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WORK-HARDENING IN THREE-DIMENSIONAL SLIP-LINE FIELDS

R.L. BISH (MELBOURNE)

A slip-line field theory that includes rotational continuity, published in an earlier article
and shown therein to lead to Hill’s equiangular net, is extended to include work-hardening.
This object is achieved by applying a rule of work-hardening shown in another earlier
article to lead to the load observed in plane-strain extrusion experiments, work hardening
having been shown to make a substantial contribution. The three-dimensional slip-line
field theory developed in the paper is applied to the problem of a tube drawn through a
conical die. It is shown how the force necessary to hold the tube against the die and so to
prevent wrinkling may be calculated.

1. INTRODUCTION

In an earlier paper [1], the author presented a three-dimensional slip-line
field theory that could be applied to the ideal solid. The theory relies on
a principle concerned with the rotations of the crystal-grains within the
plastically deforming body, since with plastic deformation the grains rotate
to bring about a state of crystallographic alignment with respect to the
maximum shear surfaces. In precise terms this principle states that, if to
a fully textured, ductile, polycrystalline body forces are applied of such a
nature as to cause plastic flow, then the crystal-grains within the plastically
deforming region of that body will rotate in such a way as to present their
planes of crystallographic slip parallel to the surfaces of maximum shear
stress and will continue to do so as long as the deformation is continued. This
paper presents a further development of the theory in which work-hardening
is included.

In order to properly describe work-hardening in a three-dimensional slip-
line field we need to note the fact that rotation of a crystal-grain within a
plastically deforming fully textured polycrystalline body takes place by slip
occurring on two intersecting families of crystallographic planes within that
grain, the angle of rotation of the grain as a whole equalling the angles of ro-
tation of its individual rigid parts. Since rotation demands double-slip, which
is also essential for work-hardening [2], we may state [3, 4] a second principle:
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when a fully textured, ductile, polycrystalline body is plastically deformed in
any manner, work-hardening occurs due to the internal re-alignments alone
that accompany the external shape changes. The words, in any manner,
need to be emphasised because we may apply this principle in the interpre-
tation of uniaxial tensile test data so that analysis may then be made of
such diverse metal working processes as drawing and cold-forging.

It follows from the two principles stated that in any fully textured poly-
crystalline solid, yielding will commence when the greatest of the three maxi-
mum shear stresses in the body reaches a critical level depending upon prior
cold-work. This is, of course, Tresca’s yield criterion, which must apply to
the body under consideration because the physical and mathematical maxi-
mum shear surfaces remain mutually aligned and because the former are en-
veloped by planes (within each intersected crystal-grain) of crystallographic
slip. A flow rule also follows immediately from the first of the above two
principles but we shall see that, by commencing with PRAGERs flow rule
[5], the Tresca yield criterion becomes identical, for the solids that we are
considering, to the von Mises yield condition.

These principles, together with the stress-equilibrium equations, form the
basis of the three-dimensional slip-line field theory for work-hardening solids
now to be presented.

2. THE THREE-DIMENSIONAL SLIP-LINE NET

The yield cylinder associated with Tresca’s yield criterion is shown in
stress-space in Fig. la, where 0y, 02, 03 are the three principal stresses as-
sociated with the stress-tensor o;;. The sides A and B of this cylinder have
normals that are perpendicular to the os-axis, and a section through the
yield cylinder normal to the o3-axis is shown in Fig.1b. By Prager’s flow
rule, when the stress-point lies on either A or B in Fig. 1a, if ¢;; denotes the
strain-rate tensor, £3 equals zero. Likewise the sides C' and D have normals
perpendicular to the op-axis and when the stress-point lies on either of these
sides of the cylinder, €2 equals zero. When the stress-point lies on E or F
in Fig. la, these sides being parallel to the oy-axis, £; vanishes. The cases
where the stress-point lies on an edge of the yield cylinder are included in
this description since, as KOITER [6] points out, the stress-point must always
be stationed so that the normal to the yield surface remains definite. Conse-
quently, as shown in Figs. 1c, 1d and 1e, the slip-line net can only have one
of three possible configurations. In each case the net is confined to a family
of parallel surfaces of principal stress within the deforming body normal to
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which the strain-rate vanishes (Fig.2a). Within this three-dimensional net
we define a slip-line as a curve in space along which a surface of principal
stress, on which the yield criteria are satisfied, is intersected by a member
of one of the two families of orthogonal surfaces of maximum shear stress

associated with that principal stress surface.
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If, in the deforming body, the principal stress surfaces containing these
slip-lines have unit normal vector n then

(2.1) ¢ = 0.

