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MINIMUM WEIGHT DESIGN OF TRUSSES USING HEURISTIC
RULES

M. PYRZ (LILLE)

The minimum weight design of truss structures, composed of elements chosen from
catalogues of available profiles, is presented in the paper. A controlled enumeration method
is supplied with a knowledge module, containing the problem-oriented information, and
represented symbolically. Heuristic rules, proposed on the basis of static analysis of the
structure, are used to eliminate all “non-promising” propositions without numerical check-
ing for feasibility. This approach leads to a great reduction (with respect to the “standard”
enumeration) in the number of variants that have to be verified to find the global optimum.
The application of knowledge-based enumeration is illustrated by numerical examples of
standard truss optimisation problems for one or several loading conditions.

1. INTRODUCTION

Many engineering problems involve discrete variables. It is not rare that
parameters of the real-life structures are based on typical standard compo-
nents. The characteristics of rolled steel bars the truss structures are made
of, have to be chosen from a set of commercially available standard profiles.
The optimal design in such practical situations, when the design variables
are not continuous-valued, needs the application of adequate methods. The
simplest approach is to solve first an equivalent problem in continuous design
variable space, and then to round off the solution to the nearest allowable
discrete values. The result may be not only non-optimal but, in fact, infeas-
ible. Several computational techniques have been developed so far to handle
discrete or integer values in engineering problems. The first [UTAM Sym-
posium on Discrete Structural Optimisation [1] emphasises the considerable
attention of researchers in this field. The surveys of different approaches, ap-
plied to discrete optimum structural design, are presented for example in [2,
3, 4]. The most important methods can be classified into branch and band,
dual, enumeration and penalty function. In addition, in the papers which
appeared in recent years, the promising applications of genetic algorithms
are explored.

The controlled enumeration methods search for the optimal solution of
a discrete optimisation problem by a partial enumeration, without checking
all possible combinations. The number of design variable sets, that have to
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be verified, can be very large in real problems. Verification of constraints
for many generated variants is usually connected with expensive numeric
processing and a considerable time of calculus. The enumeration algorithm
would be more efficient if “non-promising” candidates were eliminated from
the checking constraints procedures.

The knowledge of the problem to be solved can often substantially re-
duce the computational effort and this statement motivates the proposed
approach. The Artificial Intelligence techniques have made possible the rep-
resentation of a knowledge in symbolic terms, and this way, integration and
processing of a broader range of information in computer programs. The
coupling of the AI and classical numerical procedures in engineering prob-
lems emerged in the creation of the so-called Expert Systems. The appli-
cations of the knowledge-based approach to the design optimisation follow
this trend [5,6,7].

In the presented approach the symbolical and numerical computations
are coupled in one computer program to form a knowledge-based optimi-
sation algorithm, joining advantages of the traditional systems of numer-
ical analysis and those of knowledge-based systems. The main idea is to
demonstrate the potential of the knowledge applied to engineering optimi-
sation and to show, how an additional information of the problem can be
applied to enhance “standard” numerical approach. A controlled enumer-
ation algorithm is supplied with a symbolic processing module, containing
the problem-oriented rules. A method for formulation of heuristics for mini-
mum weight truss optimisation is proposed. The information on the problem
under consideration is next used to eliminate the useless constraints verifi-
cation for the propositions considered to be “non-promising”, and to remove
a priori all unrealistic, redundant and infeasible variants without checking
them numerically for feasibility. The knowledge base consists of facts, rules
and heuristics, expressed in the pseudo-natural language of the task, and
accompanied by a reasoning technique of the inference engine. A rule-based
production system representation of the Prolog language has been chosen.
The effectiveness of the method is illustrated by two standard numerical
examples for the minimum weight design of truss structures under one or
several loading conditions.

2. FORMULATION OF THE OPTIMISATION PROBLEM

Discrete optimisation characterised by a linear objective function and
arbitrary constraints is considered in the presented approach. A generalised
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mathematical formulation of this problem is as follows:
find x such that

(2.1) W(x) = ¢x — minimum

subject to:

(2.2) g(x)<0, k=1,...,K,

(2.3) Bi(x) =0y 35 Byarsoadsy

(24) x=[z122...2N], i€ {z}; a¥iioo aM ) dain T, con N,

where W(x) is the linear objective function to be minimised, x is the vector
of N discrete design variables z;, c is the vector of N constant, real coeffi-
cients ¢; characterising the components of the objective function, and h(x),
g(x) are arbitrary functions, corresponding respectively to the equality and
inequality constraints. The discreteness constraints state that each design
variable z; has to be selected from a corresponding finite set of M; available
discrete values.

