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A NOTE ON THE CRACK PROBLEM FOR A NONHOMOGENEOUS
PLANE

P.K. CHAUDHURI and S. RAY (CALCUTTA)

A plane elasticity problem in a nonhomogeneous medium containing a crack has been
considered. It is assumed that the medium has a constant Poisson’s ratio while the Young’s
modulus varies exponentially both along and perpendicular to the length of the crack. The
problem is solved by derivation of an integral equation and the effects of nonhomogeneity
have been shown in tables and graphs.

1. INTRODUCTION

Crack problems in nonhomogeneous media have been studied for the last
few decades due to their practical importance in predicting failure of various
elastic materials. In a medium containing a crack, stresses usually exhibit
singular behaviour at the crack tip. But the usual square root singularity for
a homogeneous isotropic medium is not always observed in nonhomogeneous
medium. Although a nonhomogeneous medium with continuous and continu-
ously differentiable elastic coefficients behaves like homogeneous medium
with respect to singularity, in a nonhomogeneous medium with piecewise
constant elastic coefficients the behaviour is quite different; for example,
stress field around the crack tip terminating at the interface shows a be-
haviour of the form r®, where r is the distance from the crack tip and
-1 < a <0 (ErDOGAN [4]).

In solid mechanics, as the idea of homogeneity of the medium is not
always adequate and since there are plenty of nonhomogeneous materials,
investigations of crack problems in nonhomogeneous media are necessary as
well as interesting. It is true that nonhomogeneity of a medium depends on
many parameters, not all of which may be known, so that various problems
of solid mechanics in nonhomogeneous media are studied by considering
suitable models with specific types of nonhomogeneity. Various models have
been considered in the literature to discuss the crack problems. Models with
continuous variation of elastic coefficients in more than one direction have
also been considered (DHALIWAL and SINGH [3], CHAUDHURI and Ray [1]).
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In the paper [2], DELALE and ERDOGAN discussed the crack problem
for a nonhomogeneous plane assuming nonhomogeneity of Young’s modulus
and taking a uniform Poisson’s ratio. They posed the problem by assuming
E = Egexp(Bz + 7y), but presented the solution only for vy = 0.

The aim of the present investigation is to solve the same problem as that
considered by Delale and Erdogan but with 4 # 0. The problem has been
solved and the results are presented analytically in the form of integrals, and
also graphically. Results of Delale and Erdogan are recovered as a special
case of our discussion.

2. FORMULATION OF THE CRACK PROBLEM

We shall consider the plane elasticity problem for a nonhomogeneous
solid in which the Poisson’s ratio v is constant and the Young’s modulus E
is a function of 2 and y. The stresses are given by

o er_er o
' lose: = dy?’ Tw = g2 T 0z0y’

where F(z,y) is the Airy stress function.
For the plane elasticity problem the compatibility equation for general-
ized plane stress, by using Eq.(2.1) and Hooke’s law, is given by

OE & OF a>V2F
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+ [2 (a_y> —2 ((9.1:) = s +1/Eaz2} 557 =

In the plane strain case, Eq.(2.2) is the same except for E being replaced
by E/(1—v?) and v by v/(1 - v).

In our problem we consider a line crack of length 2a occupying the po-
sition |2| < @, ¥ = 0 in a nonhomogeneous medium, in which the Young’s
modulus varies exponentially with z and y in the form

(2.3) E = Eqexp(Bz +7yl),
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while the Poisson’s ratio is constant. Eg, 3, v appearing in Eq.(2.3) are
constants.

If we further assume that the load applied to the medium is symmet-
rical with respect to y = 0, then from the conditions of symmetry of the
material nonhomogeneity and of the applied load with respect to y = 0, it
would be sufficient to consider the solution of the problem for the medium
—00 <z < 00,y > 0 only.

Hence the nonhomogeneity of the medium may be taken in the form

(2.4) E = Egexp(Bz +7y), —0o<z<oo, y2>0.
By using Eq.(2.4), Eq. (2.2) reduces to

OPF < AF PF | PF
4 ———— — —_— ———
(25) ViF- 2[3( 5 6y2) 29 ( T 3y3)

(- ®) TE o sy o+ (5 -7 55 =

It is noted that Eq.(2.5) reduces to the standard biharmonic equatlon only
when g =7 =0.
Considering the solution of Eq.(2.5) in the form

(2.6) F(z,y) = 51; / f(y,@)e™ " da (—o<z <00, y>0)

we obtain

df & f ; T
= -2 —J—B—}-(Qzaﬁ—?a + v —Vﬂ)W

+2 {a y—1i(1+ u)aﬂ7} % + <a4 - 2ia®p - *B% + Va272) f=0.

