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A CASE OF REFLECTION OF SIMPLE WAVE FROM A CONTACT
DISCONTINUITY

A.V. KONONOYV (ODESSA)

An exact analytical solution is presented for the wave system describing a one-dimen-
sional unsteady process of nonlinear reflection of an arbitrary simple wave from a contact
discontinuity dividing two ideal perfect gases of constant values of adiabatic indices k and
k° which equal 3, and an arbitrary v > 1, respectively. We suppose that the incident sim-
ple wave propagates through the gas of adiabatic index k equal to 3. As an example, we
investigate the initial stage of a one-dimensional process of expansion of condensed-phase
products of detonation in a medium with counterpressure.

1. INTRODUCTION

The phenomenon of interaction of a simple wave with contact disconti-
nuity is an important element of many gasdynamical problems considered
from the point of view of one-dimensional inviscid compressible model. The
mathematical statement of the problem describing the interaction process
mentioned above has been given by TAUB [7]. He has also obtained the solu-
tion for the interaction region of an incident wave and a wave reflected from
the contact discontinuity in the case when adiabatic indices k and k° of the
media at both sides of the contact discontinuity were equal to

(1.1) k=k=2n43)/(2n+1), n=0,12,....

Another particular case of the problem under consideration was analysed
by S0ZONENKO [5], also with the restriction (1.1).

In the present paper we formulate the problem (Sec.2) and obtain its
exact analytical solution (Sec.3) for the whole wave system arising from
the reflection process, provided that k = 3 and k° = 5 for an arbitrary
4 > 1. Moreover, the value k = 3 corresponds to the region of flow where the
incident simple wave propagates. Obviously, the case under consideration has
not been described by the solutions obtained by TAUB [7] and SOZONENKO
[5] except for the case when vy = 3.
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As shown by LANDAU and STANYUKOVICH [4], the value of adiabatic in-
dex k = 3 is characteristic for the products of detonation of condensed-phase
explosives.

Therefore the solution obtained in the present paper may be used in
gasdynamic analysis of the initial stage of detonation of explosives mentioned
above, considered from the point of view of one-dimensional gasdynamic
theory of instantaneous detonation (STANYUKOVICH [6]).

The results of such investigation are given in Sec. 4 of the present paper
as an example of application of the general relations obtained in Sec. 2.

2. GENERAL STATEMENT OF THE PROBLEM

Let the surface of contact discontinuity separate initially two regions
1 and 2 of a one-dimensional rectilinear flow of ideal compressible fluid
considered as a perfect gas with specific heat constants ¢, and ¢,, its initial
state involving constant pressure p; = pz, constant velocity u; = ug and
constant density 01, 02 (01 # 02, in general). In our discussion we may
assume, without any loss of generality, that adiabatic indices of fluids from
the left (k) and the right-hand side (k) of contact discontinuity are equal
to k = 3 and k® = v, with arbitrary vy > 1.

The equations of motion defining the one-dimensional, inviscid perfect gas
flow in each of the half-spaces mentioned above, are then (STANYUKOVICH [6]):

o, 2 (e, 00)
- “dz v—-1\0t 5T Rl
(i) du du 2 Oc

o Ve T o1
where t, z are the time and space variables (1), respectively, u is the fluid
velocity, ¢ is the local sound speed and the ratio of specific heats v is equal
to 3 at the left-hand side of the contact discontinuity.
We shall assume that the wave interaction process under consideration
is an isentropic process. Therefore we shall consider an arbitrary simple
rarefaction wave (?) propagating in the positive z-axis direction through the

(*) We shall assume below that the z-axis direction is the direction from the left to the
right.