In the minimum weight truss optimisation the objective function (2.1) is
the weight of the structure, the design variables z; are cross-sectional areas
of bars, and the coefficients ¢; correspond to the lengths of bars multiplied
by the material density o. The inequalities (2.2) represent the limits imposed
on response quantities from the structure analysis such like constraints on
displacements, stresses, buckling, etc. The constraints (2.3) correspond to
the equilibrium equations. The characteristics of bar elements have to be
chosen from finite catalogues of available profiles (2.4).

3. KNOWLEDGE-BASED ENUMERATION APPROACH

The solution of the problem (2.1)—-(2.4) is based on a modified version
of the enumeration method according to the non-decreasing values of the
objective function [8], which leads to the global optimum. The method gen-
erates an ordered sequence of design variable vectors

(3.Y) X1, X2, X3,

according to the non-decreasing values of the corresponding objective func-
tions

(32) W1 S W2 S W3 S ooy W,’ = W(X,’).
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The constraints of the problem have to be verified for all sequentially gen-
erated vectors x;, ¢+ = 1,2,... . The first design variable set x*, satisfying
all requirements, gives the optimal solution Wy, = W(x*) of the minimisa-
tion problem. The algorithm can be started from any value stated as a lower
bound for the objective function values W; to be generated in non-decreasing
order.

The optimisation procedure would be more efficient if one eliminated
“non-promising” candidates without checking them numerically for feasi-
bility. A lot of design variable sets can be removed a priori thanks to the
character of the expected results and the knowledge of the problem to be
solved. New styles of programming based on symbolic representation (like
Al) allow us to represent much more and significantly different engineering
knowledge.

The proposed knowledge-based enumeration algorithm is composed of
three separate modules, corresponding to different levels of processing (Fig.1).

\I/ i=0
ENUMERATION MODULE
i=i+1

generation of i-th design

variable vector x

KNOWLEDGE MODULE

. " §is . ? no
1s x a "promising" variant ?

yes

CONSTRAINTS MODULE

no
< are all constraints satisficd? >——
\L ves

OPTIMAL DISCRETE SOLUTION

F1G. 1. Knowledge-based enumeration algorithm.

The enumeration module generates a sequence of design variable vectors
(3.1) corresponding to the non-decreasing values of the objective function
(3.2). For these vectors the constraints of the problem have to be verified.
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The knowledge module acts as a filter between the generation of candi-
dates and the verification of the constraints to limit the explored discrete
design space. The information on the problem is expressed symbolically in
the pseudo-natural language of the task, using the first order predicate logic
of the Prolog language. The knowledge base contains specific heuristic rules
that are used to remove the candidates from the checking constraints pro-
cedure if they are considered to be unrealistic a priori. The “IF condition
THEN action” rule-based production system representation has been cho-
sen. It enables us to stay close to the language used by designers, and this
way, to exploit easily the descriptive knowledge of a particular problem. The
infeasible propositions are skipped and, as a result, a sequence of “promis-
ing” variants corresponding to the non-decreasing values of the objective
function is obtained.

Finally, the constraints module checks for feasibility the design variable
variants coming from the knowledge module. The first design vector sat-
isfying the constraints (2.2), (2.3) and (2.4) of the problem is the optimal
solution.

4., FORMULATION OF HEURISTIC RULES FOR TRUSS STRUCTURES

The symbolically coded information on the particular problem to be
solved can complete the conventional numerical algorithm. It can be ob-
tained from the analysis of the structure, manufacturing or technological
constraints, designer’s experience etc. A detailed description of the typology
of engineering knowledge, that can be integrated into Al based computing,
can be found in [9]. In the case of truss structures, the mechanical behaviour
analysis can be used to obtain heuristic rules. The following simple pro-
cedure, based on the static analysis, enables the formulation of relations
between the design variables. It is the author’s conclusion from the first at-
tempts of introducing Al techniques to optimal sizing of trusses [10, 11]. The
proposed approach is not intended to be of a general nature, but it can be
successfully applied in the case of statically loaded truss structures. It is pre-
sented here to illustrate the importance and the potential of an additional
information which can considerably enhance the standard optimisation ap-
proach.

