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THERMAL INSTABILITY OF AN OLDROYDIAN VISCOELASTIC
FLUID IN POROUS MEDIUM

R.C. SHARMA and P. KUMAR (SHIMLA)

The thermal instability of an Oldroydian viscoelastic fluid in porous medium is con-
sidered. Following the linearized stability theory and normal mode analysis, the dispersion
relation is obtained. For stationary convection, the medium permeability is found to have
a destabilizing effect. A sufficient condition for non-existence of overstability is obtained.
The thermal instability of a rotating Oldroydian viscolastic fluid in porous medium is
also studied wherein the rotation is found to have a stabilizing effect on the stationary
convection and the sufficient conditions for non-existence of overstability are obtained.

1. INTRODUCTION

The problem of thermal convection in a horizontal layer of fluid has been
discussed in detail by CHANDRASEKHAR [1]. BHATIA and SEINER [2] have
studied the thermal instability of a Maxwell fluid in the presence of rota-
tion and have found that the rotation has a destabilizing influence, for a
certain numerical range, in contrast to the stabilizing effect on Newtonian
fluid. ELTAYEB [3] considered the convective instability in a rapidly rotating
Oldroydian fluid. ToMs and STRAWBRIDGE [4] have demonstrated exper-
imentally that a dilute solution of methyl methacrylate in n-butyl acetate
is in a good agreement with the theoretical model of Oldroyd fluid. HAMA-
BATA and NAMIKAWA [5] have studied the propagation of thermoconvective
waves in Oldroyd fluid.

The medium has been considered to be non-porous in all the above stud-
ies. LAPwoOD [6] has studied the stability of convective flow in hydrodynam-
ics in a porous medium using Rayleigh’s procedure. WOODING [7] has con-
sidered the Rayleigh instability of a thermal boundary layer in flow through
porous medium. The gross effect, when the fluid slowly percolates through
the pores of the rock, is represented by the well known Darcy’s law.

The present paper deals which the thermal instability of an Oldroydian
viscoelastic fluid in porous medium. The effect of rotation on the above
problem is also considered. The study may be relevant to the stability of



100 R.C. SHARMA and P. KUMAR

some polymer solutions, such as a dilute solution of methyl methacrylate in
n-butyl acetate and to the stability of Maxwellian viscoelastic fluids. The
problem proves also to be useful in chemical technology and geophysics.

2. PERTURBATION EQUATIONS

Consider an infinite layer of Oldroydian viscoelastic fluid confined be-
tween the planes 2 = 0 and z = d in porous medium of porosity ¢ and
permeability ki, acted on by gravity force g(0,0,—g). This layer is heated
from below and the surfaces z = 0 and = d are maintained at constant
temperature Ty and Ty (77 > Tp), so that a uniform temperature gradient
is maintained. The fluid is described by the constitutive relations

Tij = —pbij + 7ij,

(2.1) (1 + A%) Tij = 2u (1 + /\0-(%) €is s
oL (8_ N 9_)
1721 fe s 0z )’
where T;;, 7i;, €ij, 4, A, Ao (< A) denote the normal stress tensor, shear stress
tensor, rate-of-strain tensor, viscosity, stress relaxation time, and strain re-
tardation time, respectively. p is the isotropic pressure, §;; is the Kronecker
delta, d/dt is the mobile operator, while u; and z; are velocity and position
vectors, respectively. Relations of the type (2.1) were first proposed by Jef-
freys for Earth and later studied by OLDROYD [8]. OLDROYD [8] also shows
that many rheological equations of state, of general validity, reduce to (2.1)
when linearized. If Ao = 0, the fluid is Maxwellian, while for Ay # 0 we shall
refer to the fluid as Oldroydian. A = Ao = 0 gives a Newtonian viscous fluid.
As a consequnce of Brinkman’s equation, the resistance term —(u/k;)u
will also occur with the usual viscous term in the equations of motion. Here
u denotes the filtration velocity of the fluid.