(2.7)

If we take the solution of Eq.(2.7) in the form f = e™™¥, then the auxiliary
equation is given by

(28)  m'+2ym® + (2iaf - 207 + 77 — vB?) m?
-2 (a2'y —tafy — iuaﬂ‘y) m + (014 - 2ia3ﬂ - a2,32 + ua2~/2) =0.
Equation (2.8) yields the following solutions for m:
my = (614 BVY —-17) /2,
mg = (62 - BVV —17) /2,

ma = — (61— BVV +7) /2,
_(62+ﬂ\/'7+7)/2’

(2.9)

g
Il
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where

b = [(ﬁ\/_—v) +4a® — dia (8 - 7\/_)]1/2

b2 = [(Bv7 +7) +4a® - tia (B +1v0)] "

Re(my) > 0, Re(mz) > 0. So the appropriate solution of Eq.(2.7) can be
expressed in the form

(2.11) f(y,a) = Aj(a)e™™Y + Ay(a)e™™2Y (0 <y < ).
Using Eq.(2.6) and Eq.(2.11), we obtain from Eq.(2.1)

(2.10)

£, f 2 .
(2.12) Oze(2,y) = %, / ZAjmfe'mJye"m da,
=op 1=1
bl TP A
(2.13) oyy(2,y) = / a? Z Aje""”ye'“m da,
—00 =1
i
(2.14) ory(2,y) = / HZ Ajmje”™VeT T da,
—00 j=1

For the plane y > 0, the functions A; and A; are known from the two
boundary conditions at y = 0, —0c0 < & < 0.
Let us suppose that the half-plane y > 0 is subjected to tractions

(2.15) Ope:0) = olz); Oagla,0) = 7(z) (-0 <z < )

and is kept in equilibrium by a resultant force applied to the medium at
infinity, which is collinear with a force defined by the following components:

(2.16) P.= 7T(a:)d:1:, = 70(1:)(11:

From Egs. (2.13), (2.14), (2.15) and using the Fourier transform we obtain

1 me@Q1 | Q2
(2.17) M) = —— [P+ 72,
_ 1 Q2 Mm@
(2.18) Az(a) = m [T + 7‘]’
where

o0

(2.19) Qi(a) = /o(x)ei"m(l:v, Q2(a) = /T(m)ei‘”dz.

—00
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3. INTEGRAL EQUATION
We shall consider the original cracked solid to be loaded symmetrically
in such a way that
(3.1) Tyl ¥, 0) =0, —00 < T < 0.

In the perturbation problem, in addition to Eq.(3.1), we have the mixed
boundary conditions

(3.2) oyy(z,04) = p(z), -a< z<a,
(3.3) 9(2,0) = 0, a< |z| < oo,
where p(z) is a known function and v is the displacement component in the

y direction.
From Eqgs. (2.14) and (3.1), we obtain

(34) m1A1 + 777,2142 =0.
We consider a new unknown function g(z)

0
(3.5) 9(z) = 5-v(z,0+).

From Egs. (3.3) and (3.5), we obtain
g(x)y=10""for . o] e

and

a

(3.6) /g(:z:) dz =0.

—-a

By using Hooke’s law, from Egs. (2.12) and (2.13) we obtain

i 1 1 f,... [ A .
37) (=) =-o- R /(ﬁ +ia) [r;y (02 + me) emmY

—00

A :
2 (a2 + um%) e""‘“’] e da  (y>0).

mo + 7y
From Eqgs. (3.5) and (3.7), we obtain
(B +ia) 2 2\ 4 2 9\ A2
(38) = E—o [(a + uml) rﬂ + (CI/ + 1/1712) M +7]

a

&= / g(t)elPHialt gy,

—-a
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Solving A; and A from Egs. (3.4) and (3.8), we get

Eo(m1 +7)(ma + 7)ma
(8 + ia)(my — my) [a?(my + ma) + 7(a? — mymav)]

x / g()elBFiat g = ~ T2 4)(a).
m

-a

(39) Al(a) =

Using Egs. (3.9) and (2.13), we obtain the integral equation to determine
g(z) from Eq. (3.2) as follows:

1] gl Eo(m1+7)(ma+7)e?
(3.10) ylilg+2w_lg(t)€_oo(ﬂ+ia)(ml_m2)[a2(m1+m2)+7(a2_m1m2l/)]

x (mye™™Y — mae~™Y) ¢l(-2) gy = p(z), |z| < a.

