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ROBUST STABILITY OF DYNAMICAL SYSTEMS

A. OSSOWSKI (WARSZAWA)

A general concept of the robust stability of uncertain nonlinear dynamical systems is
given. By using the method of optimal Lyapunov functions, the robust stability analy-
sis is performed in the general case of a multidimensional system described by ordinary
differential equations. The presented approach is applied to the problem of stability of
affine systems with nonstationary structural disturbances. An illustrative example of a
perturbed oscillator is given.

1. INTRODUCTION

There are many methods of stability analysis of nonautonomous dynami-
cal systems described by differential equations

(1.1) x = f(x,1), x€R"

where f(0,t) = O for every t > to. The approach applied to the problem,
and particularly the applied definition of stability is usually dependent on
the concrete form of the function f as well as on the aim of the analysis.
In science and technology we very often deal with problems of stability of
uncertain dynamical systems of the form

(1.2) x =f(x,p), xe€R", f(0,p)=0,

where parameters p € R¥ are not known exactly or can vary in time. That
is-why the above problem of stability (the so-called robust stability) has
received much attention in scientific literature (e.g. [1-8]) for several years.

The robust stability analysis is usually based on the method of Lyapunov
functions and many interesting results have been obtained mainly for linear
uncertain systems (e.g. [1, 2, 4, 5, 6, 8]). Relatively small number of works
concern essentially nonmlinear systems (e.g. [3, 7, 9, 14]). Moreover, as it
can be concluded from the literature, there are various approaches to the
robustness as a stability property of dynamical systems. Therefore, optimal
estimates of the stability region of a given system can be defined in different
ways what may lead to some misunderstandings.
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The main purpose of this work is to provide not a completely new method
of robust stability analysis of uncertain dynamical systems but rather a
general concept of the robust stability, bringing together the most popular
approaches to robustness that are found in the literature. The presented con-
cept of robust stability analysis is based on the method of optimal Lyapunov
functions ([3, 9, 11}).

In Sec.2 a general concept of the robust stability of uncertain dynami-
cal systems is described in terms of families of dynamical systems. Using
the method of optimal Lyapunov functions, various optimization problems
are formulated in Sec.3. In particular, since the results of robust stability
analysis obtained by a unique Lyapunov function are usually conservative,
it is shown in Sec. 3 how to improve stability estimates for a given uncertain
system by means of many optimal Lyapunov functions ([5]). The presented
approach is applied in Sec. 4 to the problem of robust stability of a wide class
of nonlinear uncertain systems. In particular, a class of multidimensional
linear systems under nonstationary perturbations is considered in details. An
illustrative example of a disturbed linear oscillator is given in Sec.5. Some
useful formulae and propositions concerning linear systems are provided in
the Appendix.

2. GENERAL CONCEPT OF ROBUST STABILITY

If we consider an uncertain system (1.2) with unknown parameters p
belonging to a subset P C R* for every t > tg, then we deal, in fact, with
the following family of dynamical systems

(2.1) (f,P):={k=1(x,p): x€R", pePC ¥}

Therefore, we will identify an uncertain system with the corresponding fam-
ily of dynamical systems. .

Since we will be interested, in this paper, in the global asymptotical
stability of the stationary point x = 0 of an uncertain system (2.1) in the
state space R", we assume that the origin is the unique stationary point of
(1.2) for each p € P. Moreover, we assume that fis such a function of x, p
that sufficient conditions for the existence of solutions of equation (1.2) are
satisfied.

In many practical problems of stability we can distinguish a constant
vector po € P of nominal values of parameters of the system for which the
system is stable. Then real parameters p of the system can be decomposed
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as follows
(2.2) p = p(t) = po + z(1),

where z(t) is a vector of perturbations which can be in general nonstationary.
Thus any dynamical system with perturbations can be represented by an
uncertain system (2.1) with varying parameters.

Since in real systems the possible variations of parameters are always
bounded we assume, without any essential loss of generality, that P is a
compact set in R¥ although such an assumption will not be always necessary
for our further considerations. In other words, we assume that the set Z of
admissible values of the perturbations is compact in Rk,

It is natural to introduce the following definition

DEFINITION 1. An uncertain system (f, P) is stable in P if and only if
for each fized p € P the system (1.2) is stable as an autonomous dynamical
system.

