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STATIONARY AND OSCILLATORY FLOW OF THE REINER-RIVLIN
FLUID BETWEEN TWO EXTERNAL ROLLERS

M. MIKSA (KIELCE)

In a certain class of thin-layer viscoelastic flows, the extensional parts of deformation
are much greater than the shearing ones. For such flows we may apply the model of
the Reiner-Rivlin fluid [1]. This concept is applied to the stationary and oscillatory flow
between two rotating external cylinders. The approximate solutions are presented and
possible effects of the extensional viscosity function on the loads and friction forces are
discussed.

1. INTRODUCTION

The problem of viscoelastic flows between two rotating rollers results
from many practical applications to various lubricating systems, e.g. milling,
rolling, calendering, etc. The theoretical analysis has been presented by
many authors, e.g. compare the book by A. CAMERON [2], but mainly for
Newtonian or simple inelastic fluids. The number of publications in which
the viscoelastic model of fluid is used is relatively small. In the present paper
the problem of flow between two rotating cylinders is described by the consti-
tutive equations of the Reiner - Rivlin fluid [1]. The approximate solutions of
nonlinear equations of motion are obtained for slightly non-Newtonian fluids
by means of the perturbation method for weak variability of the extensional
viscosity function (cf. [1, 3]).

In this paper, being a direct development of our previous analysis (cf.
[4, 5]), we consider the concept of steady and oscillatory flow between two
cylinders. In the case of harmonic torsional vibrations superimposed on the
steady motion of rollers we assume that the amplitudes and frequencies of
vibrations are small, thus enabling rejection of inertia terms in the equation
of motion.
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2. BASIC EQUATIONS FOR FLOW OF THE REINER-RIVLIN FLUID

Consider the plane steady flows in which the Cartesian velocity compo-
nents can be expressed in the following form:

*

(2.1) u' =gz +u(z,y), v"=-—qy+o(z,y),
where ¢ is some constant extension gradient, u, v denote the additional
velocity components along the axis z and y, respectively.

We assume that the flow considered is realized in a thin layer charac-
terised by the following small parameter

h
(2.2) €= TO <1,
where L, ho denote some characteristic lengths (in the z and y direction,
respectively).

We apply the constitutive equations of the Reiner- Rivlin fluid in the
form perturbed by an additional velocity gradient (cf. equations in [3]). In
the case of plane flows these equations can be written as

. d
(2.3) T = ~pL+ BA1+ BAG + A,
where A is the Rivlin- Ericksen kinematic tensor, 3 — the material func-
tion, p — pressure and the primes denote increments of the corresponding

quantities. In particular, we have

@) r=3(2-2) e (2 (@) d (o’
' 1=3\5z Oy 4q |\ Oz Oy 8¢ \dy Ox) °

The above equations may be valid for the flow between two rollers under
the assumptions that the extensional velocity gradients are more meaningful
as compared with the shearing gradients (for small vorticity components or
relatively high Deborah numbers, cf. [6]).

The procedure similar to that developed in [3] leads to the following,
simplified equations of dynamic equilibrium:

dp* 1dB 9 (8u)2 9%u op*
it dz 2 dq 0z \dy ﬂ3y2 : oy O
or, after eliminating the modified pressure p*, we have alternatively
0 [1dB 0 [ou\? 0%u
2: Pl Peetiear P £ ied Mt 1)
(26) 9y [2 dq 9z (a;;) P ="

The above equation is a third-order nonlinear partial differential equation,
the exact solution of which is unknown and therefore we seek an approximate
solution.
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3. FLow BETWEEN ROLLERS. THE STEADY CASE

3.1. Geometry

The geometry of rotating rollers is shown in Fig. 1. The rollers of the same
radius R rotate with the constant tangential velocity V' and the smallest
distance between them is 2hg. According to A. CAMERON [2], we have an
approximate parabolic dependence describing the distance between cylinders
in the form:

2

(3.1) h = ho (1 + ‘%) . L=1+/2hoR,
valid for small ratios z/L.

?

2h

F1G. 1. Schematic diagram of the rollers geometry.