(?) The case of a compressive incident wave can be investigated in the same manner.
Strictly speaking, in this case equations (2.1) are not valid after the shock forms. The
same restrictions take also place in the considered case of a rarefaction incident wave,
if the wave reflected from the contact discontinuity is a compressive wave. Therefore we
shall consider a strictly isentropic case when both the incident and reflected waves are
rarefaction waves.
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region of flow where adiabatic index k equals 3. The source of this wave
(a moving piston or a local initial disturbance of flow) makes no difference
for us, in principle. According to LANDAU and LirsHITZ [3], the solution for
the incident wave mentioned above is given by the expressions

v = (ut o)t + f(u),

c—u = const,

(2.2)

where f*(u) is the known function of u. In the last identity it has been
assumed that the value of adiabatic index k is equal to 3.

b)

x x
FIG. 1. Scheme of the wave reflection phenomenon; a) case rg > 0, b) case rp < 0.

The scheme of possible case of the phenomenon being investigated is rep-
resented in Fig.1a in the distance-time z, t-plane. Continuous lines denote
the characteristic curves, dashed line is the trajectory of contact disconti-
nuity. Let z = X(t) be the equation of this line in z, t-plane. Numbers in
figures denote the parts of the distance-time plane corresponding to different
regions of flow under consideration.

In the course of the interaction of incident wave 3 with the contact dis-
continuity, the reflected (region 6) and transmitted (region 5) simple waves
arise. The triangle A BC (region 4) is the region of nonlinear interaction of
incident and reflected waves.

As is well known (CHERNYI [1]), the incident simple wave is refracted
on the contact discontinuity without changing the type. Therefore the wave
5 is a rarefaction wave. The reflected wave 6 may be both a rarefaction
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wave and a compression wave, depending on the initial data on contact
discontinuity (3).

The scheme of the reflection phenomenon described above will occur
provided the slope of the “tail” characteristic line of the incident wave 3 is
positive. In the opposite case the process of nonlinear interaction of incident
and reflected waves (the region 4) is unlimited in time, and region 6 of the
reflected simple wave is absent. This case corresponds to the Fig. 1b.

Analytically, simple waves 5, 6 and, on the other hand, the flow in re-
gion 4 are given by Riemann’s solution and the compound wave solution of
one-dimensional isentropic gasdynamic equations (2.1), respectively (LAN-
DAU and LirsHITZ [3]). The regions 7, 8 and 9 are the regions of homogene-
ous flow with constant parameters, the values of which can be found in an
elementary manner.

The purpose of this paper is to obtain an exact analytical solution of
gasdynamic equations (2.1) for the regions 4, 5 and 6 of flow.

In this paper, we shall restrict ourselves only to the case of the first
wave configuration (Fig.1a). The second wave configuration (Fig.1b) can
be investigated in the same manner.

3. CONSTRUCTION OF EXACT ANALYTICAL SOLUTION

We shall consider below the consecutive regions /— 6. Furthermore we
shall agree that the numerical subscript denotes the number of region cor-
responding to the parameter of flow under consideration. The subscript will
be omitted if no questions arise because of its absence.

3.1. Region 4 of nonlinear wave interaction

According to STANYUKOVICH [6], for ¥ = 3, the general solution of
Eqgs. (2.1) which describe the compound wave in region / is of the form

(u+ )t + ¥%u +c),
(u—c)t+¥(u—c),

X

(3.1)

T

where W0, ¥ are arbitrary functions of their arguments. The function ¥° can
be found by means of conditions of compatibility of compound wave (3.1)
and incident wave (2.2) along the characteristic line AB.

(*) We have already noticed that only the first case will be considered in detail (see
footnote 2). The second case can be investigated in the same manner.
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Let us introduce Riemann’s invariants for regions to the left (7, s) and to
the right (7%, %) of the contact discontinuity, taking into account that the
value of adiabatic index equals 3 in the half-space on one side of contact
discontinuity (*):

r=c+ u, $ = Cc— U
2c 2c
0 0
P = u = —u
] + u, 1

In terms of new variables, the relations (2.2) for incident simple wave 3

can be represented in the form:

(3.2)

(3.3)

8§ =81 = ¢ — uy = const.
By analogy with (2.2), the solution (3.1) becomes
z = rt+9°r),
(3.4)
r = —st+ ¥(-s).