In the above sense the robustness of uncertain systems is understood in
some papers (e.g. [1, 2, 3]). It is clear, that this kind of stability (we say:
weak tobust stability — WRS) is of practical meaning in such cases only
when parameters of a given system are constant in time, although they can
be perturbed. However, in many practical problems parameters of the system
can vary in time, for example due to external nonstationary perturbations.
Then, it is necessary to consider a stronger stability property, namely, strong
robust stability — SRS.

DEFINITION 2. An uncertain system (f, P) is strongly robustly stable in
P if and only if for every function p : (to,00) — P the system

(2.3) x =f(x,p(t)), t=to

is stable as a nonautonomous dynamical system.

As it is seen, the weak robust stability ensures the stability of a given sys-
tem (1.2) for each fixed vector of parameters p taken from P C R¥, contrary
to the strong robust stability which ensures that the system remains stable
when its parameters p are varying in time within the bounds determined by
P. However, in some cases we want only the system to be stable locally in
P, i.e. to be stable under sufficiently small nonstationary perturbations of
parameters in a neighbourhood of each point p € P, then it is sufficient to
study the so-called locally strong robust stability — LSRS.

DEFINITION 3. An uncertain system (f, P) is locally, strongly robustly sta-
ble if and only if for each po € P there exists an open, bounded neighbourhood
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Uo C RF, containing po and such that for every function p : (tg,0) — Uy
the system (2.3) is stable as a nonautonomous dynamical system (i.e. the
uncertain system (f,Ug) is strongly robustly stable).

The above three natural definitions of the robust stability of uncertain
systems can be combined with any classical definition of stability of dy-
namical systems without uncertainties, and particularly with asymptotical
stability. To specify our considerations, we use in this paper the following
definitions of asymptotical stability which have a clear, practical meaning
and are closely related to the second method of Lyapunov of stability inves-
tigation. Namely:

e Ezponential stability (ES) (see e.g. [9, 13]).

DEFINITION 4. A dynamical system (1.1) is globally exponentially stable
if there exist positive real numbers A, v such that the inequality

) %l < Mlx(to)[le=t=%)

1s satisfied for every xo € R™ and t > 1.
o Quadratic stability (QS) (see [4]).

DEFINITION 5. A dynamical system (1.1) is quadratically asymptotically
stable if there exists a positive definite symmetric matriz S and a scalar
A > 0 such that

(2.5) xTSf(x,t) + f7(x,1)S x < —A||x||?

for every x € R", t > t, and for certain norm ||-|| in R™.
o Ezponential stability with respect to a norm (GS) (see [3, 9, 11]).

DEFINITION 6. A dynamical system (1.1) is globally exponentially stable
with respect to a norm ||-|| if there ezists a real scalar v > 0 such that

(2.6) [Ix()]] < lIxoll exp[—7(t — to)]

for every initial conditions x(to) = xo € R".

Applying the theorem on the equivalence of norms in R" it is easy to
deduce from Definitions 4, 5, 6 that

o the function Vg(x) = xTS x, with S > 0 satisfying (2.5), is a Lyapunov
function of the system,

¢ QS implies GS with respect to a certain norm ||-||g = VxTSx,

¢ GS implies ES,

e ES with a constant ¥ > 0 is a topological property of the system, i.e.
it does not depend on the choice of norm.
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For the above reasons we restrict, for convenience, our further consider-
ations to the class of norms of the form ||-||g (i.e. norms determined by a
positive definite quadratic forms), although we do not always make use of
this assumption.

Contrary to the exponential stability, the stabilities GS and QS are
strongly dependent on the choice of norm. In particular, a given dynam-
ical system stable exponentially with respect to a norm can be unstable
exponentially with respect to another norm. However, as we will see later,
these kinds of stabilities are more constructive and can provide in some cases
more detailed information about the behaviour of trajectories of the system.

Any real number v > 0 satisfying (2.4), (2.6) will be called the stability
index for system (1.1). It is clear that the optimal index satisfying (2.4) (or
(2.6)), i.e. the index

1 lIx(®)lls

20 *=supy = inf inf In ,
(=0 T = SUPY = ke 3t (T—10) | nli%olls

where 7 = A > 0 is fixed (or p = 1, respectively), is the most desirable
since it is simply the exponential rate of convergence of trajectories of the
system. Unfortunately, the stability index defined in such a way can rarely
be determined because calculations performed according to (2.7) require the
knowledge of solutions x(t) of the system for any initial condition x(to) = Xo.
For this reason it is usually necessary to find a suitable estimate of the
exponential rate of convergence. To do that we can apply condition (2.5)
for quadratic stability. If there exists a positive definite matrix S satisfying
(2.5) then, as one can easily deduce from the equivalence of norms in R",

there also exists a positive constant v such that Vs(x) < —29Vg(x) on the
trajectories of the system, i.e.