3.2. Boundary conditions

The kinematic boundary conditions result from the condition of fluid
adherence to the surfaces of rollers. This leads to

(3.2) w*=-V  for y==h

At the exit cross-section, where the fluid leaves the rollers, a uniform
velocity distribution satisfies the condition

(3.3) u*= -V =const for z=-—=z..



88 M. MIKSA

Introducing dimensionless coordinates £ = z/l and A = z./l, we obtain the
following expressions for h and h,:

(3.4) h=ho(1+€),  he=ho(1+2?).

We asume moreover that the modified pressure p* satisfies the Reynolds-
type boundary conditions (cf. [2])

*

i 4
(3.6) BR0r  oder
=0, for = — 0.

s for z = -2,

3.3. The case of Newlonian fluid

For Newtonian fluids we substitute 8 = 8o = const into the nonlinear
equation of motion (2.6). The solution of this equation is (cf. [2]):

. 3 €2 )2 y?
(36) uN———V[l———?—1+£2 (l_ﬁ ’
for velocity field, and
« _ 3B _R_[ % 2
PN = 10\ 2o ITF € (1+7)

(3.7) + (3,\2 - 1) (1 -ff"’ + arc tgé + 02)] ;

& = —g (332-1),  A=047513

for pressure.

3.4. The case of flow of the Reiner-Rivlin fluid

We shall seek an approximate distribution of u* in the form:

(3.8) u* = ul, + ku,
where

. 1dp
(3.9) uy, = qr +uy — qz, k:qﬁd—q-.

The form of Eq. (3.9) distinguishes the extension term gz. We assume more-
over that k < 1. Substituting Eq. (3.9) into Eq. (3.8) we obtain

(3.10) v =gz +u(z,y), w(@,y)=uy—qr+ku,
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and the equation of motion in the form:

0 [11, 9 (9u\? 0%
. =g [T
(G4 dy [2(1 oz (ay) s 0y? ] g
Assuming that the orders of derivatives du, /0y, Ou; /0y are identical, and
&Pu,
b ] ayS

equation of motion (we have neglected the terms of orders 0(k) and 0(k?)):

o [11, 0 [0u,)? 0%y
A —k— —N) k——1 =0.
(3.43) dy [2 q Oz ( dy ¥ 0y?
We introduce the following new quantities: the volumetric rates @ n and
Q* for the Newtonian and real fluid, respectively, according to definitions:

g
taking into account that a—y(qx) =0 = 0, we arrive at the following

+h +h
(3.13) Qn= /uN dy, QN = /u* dy.
—h —h

For Newtonian fluids we have (cf. [1]):

(3.14) Qn =2Vho(1+ %), X =0.47513.

Similarly for real fluids we can write

(3.15) Q" =2Vho (1+2%), Q,=2Vhe (X - M), Qr=Q -Qn.

After performing suitable computations we obtain the solution of Eq.
(3.12) in the form:

1 3 1 6
(3.16) uw=gqztuy+k [—Eqm + BFRy' - (Z mQr .y —Bh2F1) y?
e khQ' “Bh4Fl]
where
31 V3 264 — €2 (1 +522) + (A2 + 3)9)
317) B==--—, F(f)= .
31 2 ¢ Lhi 1) =¢ (14 €2)

The kinematic boundary conditions

(3.18) =0 o for oypmdh,
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resulting from Eq. (3.2) were applied in the relation (3.16). It is noteworthy
that in Eq.(3.16) @, is an unknown function to be determined from the
pressure boundary condition.

In order to find the pressure distribution, we use the first relation of
the two equations of motion (2.5). Substituting into them the u(z,y) field
given by Eq.(3.10) and retaining, similarly as in Eq.(3.12), only the terms
of higher order of magnitude, we obtain the relation

* b 2 2
(3.19) .4 —ldﬂi(au—") +ﬂ((9 L “").

dz ~ 2 dq 9z \ Oy dy? dy?

