torsion 50 kgf-cm
and tension 500 kgf added at one hour; ¢ = 0.75 cm and b = 0.5 cm.

1

derivative of the nonlinear a,,(a/v/2,b/v/2,t) near t = 1*. The curve rapidly
settles down to a slightly larger rate of decrease over the nonlinear oy, with
no application of tension. Note the similar behaviour of the shearing stress
0:(0,b,1) displayed in Fig.6.

To summarize, we note that

1. The relative angle of twist function 6(t) increases more rapidly when
torsion acts together with tension than when torsion acts alone.

2. We note that for constant tension, the relative extension function y(t)
increases with time.

3. From the system of Egs. (3.20) and (3.21), it is clear that for a fixed
torsion couple, the relative extension ¥(t) increases as the constant value of
tension T increases.

4. The results 1, 2, and 3 above are not evident in the linear theory.
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FIG. 6. Stress 0, at the point (0,b) as a function of time for torsion 50 kgf-cm and
tension 500 kgf added at one hour; @ = 0.75 cm and b = 0.5 cm.
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