(2.8) “g; xTSf(x, ) + £(x,1)Sx < —27||x||3 -
x n

The above inequality leads directly to the exponential convergence (2.6).
Since the constant 7 in (2.8) satisfies the inequality

v < —xTSf(x,1)/(xTS x)

for every x # 0, an optimal estimate of the exponential rate of convergence
can be calculated from the following formula (see e.g. [3, 11])

o ke XS )
(2.9) 3 =9(S) = —sup R

where the supremum is over x # 0, ¢t > to. The major advantage of such a
definition is that it does not assume the knowledge of solutions x(t) of the
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system and therefore it is applicable. For these reasons we apply in further
considerations the following practical definition of exponential stability with
respect to a norm.

DEFINITION 7. A nonautonomous system (1.1) is said to be exponentially
stable with respect to a norm ||:||s if and only if the stability index calculated
from formula (2.9) is positive.

This kind of exponential stability will be denoted shortly by NS. Obvi-
ously, NS implicates GS with respect to the same norm.

In the particular case of linear stationary systems the equivalence QS<ES
is true. In fact, as we know from the theory of linear systems, any linear sta-
tionary system x = A x is stable exponentially in R™ if and only if all
eigenvalues of the matrix A have negative real parts, i.e. A is stable. More-
over, if the matrix A is stable, then for every positive definite matrix Q
there exists a positive definite solution S of the so-called Lyapunov equation

(2.10) ATS +SA =-Q.
Therefore, there exists a constant A > 0 such that

(2.11) YV xT(ATS + S A)x < - x|,
X€ER®

i.e. the system is quadratically stable or, more precisely, it is exponentially
stable with respect to the norm ||-||g. Hence, any stationary linear system is
exponentially stable if and only if it is quadratically stable (is exponentially
stable with respect to a certain norm ||-||g).

Definition (2.9) can be directly adopted to any uncertain system (f,U),
U C P. 1t is easy to see that the index for (f,U) should be calculated as
follows

xTS f(x,p)
2:12 3(S) = — sup sup —r——
(2.12) 7(S) it B g

The above formula expresses the fact that the exponential rate of conver-
gence for a given uncertain system is determind by the most disadvantageous
critical perturbations of parameters, namely the perturbations z that max-
imize the function under supremum (2.12) at each point x # 0 of the state
space. Therefore, Z = Z(x) i.e. the critical dynamics of the uncertain sys-
tem is realized in a feedback system described by the following autonomous
equations

(2.13) x = f(x, po + z(x)).
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Thus, in order to estimate robust stability properties of the uncertain system
(f,U) it is sufficient to study exponential stability of the corresponding
equivalent autonomous feedback system (2.13).

It is clear that the index defined by (2.12) is in general dependent on the
assumed set of parameters U C P i.e. ¥ = ¥(S,U). In the particular case
U = {p} the index v = ¥(S, p).

Replacing the word “stability” in Definitions 1, 2, 3 (replacing the last
letter “S” in symbols WRS, LSRS, SRS) by exponential stability (ES),
quadratic stability (QS) or by exponential stability with respect to a norm
(NS), one can produce directly the following kinds of robust stabilities:
WRES, LSRES, SRES, WRQS, LSRQS, SRQS, LSRNS, SRNS, SRNS, re-
spectively. The meaning of any letter in the above key words is obvious (for
example, LSRQS should be read as locally strong, robust, quadratic stability).

The summary of the introduced definitions of robust stabilities of an
uncertain system (f, P) is presented below:

WRES :
PEP
LSRES: V 3V = is ex .
Po€P T piTosTip {x f(x, p) is exponentially stable},
SRES :
p:T—P
WRNS: J V )
S>0peP
WRQS :
@ PEPS>0
SophR S>op:T—P {x = f(x, p) is exponentially stable
SRQS : V 3 with respect to the norm ||||S},
p:T—PS>0
LseNs: 3 V. 54 V.
S>0Po€P Uo p.:T—T,
LSRQs: V. 33 V_
pOEPS>0UO p:T__,Uo)

where T' = (19, 00) and Uy is an open neighbourhood of py.