The equations of motion and continuity for the Oldroydian viscoelastic
fluid, following the Boussinesq approximation, are

(2.2) % (1 + A%) [% + -i—(u-V)] "

" 0 1 bo d\ [ve, Vv
= (1eag) [ ver s (i )|+ (14 203) [0 - £

(2.3) Veu=0.
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The equation of state
(2.4) 0=00[l - (T -To)],

contains a thermal coefficient of expansion a, and go, Tp are the density
and the temperature at the surface z = 0. The equation of heat conduction
(JosepH [9]) is

(2.5) [eoce + oscs(1 —€)] %—T; + ooc(u-V)T = kV?T,

where g, ¢; 05, ¢, denote the density and heat capacity of the fluid and the
solid matrix, respectively. k is the thermal conductivity. Equation (2.5) can
be rewritten as

oT
(2.6) E—-+ (u-V)T = ¢V?T,

0sCs

where F = ¢+ (1 — e) . The kinematic viscosity v(= p/po) and the ther-

mal diffusivity (= k/goc) are assumed to be constants.
The steady solution is

(2.7) u = (0,0,0), T =T, - Bz, 0 = oo(l+ afz),

where 3(= |dT'/dz|) is the magnitude of the uniform temperature gradient.

Let 6p, 6p, 0, and v(u,v,w) denote respectively the perturbations in
density p, pressure p, temperature T' and velocity u (initially zero). The
change in density §p, caused by the perturbation 6 in temperature, is given
by

0+ 60 =po[l — a(T + 0 —Tp)] = 0 — oob,

i.e.
(2.8) do = —apol .

Then the linearized perturbation equations for the Oldroydian viscoelas-
tic fluid flow through porous medium are

1 0\ ov 0 1

v g g 8
+; <1+/\0a) [V —k—l]v
(2.10) Vv =0,

and

(2.11) (E—a— - §V2) 6 =pw.
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The fluid is confined between the planes z = 0 and 2z = d maintained at
constant temperatures. Since no perturbation in temperature is allowed and
since normal component of the velocity must vanish on these surfaces, we
have

(2.12) w =0, 6=0 at z2=0 and 2z=d.

Here we consider both the boundaries to be free. The case of two free
boundaries is slightly artificial, except in stellar atmospheres (SPIEGEL [10])
and in certain geophysical situations where it is most appropriate. low-
ever, the case of two free boundaries allows us to obtain analytical solution
without affecting the essential features of the problem. The vanishing of
tangential stresses at free surfaces implies

0w
(2.13) 52 = 0 at z2=0 and 2= 4.
Eliminating 6p between the three component equations of (2.9) and using
(2.10), we obtain

(2.14) (1 +A— s ) [1v2@ - gavfo] = g (1 3 ,\Og) (v2 ~ i)vzw,

ot ot ot k1
where
R T RTI T
g O g WL 2 A e
Vit 92 dy? i R 922 dy? T

3. DISPERSION RELATION AND DISCUSSION

Decompose the disturbances into normal modes and assume that the
perturbed quantities are of the form

(3.1) [w, 8] = [W(z2),0(2)]exp(ikzz + ikyy + nt),

where k;, k, are the wave numbers along z- and y-directions, respectively,
k = (k2 4 k2)!/2 is the resultant wave number and n is a complex constant.

The non-dimensional form of Egs.(2.14) and (2.11), with the help of
expression (3.1), becomes

(3.2)  (1+Fo)|o(D? - o)W + 22%¢ gad c 2@]

=(14 F*0) (1)2 —-a?- %) (D? - a®)W,
l
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and

2

(3.3) (D? - a® - Ep10)@ = —ﬁg—l'V,

& gz
d’d’d
units of length d and D = d/dz’'. For convenience, the dashes are dropped
hereafter. Also we have put a = kd, 0 = nd*/v, ' = Av/d? and F* =
Aov/d?. py = v/€ is the Prandt] number and P; = kq/d? is the dimensionless
medium permeability.

Eliminating © between Egs. (3.2) and (3.3), we get

where we have introduced new coordinates (z’,y’,2') = ( ) in new

(34) (14 Fo) [o(D? - a®)(D* - * - Epyo) - Ra*| W
= (1 + Fpo) (1)2 ~a?- %) (D? - a*)(D? - a® — Epy0)W,

gaPBdie

where R = is the modified Rayleigh number for porous medium.

v
The boundary conditions (2.12) and (2.13) transform to
(35) W=0, D*W=0 :0z0 ~af i zr=0 and z=1.