If, moreover, w is the velocity in the n-direction then, for two neighbouring
points on an n-line to move with differing w-values, slip-surfaces must in-
tersect that line. But, by definition, the slip-surfaces are parallel to n, while
rigid-body rotation can make no contribution to the difference in w-values,
since the difference in position vectors of the two points lies parallel to n. It
follows that

Jw
(2.2) 5o =0
If therefore, a and 8 denote coordinates measured along the two families
of slip-lines and (u,v) are the velocities parallel to the a- and S3-slip-lines,
while (hq, hg, hy,) are the scale-factors for the respective («, 3, n)-lines, then,
by (2.1) and (2.2) and the formulae for strain rates (D.2), (D.3) in [1]

oh, Ohy

W Tl T

(2.3) u

In the notation of Fig. 2a the left-hand member in this equation equals (uj+
vm )-grad b, and there are only two ways in which (2.3) can be satisfied. In
the first, the velocity vector lies perpendicular to the gradient of h,, while
in the second case the gradient of h, vanishes.

In the former case there is no slip-line field in the usual sense of this
term and so we do not attempt to apply the slip-line field theory, choosing
more appropriate mathematical methods [7]. In the second case there is an
extensive slip-line net and condition (2.3), in this case, demands that

" oho_ o _
da ap
These equations lead to a constant-scale condition for the normal distance
between two n-surfaces characterised by n-values of n and n + dn is h,dn
and, by (2.4), this is constant over those surfaces (Fig. 2b); it is a necessary
condition for slip in the case of elements such as that shown in Fig. 1c.
There are also simplifications that can be introduced simply because the
net lies on a surface of principal stress, while the slip-lines on it lie parallel
to surfaces of the maximum shear stress. Thus

(25) Una = Unﬁ = 0’
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while we write
(2.6) Oua. =008 = Top. &

We may attempt to see if the modes illustrated in Figs.1c, d and e are
also governed by the von Mises yield condition, which requires that yielding
occurs when the shear elastic energy density in the solid reaches a value
characteristic of that solid and its state of prior cold-work. In this case, if

h(o1,02,03) =0

denotes the yield surface in o;;-space, it follows, by the flow rule, that

oh

deij = o
ij

),

where A is a multiplier, so that [8], if
1

2.5 5T

is the second invariant of the stress-deviator tensor

Tij = 0ij — 0ij(0ee/3)

then,
Oh
so that, by (2.1),
Tan =0
or, writing o, for o,,,
(2.7) o,

Substituting this result back into the von Mises yield condition we recover
Tresca’s yield criterion. In fact, the von Mises yield cylinder has the same
axis as that shown in Fig.1la but it is circular in cross-section, Eq.(2.1)
being true along six of its generators.

3. THE EQUATION OF WORK-HARDENING

Let us consider a process wherein the solid is unloaded from the plastic
state and is then reloaded to yield along a new path, so that all the elements
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of the body, within the new deforming region, must rotate in order to align
themselves crystallographically with the new surfaces of maximum shear
stress; a process during which the solid suffers no external shape changes of
plastic order.
If ;
w=¢n
is the rotation/rate vector of an element of the body and e is the velocity, due
to the rotation, we have for two neighbouring points with position vectors
r and r + dr

(3.1) dé +w x dr = 0.
On the other hand,

1- (w x dr) = ¢n - (dr x 1) = —Phs dB,
m-(wXxdr) = g;Sn-(erm)zého,da,

since hoda and hgdf are merely the components of dr tesolved along the
respective a- and SB-lines. Thus (3.1), resolved into its - and 3-component
equations, becomes

1-dé — ¢hgdp = 0,
m - dé + ha da = 0.

The maximum shear strain rate, ¥, equals the coefficient of hode in m-de or
of hpdf3 in 1-dé so that, from the above two equations, during re-alingment,

equals - along the a-lines or +<}5 along the f-lines. The signs are consistent
with a sign convention that applies to ¢. By the second principle of Sec. 1 it
follows that the shear-stress/shear-strain relation

T =17(7)

for the solid may be re-expressed in the form

(32) T =7(¢),

provided, of course, that the reference direction for ¢ is suitably defined.
Now we see that the relation between stress and strain, obtained by loading
a standard test-piece of the material, may be re-interpreted in such a way as
to provide the relation between the maximum shear stress and the net angle
within the deforming solid. We must now consider the equation governing ¢
itself.
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4. THE HARMONIC NATURE OF ¢

If w denotes the rotation-rate vector at any point in the solid, the spa-
tial continuation of w, which follows immediately from our first principle,
demands that

curlw = 0.