We assume in our further considerations that the stability index 3(S, p)
is a continuous function of parameters p (in Sec.4 we prove this continuity
property for a wide class of uncertain systems). We also assume that the set
of admissible parameters P is compact in RF. Then it is easy to see that
the introduced robust stabilities satisfy certain logical relations which are
illustrated in Fig. 1.
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FIG. 1. The diagram of logical relations between various kinds of robust stabilities.

Most of the above relations are obvious. Therefore, we prove only the
implications: (WRNS => LSRNS = SRES) and (WRQS = LSRQS).

THEOREM 1. WRNS = LSRNS = SRNS.

P roof. Suppose that an uncertain system (f, P) is weakly robustly
exponentially stable with respect to a norm. Then, there exists a positive
definite n X n matrix S such that for every p € P the index 5(S,p) is
positive. Therefore, since 7(S, p) is a continuous function of p and P is a
compact set, also 7 = Ii)légzﬁ(s,p) exists and is positive. But as it follows

from (2.12)

. xT'S f(x) xTS f(x) =
”-;2%[—i‘;%m ==81D |~ e | O I

i.e. the exponential rate of convergence 5(S) of trajectories of the uncertain
system is also positive. Thus (f, P) is strongly robustly exponentially stable
with respect to the norm ||-||s.

THEOREM 2. WRQS = LSRQS.

Proof. Let P ={p,: o € X}.If an uncertain system (f, P) is weakly
robustly quadratically stable, then for every p, € P there exists a positive
definite symmetric n X n matrix S, such that 5(S,,ps) > 0. Since 5(S,, p)
is a continuous function of p, it is also positive for p belonging to an open
neighbourhood U, of p,. Thus, the uncertain system (f, P) is also locally
weakly robustly quadratically stable.

Furthermore, the following theorems are also valid in the case when the
set P is compact.

THEOREM 3. If an uncertain system (f, P) with a compact set of admissi-
ble values of parameters P C RF is weakly robustly quadratically stable then
there ezists a finite collection of norms ||-||i = |||ls,, ¢ = 1,2,...,1, such
that for every p € P, there ezxists an open neighbourhood Up of p such that
the system (f,Up) is strongly robustly exponentially stable with respect to a
norm from the collection.
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P roof. Since P = {p, : o € X}, the collection of the corresponding
open sets U,, 0 € X forms an open cover of P i.e. P C |J U,. Therefore,

ceX
since P is a compact set, there exists a finite subcover U; U ... U U; of P.
Hence, a finite collection of norms ||:||1, ..., ||| is sufficient to describe the

property of LSRQS of the system (f, P). This concludes the proof.

THEOREM 4 (see e.g. [13]). If the indexz 5(S,p) of the system (1.2) is
a continuous function of parameters p € P and the system with nominal
values of parameters pg is ezponentially stable with respect to the norm ||-||s,
then the system maintains the stability for sufficiently small perturbations
of nominal parameters.

P r o of. It follows from the assumption of stability of the nominal system
that 3(S, po) > 0. Therefore, since 3(S, p) is a continuous function of p, the
index (S, p) is positive for any p belonging to an open neighbourhood Uy
of po. Thus the system (f,Up) is strongly robustly exponentially stable with
respect to the norm ||-||g.

3. OPTIMAL ROBUST STABILITY ANALYSIS

In problems of robust stability we usually look for best estimates of the
stability properties of an uncertain system (f, P). To achieve this aim, an
optimal robust stability analysis should be performed on the basis of suitable
quality factors. According to our knowledge of the set P of admissible values
of parameters of the system, three main, practical cases of such an analysis
can be recognized:

1. P is known and completely determined

In such case all what we have to do is to study the robust stability of the
system in P. If we are interested in WRNS (SRNS) with respect to a given
norm ||-||g, we simply have to calculate a stability index v(S, P) < (S, P)
and check whether ¥(S, P) > 0.

In the other case, if the norm is not fixed (i.e. S belongs to a class S of
positive definite n X n matrices), then we can consider the following problem
of Lyapunov function optimization

(3.1) sup (S, P).
SeS

If there exists an optimal positive-definite matrix Ses (i.e. an optimal
Lyapunov function x7S x) for which (S, P) > 0, then the system is weakly
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(strongly) robustly exponentially stable with respect to the norm ||||§, with

the maximal value of the stability index (S, P).