To separate a possible singular part of the kernel in Eq. (3.10), we examine
the asymptotic behaviour of the inner integral. From Eq.(2.9) we see that
for |a| — 00, my — |a| and my — |af.

The inner integral in Eq. (3.10) can be expressed as

[ee]

(3.11) h(z.y,1).+ / K(y,a)et=2)da,

—00

Since any possible singular part of h must be due to the behaviour of K at
|a] — oo, so we may write Eq.(3.11) as

o0

(3.12) h(z,y,t) = / [K(y, a)— K(y, a)] e (t=2) doy

—00

(o¢]
+ / Koo(y,@)e' =) da,

where K, is the asymptotic value of K(y,a) for large values of |a].
It can be easily shown that

g’ Eo(|a| + v)e~lelv
(3.13) Koo(y,a) = 22 lmz) :

The first integral in Eq. (3.12) is uniformly convergent. Therefore, when it is
substituted in Eq.(3.10), the limit can be put under the integral sign. The
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second integral in Eq. (3.12), by using Eq. (3.13), can be expressed as

(3.14) 7 Eo(|al ;Z)e—'a'y [cos(t — z)a+isin(t — x)a] da

—00

Eo(t = a:)

N (t-2)
_(t—x)2+ 2+E0'yarctg "

Let

a?(my + 7)(mq + 7)elt-2)e
(B + ia)[a?(my + ma) + y(a? — mymav)]

Putting y = 0 in the first integral in Eq. (3.12), we obtain after some calcu-
lations

(3.15) M(a) =

(3.16) ;1_1}6 Maz,y.t) = Eo/ [M(a) + M(-a) - ol sin(t — x)a] da
0

. E()(t b 2?)
+31/1_r% [(t —z)2+y?

Substituting from Eq.(3.16) into Eq. (3.10) we obtain

A
+ Eoy arctg( x)] :
Yy

a eﬁt
CRUN- /L_z (x,t)]g(t)dt=14:fp<x), el < a,

—a

where the Fredholm kernel is given by

(3.18)  R(z,t) = e [-75’5 +7{M(a) TR 77, - a;” sin(t—z)a} da] :

and where Fy/2 is replaced by 4u0/(14¢) in order to cover both the general-
ized plane stress and plane strain problems. Here yg is the shear modulus at
z = 0,i.e. po = Eo/2(1+v),( = 3—4v for plane strain and { = (3—v)/(1+v)
for generalized plane stress.

We note that if ¥ = 0, then all the results reduce to those obtained in
[2]. Tt is also noted that if 3 = v = 0 then K = K, R(z,t) = 0 and hence
Eq.(3.17) reduces to the known integral equation of the simple (Mode I)
crack problem for homogeneous plane.

For numerical solution, the interval (—a,a) is normalized by defining

s =.1la, . 56 #(s) = g(t), n(r,s) = R(z,1),

(3.19)
g(r)=p(z), -1<(r,s)<1l, -a<(z,t)<a.
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So by using relations (3.19), Egs. (3.17) and (3.6) are expressed as

: eaﬂs
(3.20) %/ L — 4 n(r,s)] Salde s %q(r) (21 & 1)

bt
1

(3.21) /¢(s) ds = 0.
il

4. STRESS INTENSITY FACTORS

Since the index of the singular integral equation (3.20) is +1, its solution
is taken in the form
G(s)

afs oo

(4’1) € ¢('S) - m ’
where G(s) is a bounded function.

The unknown function G can be determined from Eqs. (3.20) and (3.21)
to any desired degree of accuracy.