From this equation and the following formulae, where v is the velocity,

% {gradv + (grad V)T} §

divv = 0,

€

1
w= é—curl v,

we obtain
(4.1) dive = 0.
Moreover

Era 52 Eapy 2= 0,
and since

Eqa = é‘gﬁ =0,
we obtain, from (4.1), by analogy with the stress-equilibrium equations
(A.1), (A.2) in [1] or otherwise,

2y Ohy 07 _

= 3ﬁ+3ﬂ_0’
2 ohy 97 _,
hg da = Oa

From these equations we obtain

2 (1L ok
Oa \ h, 03

0 (1 0k
9B \ hg Oa

or, on substituting for the derivatives of Ay, hg (B.11), (B.12) in [1]

(4.2) 0 (h" a_¢>)

da \hy da

d (ha 09 _
+%(%%)'°

But n is measured along a principal stress axis, while ¢ is a physical rotation,
so that it necessarily follows, since torsion about n would imply shear stresses
on planes containing the n-direction, that

(4.3)

0¢ _
on

0.
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From (2.4), (4.2) and (4.3) we thus obtain, by the formula (B.15) in [1] for
the three-dimensional Laplace equation,

(4.4) Vip = 0.

5. STRESS-EQUILIBRIUM

On substituting from (2.4)-(2.7) into the stress-equilibrium equations
(A.1)-(A.3) in [1] we obtain, using the formulae for the derivatives of hq,
hs (B.11), (B.12) in [1]

do 0¢ Br = »
(8.1) hada > hada T hpop -
do 090 or
(5.2) moo8 T 2 ioop t da = O
do
(5.3) 5= 0.

But, by (3.2),
or _dr 0¢ or _dr 9¢

da ~ dpda’ 9B d 9B’
while, by (4.3) and (5.3), 0 = o(¢), so that

bo _doo b0 _do s
da  d¢ da’ 0B~ d¢ 9B

With these equations, (5.1) and (5.2) may be re-expressed in the matrix
form

d e
o—21dop dr h Do B 0
d do + 27d il 0 ,

T o+ 27d¢ h30B

for which the consistency condition is
do — 27d¢ dr :
dr do + 27d¢ B

or
(5.4) do? = dr? + 4r2d¢’.

This is the first order equation governing o and .
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On the other hand, on multiplying (5.1) by h, and differentiating with
respect to (3, we obtain
920 ¢ _,0r 99 (ha 07’)
2— 93 \ s —1=0

) 9008~ 2908 298 0 T 98 \ ks 0B

while, in a similar fashion from (5.2), we get

0% 0% ar 9¢ hg 0T\ _
5:8) 9008 T 79008 292 95 T a (h (901)
From (3.2)
or 0¢ Ot 0¢
(%) 998 98 0a
while, by (3.2) and (4.3),
or
(5.8) =0

Adding (5.5) and (5.6) and using (5.7) with (2.4) and (5.8) and the formula
(B.15) in [1] for the Laplacian in three-dimensions we obtain
2

9%0 2
(5.9) 28 98 + hahgVer =0,

which is the second order partial differential equation governing o and 7.

6. APPLICATION TO TUBE DRAWING

Figure 3 serves to illustrate a simple solution to (4.4) that describes
slip-lines on a principal stress surface that is of conical form. The expression
for ¢ on any one of these cones is

(6.1) ¢ =In(a/r),
the principal stress surfaces themselves being given by
r+(z—c)tanA =b,

where (r,2) are the usual cylindrical coordinates measured from an origin
located at the centre of the base of the cone, A being the semi-apex angle
of each cone, ¢ equalling a constant characterising the particular cone con-
cerned, while b is a further constant. Shown in Fig.3b is the field obtained
for A = /2 (z = c), while illustrated in Fig. 3 cis the field for A = 0 (r = b).
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We may apply the field shown in Fig.3 in solving the problem of a tube
drawn through a conical die, the tube being subjected in the process to
a reduction in diameter. Of course, the tube will wrinkle circumferentially
unless supported from the inside. The problem is to calculate the normal
stress, o, on a cone-shaped mandrel serving to support the tube; the die
and mandrel surfaces are assumed to be smooth.