By virtue of the condition of continuity of flow along the characteristic
line AB, from (3.3), (3.4) it follows that

vO(r) = f(r).
Consequently, the solution (3.4) can be represented in the form:

= rt+2f(r),
z = —st + 2F(s),

where f(r) = (f°(r))/2 is the known function and F(s) = (¥(—s))/2 is the
function to be found.

The unknown function can be found from the conditions of compatibility
of the transmitted simple wave 5 with the solution (3.5) along the contact
discontinuity line (curve AC'). These conditions are the continuity conditions
of flow velocity and gas pressure along the contact discontinuity line. They
can be represented in terms of characteristic variables in the form

(3.5)

r—s=1r"—4s0

(3.6) (m)3 i <(7 _ D0+ 80))21/(7—1) .

261 4C2

(*) Above we have already assumed that k = 3 at the left side of the contact
discontinuity.



312 A.V. KONONOV

If it is remembered that invariant s is constant everywhere (s = s9) in
the region 5 of the transmitted wave, then we obtain the resultant relation
between 7 and s on the contact discontinuity by excluding r° from (3.6):

y-1 B 1-x _v-3
10 (r—s+232)] , x—3(7_1).

Let us transform Egs.(3.5). Subtracting the second equality from the
first one and taking into account the notations (3.2), we obtain

(3.7) r+s=2c¢ [

ct+ f(r) - F(s) =0,

SO WO )

(3.8)

Analogously, adding both Egs. (3.5), we can find:
(3.9) z =ut+ f(r)+ F(s).

The relations (3.8), (3.9) are valid everywhere in region 4 of the nonlinear
wave interaction.

By differentiating Eq.(3.9) along the contact discontinuity (the curve
AC) where dX = U dt, with U denoting the velocity of the contact discon-
tinuity, we obtain

dX = Udt +tdU + d[f(r) + F(s)],
so that
(3.10) tdU +d[f(r) + F(s)] =

Taking into account the relations (3.8) and the continuity of flow velocity
on the contact discontinuity (cd)

cd

we obtain
(3.11)  [F(s) = f(M)]d(r— )+ (r + 8)d[F(s) + f(r)] = 0.

In Eq.(3.11) Riemann’s invariants r and s satisfy relation (3.7) on the
contact discontinuity.

Equation (3.11) together with Eq.(3.7) are considered as a differential
equation enabling the determination of the unknown function F(s).
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To solve this equation, it is convenient to introduce the following substi-
tution:
w=r—s8+ 3(2’ .

Hence

r—s=w-—2s),

= 1. \1—¥
r+s=2¢ (72c w) .
2

and consequently

-1 \1-x
P <74c w) +% sg,
(3:119 R
s=c (7 3o 1w) g i + s9
'\ Tde, g ' 2

Denote also
(3.12) Z(w) = F(s(w)) + f(r(w)),

where f(r(w)) = ¢(w) is a known function of w.
Finally, the system of Eqs. (3.11), (3.7) reduces to one equation

(3.13) S—Zu; + P(w)Z = Q(w),

where

P(w) = L (7 — 1w>x_1 g Q(w) = a(w) (t—lw)x—l ;

201 462 C1 462

Equation (3.13) is a first order linear nonhomogeneous ordinary differen-
tial equation. Its solution passing through the point (£, ) can be represented
in a closed form by quadratures:

(3.14) Z=eY n+/Q(w)eY dw |, e /P(w) dw.
3 13

In the case under consideration

4c
€=w|A=T1—81+283=——7_21,

(3.14')
= Z|A =(F+f)’A :(x_Ut)lA'
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Calculation of Y(w) according to (3.13) gives for v #3 (x # 0)
L e ) %L
(3.18) Y = /P(w = e / ( P w) dw
(3
e () -]
(y-1a 4¢,y
For v = 3 (x = 0) Eq. (3.13) becomes

dz
4Z Bl _ .% du)
dw ¢ w ¢ w

= 0.