Using (3.5), it can be shown that all the even order derivatives of W must
vanish for z = 0 and z = 1, and hence the proper solution of Eq.(3.4)
characterizing the lowest mode is

(3.6) W = Asinrz,

where A is a constant. Subsituting (3.6) in Eq. (3.4), we obtain the dispersion
relation

io1(l+z)(1+ 2+ ioyp E)

(3.7) R, = .
< € % . *
(14 ) (1 +z+ F) (14 z+ioyp E)(1+ in°F*ay)
y z(1+ir?Foy) ’
where we have put
a? R ) o
$:-7l'_2, R1=F7 ZUIZF, P=7l'2.P],
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4. THE STATIONARY CONVECTION

For stationary convection, o = 0 and Eq.(3.7) reduces to

(1+x)2(1+x+%)

(4.1) Ry =

Z

Thus for stationary convection, the stress relaxation time parameter F and
the strain retardation time parameter F* vanish with ¢ and the Oldroydian
fluid behaves like an ordinary Newtonian fluid. Equation (4.1) yields

dR, _(1 +.’L‘)26

(42) P~ zp?

which is always negative meaning thereby that permeability of the medium
has a destabilizing effect on the viscoelastic Oldroydian fluid, for stationary
convection.

The dispersion relation (4.1) is analysed numerically. In Fig.1, R; is
plotted against z for ¢ = 0.5 and P = 10, 100. The destabilizing role of the
medium permeability is clear from the decrease of Rayleigh number with
the increase in permeability parameter P.

25

R,

2 v

P=100

P=10.
5

70/

0

10 5 20 25 x 30
F1G. 1. The variation of Rayleigh number R; with z for e = 0.5, P = 10 and 100.
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5. THE CASE OF OVERSTABILITY

Here we examine the possibility of whether instability may occur as over-
stability. Since for overstability we wish to determine the critical Rayleigh
number for the onset of instability via a state of pure oscillations, it suffices
to find the condition under which Eq.(3.7) will admit solutions with real
values of ;. Puting b = 1 + 2 and equating real and imaginary parts of
Eq.(3.7), we get

1) R L- b(b+ —f;)

b
2 *
—o? <Ep1 +72Fb+ mEF*prb + ﬂg”—‘g) ,
and
b— 2 x
(5.2) Rl—b—17f2F =b (1 +Epi+ = e + 7I‘2F*b)+EL18'—7rZEFp10‘f.

Eliminating R; between Egs. (5.1) and (5.2), we obtain

P P

i F% + T EFF*p, (b o %)

sl | e b [1—71'217‘ (b+ 5)] + <b+ i) (,,1E+,F2F,.b).

Since o is real in case of overstability, o? should always be positive. Equation
(5.3) shows that this is clearly impossible, i.e. o? is always negative if

2 £
1>7 F(b+P>’

which implies that

1 £ 2
4 < — - ———.
(b:4) %W b B
Thus if
] e w2
2 poayiiy L e
S Sl te 1

overstability is not possible. Inequality (5.4) is, therefore, the sufficient con-
dition for the non-existence of overstability.
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6. ROTATING CONFIGURATION

Here we consider the same problem as that described above, except that
the system is in a state of uniform rotation (0,0, £2). The linearized per-
turbation equation are

0\ ov 0 do

61 1 (1eag) 5= (14 ’50) [_Q—W +g7]
2 0 I\ [vee v
4= <1+/\6t)(vxﬂ)+(l+/\ua) [EV —-I;]V,
(6.2) V.v =0,
0 2 =

(6.3) (Fz)—t v ) 9 = fuw.
Equations (6.1) and (6.2), using (2.8), yield

(6.4) (1 + A a) [Qv% gaeV3i0 4202

) Lo )