If for every S > 0 the index (S, P) is not positive, then we may hope
that the system is at least robustly quadratically stable. In order to prove
WRQS or LWRES it is sufficient to find a finite, open cover Ui, U, ..., U
of P and the corresponding Lyapunov matrices Sy, S, ..., S such that each
system (f,U;), i =1,2,...,1,is strongly robustly exponentially stable with
respect to the corresponding norm ||-||;.

2. The shape of P is determined, the size is unknown

In this case we look for an optimal set of the robust stability of an
uncertain system in a given shape class of sets

P={P(a)cC R acAckRY,

where o = (aq, ..., ) is a vector of size parameters. We assume, for conve-
nience, that a; > 0,7 =1,2,...,[; (i.e. ¢ € Rl+) and P(0) contains only one
point po such that the system x = f(x, po), without uncertainties, is stable
asymptotically. In such cases we shall use the simplified notation (S, a)
instead of v(S, P(av)).

The main aim of the optimal robust stability analysis is to find an optimal
size vector @ € R' such that the uncertain system is robustly stable in P(at).
To do this, we have to introduce a suitable, real measure p of the stability
set P(a) as a quality factor for optimization. We can use, for example, one

of the measures
m(Ple))= a;, ~i = 12,41 po(P(a)):=ayrag- ... aq,

having a clear natural meaning, or another measures more adequate for our
special purposes.

Suppose that the norm ||-||g with respect to which the robust stability
analysis is to be performed is fixed. Then, applying a suitable measure u we
can pose the following problem of optimization:

(3.2) sup p(P(ar)),
a€eQ(S)

where Q(S) := {a € R} : 7(S,a) > 0}. In the result we obtain an
optimal vector of size parameters a and the corresponding stability set
P(&), optimal in the shape class P(a).

It is clear that the optimal vector &, obtained in this way, depends, in
general, on S i.e. & = &(S). Therefore, if S is not fixed but belongs to a class
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S of positive definite matrices, then we can perform further optimization
(Lyapunov function optimization)

(3.3) sup pu[P(&(S))]
SeS

in order to find an optimal matrix S the corresponding _optimal Lyapunov
function and the estimate of the stablllty set P = P[a(S)] of the maximal
measure y in the shape class P(a).

Furthermore, if we are interested in RQS of the system, then we can also
perform the analysis applying a number of Lyapunov functions in the same
way as it was mentioned in Case 1.

3. P is completely undetermined (unknown)

In the case when we have no information and no restrictions on P, we
usually look for an optimal (maximal) estimate of P. If we specify a shape
class P(a) of our estimate, then we can easily obtain for any positive definite
matrix S a partial estimate of P in the form of the sum

(3.4) P = U P(a
aeQ(S)

in the same way as in Case 2.

Similarly to Case 2 we can use suitable measures of Pg in order to perform
an optimization. By analogy, we introduce certain measures which have a
clear meaning and are of practical importance. Namely:

(3.5) pi(Ps) = sup {ai € RL : 4(S,(0,...,0,0;,0,...,0) > 0}
fori=1,2,...,l, and

(3.6) po(Ps) = p1(Ps) - p2(Ps) - ... - u(Ps).

It is easy to see that measure p; determines simply the size of Pg in i-th
base direction in R!, while i is a kind of an average size of Pg. We will use
the above measures in the next section.

If a suitable measure y of Pg is chosen, then one can calculate an optimal
matrix S from the optimization problem

(3.7) sup u(Ps)
S

unless S is fixed. If such a matrix exists then the system is robustly exponen-
tially stable with respect to the norm ||-[|g in the optimal set of parameters
of the maximal measure p.
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It is quite clear how to generalize the above optimization procedure to the
case when various shape classes Pj(a), P2(a), ...are used simultaneously
to estimate P. The main question arising here is what classes of shapes
and how many should be used in order to obtain a relatively simple and,
accurate estimate of the stability set. In practice we have at least one shape
class distinguished by our general expectations concerning a given uncertain
system. Moreover, in many real systems the uncertainties z1, ..., 2z are
independent and bounded (i.e. || < @; for certain o; € Ry,i=1,...,1).In
such cases, the rectangular shape class P(a) = {(q1,...,q): |¢| L i, 1 =
1,...,1} is naturally distinguished and very convenient for stability analysis.