It is observed that the left-hand side of Eq.(3.17) gives oyy(z,0) for
|z] > a as well as |z| < a; by means of a simple asymptotic analysis, the
Mode I stress intensity factors at the crack tips defined by

(4.2) ki(a) = %i_rgl\/Q(x —a)oyy(z,0),
(4.3) ki(—a) = xarga V2(—z — a)oyy(z,0),

may be expressed by
(4.4) kl((l) = -

-1<s<1,

4
1+¢

4
1+ CHOG(“l)\/E-

After obtaining G(s), the crack surface displacement can be calculated from
Eqgs. (3.5) and (3.19) as

NOG(l)\/Ea

(4.5) ki(—a) =

v(z) o G(s)
« ) VI=a

It is also noted that the structure of the integral equation (3.17) is the same
as that for a homogeneous medium, namely its kernel has a simple Cauchy
singularity. Thus its solution, and consequently the stress state around the
crack tip, would have the conventional square root singularity.

e 95 g,

(4.6)
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5. NUMERICAL RESULTS AND DISCUSSION

To get some idea about the effects of nonhomogeneity of the type con-
sidered in our discussion, numerical computations have been done in some
particular cases. In order to compare our results with those of [2] and to see
the effects of additional nonhomogeneity, we have considered, as in [2], two
types of loadings. In the first case we assume that the loading is such that
in the uncracked medium

T
Eyy(x90) =¢cot+¢é1 (Z)a Exy(-’lf,()) =0,

(5-1) Taskz, ) =.0.

Then it readily follows that on the crack surface

T
00(2,0) = (&) = ~eoBoe” — e1Fo (1) e,

(5.2)
o5:(2,0) =0, |z| < a.

In the second type of loading we assume

(5.3) p(z) = po — pi(z/a).

The stress intensity factors (SIF) at the crack tips in these two types
of loadings have been computed from Eqs.(4.4) and (4.5) and the results
are given in Table 1-4 for various values of a3 and ay. Although Pois-
son’s ratio v has effects on the SIF, we have considered only » = 0.3 in
our computations of the SIF. In each table the columns corresponding to
ay = 0 give results which are almost identical with those of Delale and Er-
dogan’s paper. As in [2], we have considered only one nonzero parameter
at a time out of four parameters €9, €1, po, p1 in Eqgs.(5.2) and (5.3) for

Table 1. Normalized SIF for the case of generalized plane stress (v =0.3)
for p(z) = —eoEoeP®.

k1(—a)/eo Eov/a k1(a)/e0 Eov/a

aﬂxw 0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00

0 1.0 0.926 | 0.836 | 0.754 | 0.684 || 1.0 0.982 | 0.940 | 0.893 | 0.848
0.2 0.853 | 0.798 | 0.716 | 0.638 | 0.574 || 1.162 | 1.053 | 0.948 | 0.872 | 0.806
0.4 0.722 | 0.671 | 0.599 | 0.537 | 0.481 || 1.344 | 1.191 | 1.024 | 0.888 | 0.810
0.6 0.608 | 0.570 | 0.498 | 0.445 | 0.400 || 1.552 | 1.363 | 1.155 | 0.994 | 0.869
0.8 0.511 | 0.491 | 0.415 | 0.369 | 0.332 || 1.793 | 1.576 | 1.322 | 1.139 | 0.996
1.0 0.429 | 0.434 | 0.349 | 0.306 | 0.275 || 2.075 | 1.839 | 1.530 | 1.323 | 1.164
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the purpose of observing the effects of nonhomogeneity, although the joint
effect may be obtained by superposing the individual effects. From Tables
1-3 it is clear that for fixed af3, the SIF decreases with the increase of ay
which physically indicates smaller SIF for stiffer materials. The behaviour
is slightly different at the right-hand end of the crack, what is observed in
Table 4. In the computation of the function G(s) in (4.1) we have adopted
the Gauss - Tchebycheff integration technique.