For the slip-line field illustrated in Fig.3a we obtain, from (5.4), on
integrating along an a-line and letting oo and 7y represent the values of o
and 7 at the wider end of the tube, writing 7’ for dr/dy at 4 = ¢ on the
stress-strain curve for the solid, the result

In(a/r)
o= 0o+ / V(T2 + 4712 dg,
0
og + 70 = 0
so that, by (2.7),
In(a/r)

(6.2) On =—To+ / V(7)2 + 472 d¢.
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It is important to note that in choosing the lower limit of integration
in this formula equal to zero it has, in fact, been assumed that the tube
has been cold-worked in a previous operation leaving slip-lines of the form
shown in Fig.3c. When the tube has been fully cold-worked in this prior
operation, so that 7' = 0, Eq.(6.2) becomes, for the drawing of the tube
through a conical die,

(6.3) iy == —Too{l + 2ln(a/r)},

where T, is the shear yield stress of the material in its fully work-hardened
condition.

400 -
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FIG. 4. Stress-strain curve for mild steel; strain-aged and slightly deformed.

By integrating and resolving the stress parallel to the axis we may deter-
mine, from these formulae, the forces that need to be applied to a mandrel
located inside the tube, to prevent it from wrinkling. Results of computa-
tions of o, using tensile-test data for mild steel [9] (Fig.4), are shown in
Fig. 5.
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F1G. 5. Calculated normal stresses for the drawing of a tube through a smooth conical
die; the upper curve applies to fully cold-worked mild steel, while the lower curve is for
mild steel in the strain-aged and slightly deformed condition. Note that the two curves
become parallel after the strain corresponding to the point on the stress-strain curve at
which the work-hardening rate diminishes to zero.

7. DISCUSSION AND CONCLUSIONS

More than one of the modes shown in Fig.1 may be present in a plasti-
cally deforming body but each mode will govern flow in a different domain
of that body, while the boundary between two such domains will correspond
to an edge on the yield hexagon in Fig. 1. This effect may be seen on etched
sections through partially blanked thick mild steel plates [10], which need to
be studied in conjunction with the etched surfaces on those plates [11]. It is
the mode of deformation that we must constantly bear in mind when inter-
preting such macrographs. In fact, the conditions expressed by (2.4) define
slip-line fields in which (2.1) governs the flow, while (2.4) leads to a condi-
tion that seems to be required for metallic bodies deforming in the manner
shown in Fig.1c. This is easily seen to be the case in the tube-drawing ex-
ample studied in the paper. In the case of tube-drawing there will be, in
addition to the field shown in Fig. 3 a, small transition zones at the forward
and rear ends of the frustum-shaped region of the tube. In these transition
regions the mode is that of Figs.1d or 1e.

Work-hardening has been included in the three-dimensional theory de-
scribed and this has been achieved by extending a hypothesis proposed in
earlier papers; in the case of extrusion through a lubricated wedge-shaped
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die having two-dimensional symmetry, this hypothesis led to a predicted load
in very close agreement with that observed [12]. Most cold-worked metals
and alloys, moreover, work-harden to only a small degree and with these
metals the plastic limb on the stress-strain curve is almost linear. In these
cases the second term in the left-hand member of (5.9) vanishes by (4.4), so
that the same equation that governs o, as in the theory for the ideal solid,
also governs o in the case of a solid that work-hardens to a slight degree.
In the two-dimensional case this result leads to the corollary to Hencky’s
first theorem for o, which states that along any two a-lines the difference
in o, where those lines are intersected by a S-line, remains constant, and
vice-versa for any two (-lines intersected by an a-line. We may now ex-
tend this theorem to three-dimensional slip-line fields when the degree of
work-hardening remains small.

On the other hand, in the case of mild steel, by applying the theory to a
tube-drawing operation, it has been shown that the normal stress required
to hold the tube against the die surface and so to prevent wrinkling is, for a
prior cold-worked tube, initially in excess of twice that required for a tube
of steel in the condition in which cold-forming is usually carried out. The
slip-line field appropriate to the flange section in a cup-drawing operation is
the two-dimensional analogue of this tube drawing operation and is, in fact,
the field shown in Fig.3 b (in the case when the cup has circular symmetry).
The problem of calculating o in the flange section in a cup-drawing operation
was studied previously [4], using the two-dimensional and incomplete theory.
The feature illustrated in the present paper and which was overlooked in the
earlier analysis, is that a normal stress needs to be applied. We may, in fact,
prove this as follows. In the cases shown in Fig. 3, a normal stress is necessary,
except in the case of the field shown in Fig. 3 ¢, because, if do,, = 0, then, by
(2.7) and (5.4), either d¢ or dT must become imaginary, which is absurd. We
conclude, therefore, that wrinkling will occur, unless the mandrel or pressure
plate is loaded with the correct force. In the case of mild steel, calculation
has shown that work-hardening can make a substantial contribution to that
force.
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