Its solution, according to (3.14), is

Z = (w/ey /) [+ = [ g(w) (/e du|
3

(3.16) de;
£= = 2¢;
v-1
Then the unknown function F(s) is defined by the relation
(3.17) Fw) = Z(w) - g(w),

where Z(w) for v # 3 is defined by Eqgs.(3.14), (3.15), and for v = 3 by
Eqgs. (3.16). Function ¢(w) is the known function generated by the incident
simple wave. Function w(s) is given implicitly by Egs. (3.11").

3.2. Region 6 of reflected simple wave

Solution in region 6 for £ = 3 has the following form

(3.18) z = —st+ ¥(s),
T = r9 = const,
where ¥(s) is an unknown function.

In the case under consideration the function can be easily found if we use
the well-known (STANYUKOVICH [6]) property of independence of direct and
inverse wave propagation during the process of their nonlinear interaction
under the condition k = 3.

It is evident that

(3.18") U(s) = 2F(s),

where F(s) has been found above in Sec. 3.1.
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3.3. Region 5 of transmitted simple wave

The solution describing simple wave § is of the form

z = (u+ )t + G(w°), w® =10 — s¥ + 242,

(3.19) K

= 3(2) = const

with a function G(w®) which must be found.
We note that according to (3.6)

(3.20) w = w°

on the contact discontinuity.
Differentiating (3.19) along the curve AC we find, by analogy with (3.9),
that

(3.21) dG(w®) 4 csdt + td(U + ¢c5) = 0

or using (3.10), (3.12) and (3.20)

(3.22) d [G(w®) + est] = dZ(w®).
Integrating (3.22) we find

(3.23) G(w®) = Z(w®) — cst.
Moreover, according to (3.8), (3.10) and (3.20)

_ F(s) = J(r) _ Z(w®) ~ 2q(u”)
C4 C4 ’

(3.24) t

and the second equality (3.6) gives the relation between the sound velocities
on part AC of the contact discontinuity trajectory in the form

(3.25) €1 = €j (c_s)l—x .

C2

Substituting Eqgs. (3.24), (3.25) into (3.23) we finally obtain

(3.26) G(vw°) = [1 . (Mfl Z(uw®) + 22 [M]Xq(wO),

C1 (&) C1 Co

where 1
es(w) = ‘YTwO.
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3.4. The contact discontinuity trajectory

To obtain a complete solution of the problem under consideration it still
remains to investigate the law governing the contact discontinuity motion
from point A to point C, because the motion outside AC is a motion with
constant velocities Uy, Uc which can be found in an elementary manner.

To obtain the function X (¢) which defines part AC of the desired trajec-
tory, let us make use of the relation (3.9). This relation is valid everywhere
in region 4 up to its boundary AC. According to (3.9) we have for arbitrary
point t, X(t) of curve AC

(3.27) X = Ut +¢(U),

where
U = dX/dt, CU)=Z(2U + 233).

Equations (3.27) represent the differential equations of contact disconti-
nuity trajectory.

Since Eq.(3.27) is of Clairaut type, it can always be solved in a closed
form.

Thus, the singular solution interesting for us is written in the following
parametric form (KAMKE [2]):

(3.28) t=-V(U), X=-UV'U)+VU).

In view of relations (3.14"), the solution (3.28) certainly satisfies the re-
quired initial condition

g e— X'(tA).

4. EXAMPLE. THE INITIAL STAGE OF ONE-DIMENSIONAL EXPANSION
PHENOMENON OF CONDENSED-PHASE DETONATION PRODUCTS

We now consider a well-known (STANYUKOVICH [6]) problem of one-
dimensional expansion of plane compressed gas layer (initially at rest) into
a medium with counterpressure, as an example of using the formulae which
have been obtained in Sec. 3. We suppose that adiabatic index k in the layer
equals 3.