Introducing into the above equation the known distributions of velocity
u(z,y) (cf. Egs.(3.16), (3.17)) we have (putting ¢ = V/L):

(3.20)

dp* 3BV [3 +¢2 -2\
dz =~ h} (1+€2)3

+1.2ke >

€1 — €2 (1+5X%) + A\ + 3,\4]
(1+€)° '
After integration we arrive at the following solutions:

. LBV [36(14+X%) 3 £ T
(3.21) p = h2 {4(1+£2)2“§(1+3/\2) [(1+£2)+arctg§—-2‘]

_& @ udy 3o ot Lkl
+k [1.8(1 oy T e F O 62)“] } :

(3.22) A EX (@-=10),
satisfying the Reynolds-type boundary conditions (3.5).
04
Prewi
P
pAw /— v
03 e o W
N
pADD
% { \
o /
%5 0 as T,

F1G. 2. Pressure distribution in the nip region between rollers.



STATIONARY AND OSCILLATORY FLOW OF THE REINER-RIVLIN FLUID 91

This relation can be written as a sum of Newtonian and non-Newtonian
terms in the form

A LﬂV
(3.23) p = (pNEWT + kpapp )

where pyowrsr Pabp obv1ously result from Eq.(3.21). The term (LAV/h3)-
Pyewr after formal transformation is identical with the well-known Newto-
nian distribution (cf. [2]). The above quantities are shown in Fig. 2.

3.5. Load and friction forces

Integration of the thrust from exit (§ = —A*) to infinity

oo

(3.24) F* = / P (§)d€

—\*

leads to the total force (load capacity) in the form:

" L Vv
(3.25) F ﬂ /pNEWT dé +k / Papp 4 |
e
or
" LﬂV
(3.26) F 3~ (Fygwr + *F,pp )

where the distributions of pressure pygwr, Papp are described by Egs. (3.21),
(3.23) and Fypyr» Fupp Obviously result from Eq. (3.26).

We define the dimensionless parameter Iy, being the measure of relative
increase of the load capacity caused by the derivative d3/dq as follows:

(3.27) K= Fygwr + kF,pp =14k Fypp ‘
Fypwr Fygwr

After integration of the expression (3.25) we can calculate the parameter
K. The diagram illustrating the variability of K, as a function of & is
shown in Fig. 3.

In a similar way we introduce the definition of total friction force in the
form:

(3.28) = [T .
=3

y==%h
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F1G. 3. Relative variability of the load capacity and the friction force.

According to [3] the shear stress can be expressed as

i Ju

Substituting into Eq. (3.28) the relationships (3.9) and (3.29), the total fric-
tion force T* can be written as a sum of two integrals

(3.30) / ﬂa"N L

d k——
y==xh £+~/ﬂ ay

where the velocity distribution u, is given by Eq.(3.6) [u% = u,] and the
velocity field u; results from Egs. (3.10), (3.16), (3.17).
After suitable calculations we arrive at

dg,
yth

(3.31) = _3ﬁ ( NewT T ,"TADD)
where
& 3 62 /\2
(3'32) TNEWT - (1+€2 2 E’
4 00 264_62 (1+5/\*2) + (/\*2 +3)\*2)
(333)  Typp = —3_{. ¢ o de.
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The dimensionless parameter K, describing the variability of friction force
caused by the extensional viscosity derivative with respect to the extension
gradient, is expressed in the form

(3.34) Ky = Duwr ¥ oo _ gy kaop

NEWT NEWT

The variability of K7 as a function of the coefficient k is shown in Fig. 3.

4. FLOW BETWEEN ROLLERS. DYNAMIC CASE

4.1. Oscillatory boundary conditions

We assume that the additional small-amplitude harmonic vibrations with
the frequency w are superimposed on a steady motion of cylinders. The vi-
brations can result from the oscillatory machine motion. We assume, more-
over, that the fluid fully adhers to the surfaces of rollers. It leads to condi-
tions:

(4.1) ul, = =V + ¢(=V)expiwt  for y=th,

where V denotes the tangential velocity on the surface of cylinders in the
case of steady motion, subscript w indicates the vibrating motion, € is a
small parameter characterizing the amplitude of vibrations.