0z

17} €
R V. —
=v (14 20) (V- 1) 77
and

(6.5) [(1 + ,\gt) gt v (1 - /\0%) (V2 = :—1>] ¢

where
_0v  Ou
¢= 95 By
denotes the z-component of vorticity.
Let us decompose the disturbances into normal modes and assume that

the perturbed quantities are of the form
(66)  [w,6,] = [W(2),0(2), Z(=)] exp(iksz + kyy + nt),

where n, kz, ky have usual meanings.
Using expression (6.6), Eqs. (6.4) and (6.5) in nondimensional form be-
come

(6.7 (14 Fo) |o(D?* - a®>)W +

2 3
ga(l € 20 + 2.(121d Dz]

= (1+ F0) (D' - a - £ ) (D} = W,
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and

20d

v

<

(6.8) [a(l + Fo)— (14 F*o) (1)2 Lighe —)] 7 = 2201 4 Fo)DW.

P
Eliminating © and Z between Eqs. (6.7), (6.8) and (3.3), we obtain

\12

(6.9)  (D*-a®)(D*-a’~Epo) [a(l +Fo)—(1+F*0) (D2 e %)] W
1

+Ta(1+ Fo)*(D? - a® — Epio)D*W

= Ra*(1 + Fo) [0(1 + Fo)— (14 F~o) (D2 -a? - %)] W,

2d4

where Ty = is the Taylor number.

v3
The boundary conditions (3.5) remain the same here for free boundaries
and the proper solution of Eq. (6.9) characterizing the lowest mode is

(6.10) W = Asinrz.
Substituting (6.10) in Eq. (6.9), we obtain the dispersion relation

_(+2z)(A+z+ipEay)
- z(1+ ir2Fay)
3 [(1 +z+4 %) (14 in?F*oy) 4 ioy(1 + i7r2F01)]
(14 z +ip1Eoy)(1 + ir?Fay) 7

+T 4, =
C [(1 +z+ F) (14 ix’F*oy) 4 ioy(1 + i7r2Fal)]

(6.11) Ry

’

where

T, = 14

A= —7 -
1 7r4

For stationary convection ¢ = 0 and the Eq.(6.11) reduces to

(Q+2)?(1+2+5
(6.12) Ry = ( P> =% T (1+2)

z e\’
1 —_
x<+x+P)

Thus for stationary convection, the stress relaxation time parameter F' and
strain retardation time F™* vanish with ¢ and the Oldroydian fluid behaves
like an ordinary Newtonian fluid.
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Equation (6.12) yields

dR, _ (1+2)e 2
(6.13) P = Lp? z(l+z+ P)
4 5 e, e N3
+z° + 2z (l+ﬁ> + (1+ﬁ) — Ty, (1+x+ﬁ) .
e\2
When Ty, < (1 + ) the medium permeability has a destabilizing effect

on the system for Oldroydian viscoelastic fluid.

In the absence of rotation, the medium permeability has a destabilizing
effect.

Also Eq. (6.12) gives

dRq st (1 +.’l))

(6.14) = )
dT, x (1 +x+ i)

P

which shows that rotation has a stabilizing effect on the system for Oldroy-
dian fluid in a porous medium, for stationary convection.

120

R]

100 \
7;’ =100

= \
7, <50

40 —

20
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F1G. 2. The variaton of Rayleigh number R; with z for e = 0.5, P = 10,
T4, = 50 and 100.
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The dispersion relation (6.12) is also analysed numerically. In Fig. 2, R,
is ploted against z for ¢ = 0.5, P = 10 and T4, = 50, 100. The stabilizing
role of the rotation is clear from the increase of the Rayleigh number with
increasing rotation parameter T'y, .

We now consider the possibility of whether instability may occur as
an overstability. Since for overstability we wish to determine the critical
Rayleigh number for the onset of instability via a state of pure oscillations,
it suffices to find conditions under which (6.11) will admit solutions with

real-valued 0.
Separating the real and imaginary parts of Eq.(6.11), we obtain

©19  Ro-0[(b+5) -afmtrrare (b4 )

= ¢} [QEPurzFb + 74 F?0? 4+ 2Epn* FF*b (b o %)]

&, 2 - £
=€) [W4F*2b2 (b + F) + 272 F*b® (b + -f';) +£9?