As shown by LANDAU and STANYUKOVICH [4], the value k = 3 is typical
for products of condensed-phase explosions. Therefore our solution which
will be derived below represents an exact gasdynamic description of the
initial stage of detonation of such explosives, investigated from the point
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of view of the one-dimensional instantaneous detonation model. It allows
us to extend the exact analytical description of expansion of the explosion
products to the time period later than the well-known (STANYUKOVICH [6])
solution. As in the general case which was analysed in Sec.3, here it is
possible to encounter two situations represented in Figs.2a, 2b. The origin
of coordinates coincides with the left-hand boundary of layer.

t a)

~ shock wave
trajectory

- shock wave
trajectory

0 L/2 L x

FIG. 2. Scheme of the initial stage of one-dimensional expansion of condensed-phase
detonation products; a) case Ua < c¢i/2, b) case Up > ¢i/2.

Evidently, the flow under consideration is symmetric with respect to the
plane z = L/2, where L is the thickness of the expanding, compressed
layer. Therefore we shall restrict ourselves to the examination of only the
right-hand (z > L/2) half-plane of the z, {-plane.

Initially, the boundary of the layer is an arbitrary discontinuity surface
which disintegrates on a rarefaction wave 2 centred at point (L,0), running
to the centre of symmetry, the contact discontinuity surface separating the
detonation products from the external medium, and a shock wave propagat-
ing away from the initial explosion.
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The simple wave & (incident wave in Sec.3) is a result of reflection of
the centred wave 2 from the plane of symmetry z = L/2. Therefore it is
a rarefaction wave too (LANDAU and LIFsHITZ [3]). Since for k = 3 the
characteristics of one-dimensional gasdynamic equations (2.1) are always
rectilinear (LANDAU and LIFSHITZ [3], STANYUKOVICH [6]), the wave & (by
virtue of the symmetry) turns out to be centred around the origin.

The scheme of its interaction with the contact discontinuity has been
discussed above in detail. The case shown in Fig.2a is similar to the case
represented in Fig. 1 a. It is possible only if the velocity U4 of contact discon-
tinuity on part LA of its trajectory satisfies the condition Uy < 2¢;/(k + 1)
(in our case it must be Uy < ¢;/2), where ¢; is the initial sound velocity in
the expanding layer. In the opposite case the “tail” characteristic of wave
2 is carried away by the flow in direction of the z-axis, and region 6 of the
reflected simple wave is missing (see Fig.2b).

Let us write the solutions for regions /- 6 using the results of Sec. 3.

4.1. Region 4 of interaction of nonlinear waves

If should be remembered that the incident rarefaction wave 3 is centred
in the origin; then we have g(w) = f(r(w)) = 0 and consequently Q(w) = 0.
In addition (see Figs.2a,2b) n = (z — ut)|s = L.
Finally
Lexp{6cy[1 — ((y—1)w/4e2)X] [ [ea(y = 3)];, 7 #3,
(4.1)  F(s) = { ' 2/l =90}
L(’U)/?Cg)-cz/cl, 7 =3,
where
7-3

b, x= 1%

s=eil(r - Dw/(e)] ™ - 3 -1

2

4.2. Region 6 of the reflected wave

The assumption given by formula (3.18') is applied here to the relations
(4.1).
4.3. Region & of the transmitted wave

In solution (3.26) it is necessary to put ¢(w) = 0 and z = F, function F
being defined according to (4.1).
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4.4. The trajectory of contact discontinuity

For v # 3 the parametric representation (3.28) of contact discontinuity
line in z, t-plane in view of (4.1) is of the form

_ Q) [U+s3 ]

t
1 UA—{—sg
l=x
U+ sY
X =1 T
U+cl (UA-}-S%) ’

where

Co(U) = Lexp{6c2 [1 - ( U+ ) ]/[cm = 1)]}

For v = 3 we find an explicit formula

c2/(c14c2)
= (e1 + ¢c2)ta < ) - 8¢,
ta

where T4 = L/c;.
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