On the other hand, if we are interested in RQS only, we can apply various
measures of Pg simultaneously. Then, in the result of the optimization with
respect to the measures we obtain, in general, various optimal matrices Sl,

Sg, 5 S ...and an optimal and open estimate of the RQS set in the form
of the sum

3.8 P=|JpP; .

(3-8) L]J S,

Similarly, an open question is here of what measures should be used
and how many in order to obtain a useful estimate of the stability set.
Having in mind Theorem 3 we may expect that a finite number of suitable
measures will be sufficient for obtaining relatively accurate estimates. We
hope that measures (3.5), (3.6) are sufficient for obtaining satisfactory results
of the robust stability analysis in many practical cases. The usefulness and
simplicity of these measures will be demonstrated in the next section.

4. ROBUST STABILITY OF AFFINE SYSTEMS

We apply in this section the presented method of stability analysis to
the problem of robust stability of an affine nonautonomous system of the
following form

(4.1) x = fo(x) + z1(Ofi(x) + . . . + 2 () Fr(x),

where x € R*, f; : R* — R", ;,(0) =0,¢=0,...,k and z,...z; are scalar
perturbations such that |z;(t)| < a;, 7 = 1,...,k for certain bounds ay, ...,
ar € Ry and for every t > to. We assume that all perturbations z;, 1 =
1,...,k are independent, i.e. each perturbation z; adds its own independent
contribution z;(¢)f;(x) to the system dynamics. No more information about
the perturbations is assumed to be known. Therefore, as it has been noted
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in Sec.3, there is a naturally distinguished rectangular shape class P(a) =
{z € R* : || < a1A...A|zk| < ai} which we apply in further considerations
for convenience. We also assume that the stationary part of the system (4.1),
i.e. the stationary system x = f(x) is asymptotically stable in R".

The above assumptions determine a wide class of uncertain systems so
that many nonstationary uncertain systems that are ecountered in practice
can be described by equations of the form (4.1). In particular, any system
(1.2), with differentiable function fand with sufficiently small perturbations
z = (21,...,2)] acting according to (2.2), can be approximated by the
system of the type (4.1) with fo(x) = f(x, po), fi(x) = 9f(x, po)/9pi, i =
| RS

It is easily seen that the problem of stability of (4.1) is equivalent to the
problem of SRS of the uncertain system (f, P), where

(4.2) f(x) = fo(x) + p1fi(x) + . .. + pefr(x)

and p = (p1,...,pk) € P(@)={qe€ RF: ¢ <y, i=1,...,k}.

In order to apply the results obtained in previous sections we perform the
SRNS and WRQS analysis of the system. According to (2.9), the stability
index (S, p) of the system for any p € P(a) can be calculated from the
following formula

(4.3) 3(S,p) = - sup [90(x) + P11 (%) + .- + Prow(x)]

where g;(x) = xTS f;(x)/||x||3. To ensure that 3(S,p) < oo for p € P(a)
we assume that

(4.4) V 3 3 Vsl < hillx:

i=1,...k |[|; hi>0 XER™

analogous inequality with a suitable finite constant A is valid for any other
equivalent norm ||| in R™. Moreover, for any positive definite matrix S

Obviously, if V(x € R™), ||fi(x)||; < hi||x||; for a certain norm ||-||;, then the

(4.5) 8:(S) = sup |gi(x)| < oo, femdicas ke
x#0

In fact, applying Schwartz inequality and the theorem on equivalence of
norms in R™ we obtain

lgi(x)| = xS £:(x)I/lIxII§ < [IxlIs|If(x)lls/IIx[I§ < hi(S) = const < oo

for every x # 0. Hence, also 6o(S) < 0.
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It is important for our purposes that the uncertain systems of the consid-
ered class has the continuity property, i.e. the index (S, p) is a continuous
function of p.

THEOREM 5. Any uncertain system (f, P) with P = P(a), f given by
(4.2) and satisfying (4.4), has the continuity property, i.e. the indez 3(S, p)
defined by (4.3) is a continuous function of parameters p.