The description presented below corresponds to the case of structures
subjected to multiple independent static load conditions. If only one loading
case is taken into account, the last step of the algorithm must be neglected.
If several bars of a truss are assembled into linking zones, grouping elements
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of the same cross-sectional characteristics, the corresponding average values
in linking zones have to be used.

Separately for every load condition and for equal values of all design
variables:

e determine the member stresses and the average stresses in all bars
(zones);

e formulate a “high certainty” relations of type “greater than” or “less
than” between element stresses in bars (zones);

¢ translate the obtained expressions to “design variable language” us-
ing the hypothesis, that “at the optimum, the more stressed elements will
correspond to greater cross-sectional areas than those of less stressed bars”;

o finally, if the optimisation problem invokes multiple load conditions,
find the common part of all the obtained relations, corresponding to the
non-contradictory statements.

A certainty coefficient, denoted by 1, has to be applied to obtain a “safe”
evaluation of the compared element stresses. The word “greater than” has
to mean here “greater than at least i per cent of the value in question”,
when for example ¥ = 300%.

The expressions obtained in this way can be viewed as a predimensioning
of cross-sectional areas of bars. The presizing estimation is based on a uni-
form stress distribution supposed at the optimum. The coefficient 3 can be
interpreted as a representation of an intuitive human factor in the processes
of the formulation of rules.

5. NUMERICAL EXAMPLES

Two standard examples of truss optimisation are analysed for the modu-
lus of elasticity £ = 107 psi and the density ¢ = 0.11bs/in® corresponding to
aluminium. The Anglo-Saxon units have been kept for the reason of compati-
bility with the results known from literature. The calculus has been carried
out for static elastic linear approach. To improve the effectiveness of the
enumeration search, the starting value for the enumeration algorithm was
fixed to the continuous optimal solution, taken from the referenced papers.

The number of candidates that have to be checked for feasibility to find
the discrete optimum is compared for the knowledge-based approach and
the “standard” enumeration (without any problem-oriented information in-
cluded). The difference between the two methods is a measure of the effec-
tiveness of the applied heuristic rules.
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5.1. Ten-bar truss

The weight minimisation of the classical ten-bar truss structure (Fig.2)
is considered. The structure is designed to support two loads P = 10°1b
applied in nodes 2 and 4, acting in downward direction. The optimal results
from [12] have been taken as reference values. The structure is optimised
subject to the maximum displacement limit of £2.0 in for all nodes in the X
and Y directions, and to the maximum elastic stress limit omax = £25000 psi
in all members. The design variables are cross-sectional areas A; of 10 bars
(i=1,...,10) from the following catalogues of discrete sections:

A1, As, As, Ag, Ao € {12.0; 15.0; 18.0; 20.0; 25.0; 30.0; 35.0; 45.0} [in?],
Ay, As, Ag, A7, Ay € {0.1; 1.0; 2.0; 5.0; 8.0; 12.0; 15.0; 18.0} [in?].
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3
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F1G. 2. Ten-bar truss.

The static analysis of the truss for equal values of all cross-sectional areas
and for the certainty coefficient 3 = 300%, has given the following relations
between stresses

oy > 09, 01 >04, 01 >05, 01>0g, 012> 010,
g3 > 09, 03> 04, 03>05, 032> 0, 032> 010,
o7 > 09, 07> 05, 072> 06, 072> 010,
gg > 09, 08 > 05, 08> 0¢, 082> 010-

They enabled the formulation of five simple heuristics that are presented
below in the form as they look like in the computer program.
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IF 10_bar_truss and 2_loads_in_nodes_2_and_j
THEN A1_more_stressed and A3_-more_stressed
and A 7-more_stressed and A8_more_stressed.

IF A1_more_stressed
THEN A; > Aj; and A; > Ag and A; > As and A; > Ag and A; > Aqp.