2 12 £ £ 2 o £
+27°Fb (b+P) +2Ep1b(b+P)+2Ep17r F b(b+P)

2
+72FTy, (2Ep: + rzFb)] +b {TA1 +b <b + %) ] ;

and
(6.16)  Ry(b-1) [1 +7%(F 4+ F*) (b + %) - 1r4F2c1] =c? [7r4F2Ep1b]
9 Al €
—c1 |Epib + T F**Epb (b B F) + 202Epb(F + F*) <b - ]5)
+272Fb? 4 2n* FF*b? (b + %) + 7r4F2Ep1TA1]
2
_i 2 * 2 E_
e [b (b+ P) {Eps + 272 F*b} + 26 (b+ P)
+T41(Epl + 27{2Fb)] )
where
cp = 0'? .
Eliminating R; between Eqs. (6.15) and (6.16), we obtain
(6.17) AS+BcE+Ce+D =0,
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where
(6.18) A’ = 78 F3 [F‘b + F*Ep, (b + 15)] :
and
‘2 e ———
(I i el i _E_ 2 =
(6.19) D _b(b+ P) [b (1 = Fb+P>+ (b+ P)(7r F b+Ep1)]
2T [Epl% +7(F - F*) (b + %) b+ b(Ep; — 1)] .

The values of B’ and C’, involving large numbers of terms, have not been
written here. F' > F* is true since the stress relaxation time parameter ) is
always greater than the strain retardation time parameter Ag (by definition).
Since oy is real for overstability, the three values of ¢; are positive. The
product of the roots of Eq.(6.17) is —(D’/A’) and if this is to be positive,
then D’ < 0, since from (6.18) A’ > 0.

Equation (6.19) shows that this is clearly impossible if

(6.20) i>r?F (b + %) and  pE>1,
which further implies that

2., - _ &t _ T v
(6.21) k* < v R @ and ¢

Thus the inequalities (6.21) are the sufficient conditions for the non-existence
of overstability.

[s+ (1- 5)9—36—3] > 1.
oc

7. CONCLUSION

A dilute solution of methyl methacrylate in n-butyl acetate agrees well
with the theoretical model of Oldroyd’s viscoelastic fluid. The stability of
such polymer solutions and of Maxwellian viscoelastic fluids may prove to
be useful in chemical technology and geophysics.

A layer of Oldroydian viscoelastic fluid heated from below in a porous
medium is considered. For stationary convection, the medium permeability
is found to speed up the onset of thermal convection. A sufficient condition
for the non-existence of overstability is obtained. For a rotating Oldroydian
fluid in porous medium, the rotation is found to have a stabilizing effect
on stationary convection and the sufficient conditions for non-existence of
overstability are obtained.



THERMAL INSTABILITY OF AN OLDROYDIAN VISCOELASTIC FLUID 111

REFERENCES

1. S. CHANDRASEKHAR, Hydrodynamic and hydromagnetic stability, Dover Publica-
tion, New York 1981.

P.K. BHATIA and J.M. STEINER, Z. Angew. Math. Mech., 52, 321, 1972.
I.A. ELTAYEB, Z. Angew. Math. Mech., 55, 559, 1975.

B.A. ToMms and D.J. STRAWBRIDGE, Trans. Faraday Soc., 49, 1225, 1953.
H. HAMABATA and T. NAMIKAWA, J. Phys. Soc. Japan, 52, 90, 1983.

E.R. Lapwoob, Proc. Camb. Phil. Soc., 44, 508, 1948.

R.A. WoODING, J. Fluid Mech., 9, 183, 1960.

J.G. OLDROYD, Proc. Roy. Soc. (London), A245, 278, 1958.

D.D. JosEPH, Stability of fluid motions II, Springer Verlag, New York 1976.
E.A. SPIEGEL, Astrophysical J., 141, 1068, 1965.

© 0 = oo oV e @ W

—
e

DEPARTMENT OF MATHEMATICS
HIMACHAL PRADESH UNIVERSITY, SUMMER HILL, SHIMLA, INDIA.

Received January 18, 1995; new version August 18, 1995.



	1_art70001
	1_art70002
	1_art70003
	1_art70004
	1_art70005
	1_art70006
	1_art70007
	1_art70008
	1_art70009
	1_art70010
	1_art70011
	1_art70012
	1_art70013