Proof. Let p, p* be two vectors of parameters belonging to P(a) and
suppose, for instance, that (S, p) > 5(S, p*). Then

Sl s

7(S,p) - 3(S,p")| =

81;13 [90(x) + P1g1(x) + ... + prgr(x)] + 7(S, p)
X

< €,

il;% (P} = P1)g1(x) + .. . + (PF — Pr)gk(x)]

<|pi = palsup [g1(x)| + ... + [Pk — px| sup |gk(x)].
x#0 x#0

Thus, applying (4.5), we conclude that there exist positive constants §; =
0;(S), 7 =1,...,k such that

3(S,p) — (S, p™)| < 61|p1 — pil + - -+ Sklpr — Pl

for every p, p* € P(a). This completes the proof.

In the same way one can prove the following

THEOREM 6. The stability indez 5(S,a) (calculated according to (2.12))
Jor system (4.1) with P = P(a) and functions f;, i = 1,...,k satisfying
(4.4), is a continuous function of ay, ..., ap € R,.

Therefore we can apply to the system under consideration the results
obtained in Secs.2 and 3.

It is clear that in order to achieve the stability of the system (4.1), we
have to assume that the index

(4.6) 70(S) = 3(S,0) = — sup go(x)
x#0

is positive, i.e. the system (4.1) without uncertainties (¢ = 0) should be
exponentially stable with respect to a norm ||-||g. Then, it follows from the
continuity of J(S,a) that the index 5(S, ) remains positive locally in a
neighbourhood of o = 0, i.e. system (4.1) remains stable for sufficiently
small perturbation bounds aq,..., as.
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If the bounds aj,...,a; are known and fixed, then we can only check
whether J(S,a) > 0, i.e. whether the system is strongly robustly exponen-
tially stable in P(ou) with respect to a given norm ||-||g. We can also perform
a Lyapunov function optimization, for example (3.1).

Since the index 4(S, a) given by (2.12) can rarely be derived exactly as
a function of a, we can apply the following obvious estimate

(4.7) (S, o) > (S, ) = 70(S) — @161(S) — ... — aréi(S).

The above estimate is especially useful in the case when the size or the shape
of P for system (4.1) is not known. Since the approximate index ¥(S, o) is
a linear function of a, it is relatively easy to find the set Q(S) and an es-
timate of P for the natural rectangular shape class P(a). Indeed, the set
Pg defined by (3.4) is, in this case, a simple polyhedron with k + 1 ver-
tices: (0,...,0), (70(8)/61(8),0,...,0),...,(0,...,0,7(S)/6x(S)). We can
optimise Pg with respect to various measures e.g. those proposed in Sec. 3.
According to general definitions (3.5), (3.6), we obtain in our case

k
(4.8) po(Ps) = 61(557,“.(.5_)_] 5
(4.9) W FPg) = Y0(S)/8:(S), ti= 1o, Ko

The presented analysis becomes quite simple in the case of uncertain
linear systems of the form

(410) % = A()X + zl(t)Alx +...4 Zk(t)AkX,

where x € R", A;,1=0,...,k are real constant n X n matrices, Ag is stable,
21(t),...,2k(t) are scalar perturbations such that |z(t)] < a;, i = 1,...,k
for certain bounds ayq,...,a) € R_14_ and for every t > 1o (see, for example
).

Since the right-hand side of equations (4.10) is linear both with respect to
x and z = [z,..., 2], such systems are sometimes called bilinear systems.
Hence, system (4.10) remains linear with respect to the state x in spite of
the acting perturbations. Therefore we say that we have to deal with the
so-called structural perturbations. Each perturbation z(t), i = 1,2,...,k,
adds at any time ¢ > #o its own independent contribution z;(¢)A; to the
system matrix

(411) A(t) = AO + Zl(t)Al +...4 Zk(t)Ak .
In particular, a linear uncertain system

(4.12) x = A(p)x,
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with the parameters p € R™ perturbed according to (2.2) can be approxi-
mated, for sufficiently small perturbations z(t), by a linear system of the
matrix (4.11), where Ag = A(po) and A; = (0A/9p)(po), ¢ = 1,...,k.
Then A represents the stable, nominal part of the original system (4.10)
while the matrices A;, i« = 1,...,k determine the influence of the corre-
sponding perturbations z;(t) on the system dynamics.