IF A3_more_stressed
THEN A3z > Aj; and A3 > A4 and A3z > A and A3z > Ag and A3z > Aqp.

IF A7_more_stressed
THEN A7 > Ay and A7 > As and A7 > Ag and A7 > Aqo.

IF A8_more_stressed
THEN Ag > A; and Ag > As and Ag > Ag and Ag > Aqg.

The discrete optimal results for the minimum weight ten-bar truss, as
well as continuous optimisation solution from [12], are summarised in Table
1. The rounding-off procedure (to the nearest greater values from catalogues)
applied to the continuous optimal solution [12] leads to the structure which
is 12.6% heavier than those obtained by the enumeration method. Two dif-
ferent discrete solutions, corresponding to the same value of the objective
function, have been found.

Table 1. Optimal discrete solutions for ten-bar truss.

Continuous |Rounded off conti- Enumeration method

solution [12] |nuous solution [12]| solution 1 solution 2
A; [in?] 30.031 35.0 30.0 30.0
A, [in?] 0.1 0.1 0.1 0.1
As [in?] 23.274 25.0 25.0 25.0
Aq [in?] 15.286 18.0 12.0 12.0
As [in?] 0.1 0.1 0.1 0.1
As [in?] 0.5565 1.0 1.0 1.0
Az [in?] 7.4683 8.0 8.0 8.0
As [in?] 21.618 25.0 20.0 25.0
Ao [in?] 21.618 25.0 25.0 20.0
Ao [in?] 0.1 0.1 0.1 0.1
Weight [Ibs]| 5061.6 5809.169 5158.6106 | 5158.6106

In Table 2 the number of variants that have to be checked to find the
discrete optimum is compared for the knowledge-based and “standard” enu-
meration (without the knowledge module). The number of verified variants
for “standard” enumeration was chosen as a reference value (100%). It is
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seen from the presented example that the knowledge-based approach im-
plies an enormous reduction (with respect to the “standard” version) in the
number of variants that have to be checked to find the discrete optimum.
For a simple knowledge base composed of five rules, only for 8.49% of the
generated variants, the constraints had to be verified to reach the optimum.

Table 2. Number of checked variants necessary to find the discrete optimum
for 10-bar truss.

Standard enumeration method (no knowledge base) 100% 12 691 604
Knowledge-based enumeration method 8.49% 1076 912

5.2. Twenty-five-bar truss under two loading conditions

The weight minimisation of the well known twenty-five-bar structure
(Fig.3) is presented. The truss is designed to support two independent load-
ing cases summarised in Table 3.

5
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Fi1G. 3. Twenty-five-bar truss.

The structure is optimised under the constraints imposed on allowable
maximal displacement +0.35 in for all nodes in the X, Y, Z directions,
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Table 3. Loading components for twenty-five-bar truss.

Loading case | Node | Load X [bs] | Load Y [lbs] | Load Z [lbs]
1 Al 1000 10000 —5000
2 0 10000 —-5000
3 500 0 0
6 500 0 0
2 1 0 20000 —5000
2 0 —20000 —5000

and stresses and buckling limits in all members. The elastic stress limit is
Omax = £40000 psi. The 25-member elements are linked to 8 variables, the
cross-sectional areas of bars in 8 zones of identical elements, maintaining
symmetry of the structure. The optimal continuous results from [13] have
been taken as reference values. The definition of linking zones as well as the
corresponding allowable tension and compression stresses (including elastic

buckling), taken from [13], are given in Table 4.

Table 4. Linking zones and corresponding limit stresses

for twenty-five-bar truss.

zone | members | tension stress [psi] | compression stress [psi]
1 1 —40000 35092
2 2-5 —40000 11590
3 6—-9 —40000 17305
4 10-11 —40000 35092
5 12 -13 —40000 35092
6 14 - 17 —40000 6759
7 18 —21 —40000 6759
8 22 -25 —40000 11082

The following catalogue of discrete sections for each linking zone has been
chosen:

A; € {0.5; 1.0; 1.5; 2.0; 2.5; 3.0; 3.5} [in?], i=1,...,8.