At the cross-section, where the fluid leaves the rollers, a uniform velocity
distribution satisfies the condition:

(4.2) ul = -V +e(—V)expiwt  for z=-—z..
For modified pressure p* we superimpose the Reynolds-type boundary
conditions, namely:
. dpi,
(4.3) pu} gl O? dz
pl, =0 for z — oo.

=0 for z=-z,

4.2. The case of Newtonian fluid

We consider the flow of Newtonian fluid between rotating cylinders in
the case of harmonic vibrations. Similarly to the previous section, the same
kinematic boundary conditions are satisfied:

(4.4) u? = =V +€(=V)expiwt for - y= +h,

where index N indicates Newtonian quantities.
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In the Newtonian case (3 = const) a solution can be obtained from
Eq.(2.10). After suitable computations we arrive at following relation
(cf. [7]):

(4.5) U = uy + €uy exp iwt,

where the velocity distribution u, is given by Eq.(3.6).

4.3. The case of flow of the Reiner-Rivlin fluid

In an oscillatory motion of rollers we seek the velocity field u;, in the
following form:

(4.6) uy, = qz + uy, — qz + kuy
or, after introducing the obvious notation, in the form:
(4.7) ul, = q¢ + u,(z,y).

The unknown additional velocity u{ consists of two parts: the first u; de-
scribing a steady motion of cylinders and the second u; exp wt depending
on additional vibrations. Applying these assumptions we have

(4.8) uy = uy + €uy exp iwt,

where u; is the sought amplitude of vibrations. Substituting Eq. (4.8) into
Eq. (4.6) we arrive at

(4.9) ul, ='qT + uy — qT + €uy exp iwt + k (uy4€l; exp iwt).
Comparing Eqs. (4.7) and (4.9), we obtain
(4.10) uy(Z,y) = uy — qT + €uy exp iwt + k (ug + Ty exp iwt).

Looking for the unknown velocity distribution %; we substitute Eq. (4.10)
into Eq.(2.6) (instead of u(z,y) we substitute u,(z,y)). In this way, we
obtain the following equation of motion:

1k
(4.11) {5 . [u2 +€efu?, , €Xp 2iwt + k*uf , + k2 exp 2iwt

Ny
+2€“?v,,, expiwt + 2kuy uyy + 2keuy Uy y exp iwt
+2keu, ,uy,y exp wi + 2ke2uN,yT[1'y exp 2iwt
+2k%euy 0y 4 eXp iwt] T, Teuy,, exp wt

|[+kuy yy + k€lq yy exp iwt],y =1,
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where partial differentiation is performed with respect to the variables ap-
pearing after the comma.

Simplifying the above equation we shall take into account the following
relations and assumptions:

1) the partial derivatives of u, u1, @ are of the same orders of magni-
tude,

2)e<1l, k<1, 0(c)=0(k), O(ke)= 0(e?) = 0(k?),

3) Uy yuuy = 0 (cf. (3.6)),

4) lexpiwt| <1, |exp2iwt| < 1.

Omitting in Eq. (4.11) the terms of order of magnitude smaller than 0(¢)
and subtracting from this equation the statical relation

1k
(412) [5 -q— (u2 i + k2u1,y + 2kuN'yu1,y) 4 4+ k’ul'yy] =0,

N,
Y

we arrive at the following expression:

1k
4.13 = 22¢(uy . )2 expiwt + kewy yyexpiwt| =0

2 q N,y /,& Yy

Y
or
1
(414) [+ 5] =0
Y

The above equation is solved with the boundary conditions (4.1). Using
these conditions in Eq.(4.9) we obtain

(415) |-V +e(-V)expiwt
= [qz + uy — gz + cuy exp iwt + k (u1 + €Uy exp M)]I ™.
y:

Therefore the kinematic boundary conditions, in view of u} = =V, u1 =0
for y = +£h (cf. (3.11)), are simplified to the relations

(4.16) =0, . for. y= th.

After performing the suitable calculations we come to the following form
of the velocity distribution u:

(4.17) u' = qz + uy — gz + €uy exp iwt + k (w1 + 2u; expiwt).