Table 2. Normalized SIF for the case of generalized plane stress (v = 0.3)
for p(z) = —e1 Eo(z/a)e”".

ki(—a)/e1 Eor/a ki(a)/e1Eor/a
aﬂxl‘y 0 0.25 0.50 0.75 1.00 0 0.25 | 0.50 | 0.75 | 1.00
0 —-0.5 —0.497 | —0.490 | —0.480 | —0.468 || 0.5 0.497 | 0.492 | 0.486 | 0.480

0.2 | —0.408 | —0.404 [ —0.399 | —0.391 | —0.382 || 0.611 | 0.608 | 0.601 | 0.594 | 0.586
0.4 |-—0.332|—0.328 | —0.323 | —0.318 | —0.311 || 0.744 | 0.737 | 0.721 | 0.703 | 0.690
0.6 | —0.269 | —0.264 | —0.262 | —0.258 | —0.252 || 0.904 | 0.890 | 0.864 | 0.836 | 0.806
0.8 | —0.218 | —0.211 | —0.212 | —0.209 | —0.205 || 1.094 | 1.073 | 1.032 | 0.993 | 0.954
1.0 |-0.176 | —0.164 | —0.171 | —0.170 { —0.166 || 1.322 | 1.293 | 1.232 | 1.180 | 1.129

Table 3. Normalized SIF for the case of generalized plane stress (v = 0.3)
for p(z) = —po.

k1(—a)/pov/a k1(a)/pov/a
aﬂY‘V 0 [025 |05 075|100 o | o025 |05 | 075 | 1.00

0 1.0 0.926 | 0.836 | 0.754 | 0.684 (| 1.0 0.982 | 0.940 | 0.893 | 0.848
0.2 0.943 | 0.887 | 0.804 | 0.724 | 0.658 || 1.051 | 0.942 | 0.838 | 0.763 | 0.698
0.4 0.885 | 0.832 | 0.757 | 0.690 | 0.631 (| 1.097 | 0.944 | 0.780 | 0.649 | 0.575
0.6 0.830 | 0.787 | 0.711 | 0.652 | 0.602 |[ 1.140 | 0.952 | 0.750 | 0.599 | 0.484
0.8 0.780 | 0.752 | 0.671 | 0.618 | 0.574 || 1.181 | 0.965 | 0.723 | 0.557 | 0.434
1.0 0.735 | 0.727 | 0.638 | 0.587 | 0.549 || 1.221 | 0.985 | 0.699 | 0.519 | 0.392

Table 4. Normalized SIF for the case of generalized plane stress (v = 0.3)
for p(z) = —pi1(z/a).

ki(—a)/p1/a ki(a)/p1y/a
aﬂ\” 0 0.25 0.50 0.75 1.00 0 0.25 | 0.50 | 0.75 1.00
0 -0.5 —0.497 | —0.490 | —0.480 | —0.468 || 0.5 0.497 | 0.492 | 0.486 | 0.480

0.2 |[—0.498 | —0.491 | —0.482 | —0.470 | —0.457 |[ 0.500 | 0.502 | 0.501 | 0.498 | 0.493
0.4 | —0.494 | —0.484 | —0.472 | —0.460 | —0.447 || 0.499 | 0.507 | 0.508 | 0.503 | 0.499
0.6 | —0.488 | —0.476 | —0.463 | —0.449 | —0.436 || 0.498 | 0.512 | 0.516 | 0.512 | 0.501
0.8 | —0.480 [ —0.468 | —0.453 | —0.439 | —0.425 |[ 0.496 | 0.516 | 0.524 | 0.521 | 0.509
1.0 | —0.472 | —0.459 | —0.443 | —0.429 | —0.416 || 0.493 | 0.520 | 0.533 | 0.529 | 0.516
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D_O
‘3 °{=O’ °B=0 _
= ad=0, ap=0.5 —o—
X 1.6F
> ad=0, af=1.0 —oo—
W[ | ad=1.0,aB=0.5—x—
Qd=].O,QB=],O—xx_

FiG. 1. Crack surface displacement for various z/a under uniform pressure po applied to
the crack surface; » = 0.5, plane stress condition. First type of loading.

a®

&

= ap=0, a¥=0

‘E aB=0, ag=0.5—o—

"l aB=0,a¥=1.0—"°—
1-2F

1 1
- 0 x/a 1
FiG. 2. Crack surface displacement for various z/a under uniform pressure po applied to
the crack surface; v = 0.5, plane stress condition. Second type of loading.

Significant effects of nonhomogeneity are also noticeable in the crack
surface displacement. The results are given in Figs.1 and 2. The effects
of nonhomogeneity when E varies in one or both the directions are clearly
shown in the figures which indicate, as expected, less stiff material exhibiting

greater displacement.
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