For certainty coefficient ¥ = 450%, the analysis of stresses for the first
loading case has given the following relations in terms of design variables:

IF 1st_load_case THEN A; < Ag, A1 < As, Ay < Ag, Ay < A, Ay < Ag,
Ay < Aqg, Ay < Az, Ay < Ag, Ay < A7, Ay < As,
As < Ag, A5 < Az, A5 < A7, As < Asg,
Ag < A3z, Ag < As.
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The same analysis for the second loading case has led to

IF 2nd_st_load_case THEN A, < Aq, A1 < A3z, A; < A7,
Ay < A, Ay < As, Ay < Az,
As < Ag, As < Az, A5 < Aq,
Ag < Ay, Ag < Az, Ag < A7,
Ag < Aj, Ag < A3, Ag < Ar.
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The common part of the two sets results in expressions, precising simply
that the cross-sectional areas of certain bars have to be greater than those of
the other bars, according to the supposed stress distribution at the optimum.
The heuristics are included into the knowledge base and they are presented

below in the form as they look like in the computer program.

IF 25_bar_truss and 2_load_conditions

THEN zonel_less_stressed and zonej_less_stressed
and zoned_less_stressed and conditionl.

IF zonel_less_stressed THEN A; < As and A; < Az and A; < A7.

IF zone4_less_stressed THEN A4 < A; and A4 < Az and A4 < A7.

IF zone5_less_stressed THEN As < A, and As < A3 and As < A7.

IF condition] THEN Ag < As.

The optimal results for the minimum weight 25-bar truss are presented
in Table 5. The rounding-off procedure (to the nearest greater values from
catalogue) applied to the continuous solution from [13] leads to the structure
heavier by 8.8% than the result obtained by the enumeration method. The
number of variants that have to be checked to find the optimum is compared
in Table 6 with the standard enumeration algorithm. For five rules in the

Table 5. Optimal discrete solutions for twenty-five-bar truss.

Design Continuous Rounded off conti— Enumeration
Member variables | solution [13] nous solution [13] method

1 Ay [in?] 0.01 0.5 0.5
2-5 Az [in?] 1.9870 2.0 2.0
6—9 Az [in?] 2.9935 3.0 3.5
10 — 11 Aq [in?] 0.01 0.5 0.5
12 -13 As [in?] 0.01 0.5 0.5
14 -17 Ae [in?] 0.6840 1.0 0.5
18 —21 Az [in?] 1.6769 2.0 1.5
22 25 As [in?] 2.6621 3.0 3.0

Weight [lbs] 545.16271 628.8399 577.74305
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knowledge base only for 3.14% of the generated variants, the constraints
had to be verified to reach the optimum compared with the “standard”
enumeration version.

Table 6. Number of checked variants necessary to find the discrete optimum
for 25-bar truss.

Standard enumeration method (no knowledge base) 100% 419 395
Knowledge-based enumeration method 3.14% 28 714

6. CONCLUDING REMARKS

Including non-algorithmical and non-numerical ability into “conventional”
programs can improve performances of the engineering-oriented optimisa-
tion tools. The potential of symbolic computations applied to the problems
of discrete optimisation has been emphasised.

The knowledge-based approach can imply a considerable reduction (with
respect to the “standard” version) in the number of variants that have to be
checked to find the global discrete optimum. The simple heuristics, formu-
lated in the paper rather for illustrative purposes, enable a great decrease in
the dimension of the design space explored numerically by the constraints
module of the enumeration method. For small knowledge base, the number
of numerically checked variants is proportional to the CPU time needed for
the verification of the constraints.

A domain-specific knowledge is an active component of the discrete opti-
misation algorithm. The knowledge module applies the information to elimi-
nate “incorrect” design variables sets. The rules are represented in a “natural
language” of the problem, and are easy to change or modify. The algorithm
does not require much computer memory and can be easily adapted to par-
allel processing.

In the presented numerical examples, the decisions of skipping non-
promising variants have been obtained from the mechanical behaviour analy-
sis. Other sources of information like technology, economical properties, de-
signer’s experience or utilities aspects can be used as well to achieve a high
level of expert knowledge in engineering optimisation problems. It is hoped
that the knowledge-based approach used in conjunction with numerical tech-
niques can considerably improve the performances of other conventional op-
timisation procedures.
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