The velocity distribution presented in Eq.(4.17) satisfies not only the
kinematic boundary conditions but also the first condition (4.3) for the pres-
sure p, as well.
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In place of the velocity field u(z,y) in Eq. (2.5) we substitute the dynamic
velocity distribution u,(z,y) described by relations (4.7) and (4.9). In such
a way we obtain

(4.18) % = % % (ufvy + ezufv,y exp 2iwt + k%uy , + k¥, exp iwt
+2€ufv'y exp iwt + 2kuy  uyy + 2keuy Uy, exp iwt

+2keuy  uyy expiwt + 2Is'(2uN.y Uy ,y exp 21wt

+2k2eu1,yﬁ1‘y exp iwt) 3 + ﬂui’,y + Beuy ,, exp iwt

-},-ﬂkul,yy + Beky yy exp iwt.

Bearing in mind the problem of steady motion of the cylinders we deter-
mine the analogous equation for the pressure p}, in the following form:

dp: 1dp
(419) =g (s + kung + 2hunguy,) 4Bl + Bkt .

For further calculations we treat the dynamic modified pressure p, as
a sum of two terms, namely: the statical part Py and the dynamical part

Pfyn- This leads to the expression
(4.20) PL = PST + €ph,, €Xp iwt.

Subtracting Eq. (4.19) from Eq. (4.18) and disregarding the terms of order
0(€?), 0(€®), 0(e*) as compared to the terms of order 0(¢), we obtain the
expression for derivative dp?  /dz

dp?, .
(4.21) % = [Ekﬂe(uw )2 + Beuy ,, + kefuy 4y | exp iwt.

After suitable calculations we arrive at the final solution

£ LBV )
(4.22) P, = h_(z) [pNEWT T kpADD] + eexp wt [pNEWT + 2kPADD] .

The pressure distribution p} satisfies the Reynolds-type boudary condition.
Comparing the Egs. (4.20) and (4.22) we find that

N LBV
(4.23) Psr. = —};(2)—' [pNEWT i kpADD] )

. LBV
(4.24) Ppoyn = —h(z)_ [pNEWT ;2 2kpADD] .
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We define the dimensionless parameter K being the measure of relative
increase of the pressure caused by the additional harmonic vibrations of the
rollers in the form:

. 1+ Qk’i&P_Q_
(4.25) KB o Powr
j o 1+ kPapp
Ppyn

The diagrams illustrating the variability of K as a function of the variable
£ for two values of the coefficient k are shown in Fig. 4.

15
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FIG. 4. Relative increase of pressure caused by harmonic vibrations.

5. CONCLUSIONS

1. The variability of extensional viscosity function df/dq essentialy in-
fluences the pressure and velocity distribution in the nip flow between the
rotating cylinders.

2. The z-coordinate describing the point of uniform velocity distribution
for non-Newtonian fluid is the same as in the Newtonian case, i.e. A\* = A =
0.47513 and does not depend on variability of the viscosity function f.

3. The additional term of the modified pressure p,,, caused by the
derivative df3/dq effects increases the whole pressure p*. The significant value
of the additional p,,, is reached in the neighbourhood of the smallest dis-
tance between rollers (cf. Fig. 2).

4. All the results depend on extensional viscosity function and its vari-
ability with increasing extension rates. The ratio of the extensional viscosity
derivative with respect to the extension gradient to the extensional viscosity



98 M. MIKSA

itself, may be defined as the nonlinearity coefficient. In a steady case the load
capacity of the rollers described by parameter Ay, linearly increases with in-
creasing nonlinearity coefficient, whereas the friction force characterized by
parameter K7 linearly decreases (cf. Fig. 3).

5. The additional vibrations superimposed on a steady motion of cylin-
ders not only change the extensional viscosity effect on the pressure and
velocity distribution, but also contribute to further changes of the velocity
field and to the enhancement of pressure in comparison with the case of
steady motion of rollers. The pressure increment which is described by the
parameter K is greater for higher values of the nonlinearity coefficient and
decreases with the increasing coordinate £.
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