It is easy to see that the functions gi(x) = xTS A;x/||x||} for system
(4.10) satisfy conditions (4.4). Moreover, according to (2.12) the stability
index for the system can be calculated from the formula

xTSAx <~ xTSAx
#13) M85 gupay (Ts'x_ +py m)

i=1

It follows from (4.13) that the supremum over z € P(a) is achieved for
(4.14) z = Zi(x) = a;sign (xTS Aix) 5 A2 RS T

According to our remarks given in Sec. 2, the above formulae can be inter-
preted as a multiloop feedback applied to the system, as is illustrated in

Fig. 2.
e 5
J= -

X=Agx+2z, A x+...+2, A, X

ak}— Zk

_ak

Il x7S A, x I|

'

JI X7S A, x ',
F1G. 2. Block scheme of the eduiva]ent stationary nonlinear closed-loop system.

In this way, the problem of stability of the nonautonomous (uncertain)

system (4.10) reduces in this approach to the equivalent problem for a nonlin-

ear but autonomous system (without uncertainties) which can be described
by the following equations

(415) x = Aox + El(x)Alx + ...+ Ek(X)AkX
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(see (2.8)). It is seen that (4.15) is a piece-wise linear system, since the
most disadvantageous perturbations (4.14) are piece-wise constant functions
(more precisely, they are bang-bang functions with quadratic switching sur-
faces). Note that the equivalent autonomous feedback system (4.15) is es-
sentially nonlinear in spite of linearity of the origin system (4.10).

To find the optimal stability index ¥, supremum (4.13) over x # 0 should
be calculated for perturbations given by (4.14). Therefore, formula (4.13) can
be rewritten as follows

T k 7 .
(4.16) #(S) = — sup (M 5 gy Bl A’xl).

s
xTSx == ' xTSx

The above supremum still is not easy for calculations in the multidimensional
case. However, it is possible to obtain analytical results by using estimate
(4.7). In the case of linear uncertain system (4.10), we have the following -
simple formula

XTS A()X

. S)= —
(4.17) Y0(S) i‘;% TS x

representing exponential rate of convergence of the system without pertur-
bations (see [3, 11]) and the formulae

xTS A;x

i 1§ s sulol
xTSx |’ W=

(4.18) 6;(S) = sup
x#0
It is obvious that §;(S) > 0 for ¢ = 1,...,k.

It is shown in the Appendix how the quantities (4.17), (4.18) can be cal-
culated. For a given matrix S they usually cannot be expressed explicitly
as functions of S although they can be calculated numerically by standard
methods. However, thanks to our estimate v(S,a) < 5(S, o), the approx-
imate index (4.7) is a simple linear function of the parameters ay,..., aj.
This makes it possible to obtain certain approximate but analytical results
which are of practical importance.

Performing the optimization with respect to the introduced quality in-
dices p;, 1 = 0,1,...,k, one obtains optimal matrices So, .. Sk, respec-
tively, and the correspondmg optimal Lyapunov functions. On this basis one
can find an optimal estimate (3.8) of the stability set

k
419)  U{(ar,...oon) € BE : 90(80) —aabr(8:) - ... — ax(8) 0}
1=0

confined to k + 1 hyperplanes in R*.
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5. ROBUST STABILITY OF AN UNCERTAIN OSCILLATOR

As an example, we consider in this section an oscillator described by the
second order equation

(51) 214:1 + 2])1.';31 + P21 = 0,

where z; € R, and p;, p; are uncertain parameters of damping and rigidity,
respectively. We assume the following decompositions

(5.2) p = (p1,p2) = (14 21(t), 1+ 22(t)) = po + 2,

where po = (1,1) represents the nominal values of the parameters and z =
(21, z2) are their perturbations. We also assume that the perturbations are
independent and bounded, i.e.
3 Vizl <, i=1,2
3 Yiawi<a =t
Thus the vector o = (g, ) € Rﬁ_ determines the perturbation bounds.

It is easy to write equation (5.1) in the matrix form (4.10) with k = 2,
x = [z1,1]T = [€1,22)T and

a0 1 a_fo0 w00
=1 =k =2l 14y 2o 27 -1 of

Thus the robust stability of the oscillator (5.1) can be studied by using the
method described in the previous section. Since the particular cases: (a; = 0,
az > 0), (a1 > 0, az = 0) of such an oscillator have been considered in details
in many papers (for example in [3, 9-10]), we concentrate here on the case
of two nonvanishing independent perturbations when a; > 0, az > 0 (see.
e.g. [14]).

According to (6.5), (6.8), (6.9), the exponential rate of convergence for
our oscillator is equal to

7(S, ) = min[y4,7-],

where

and

(5.3) v£(S)= 1ia1—\ﬂb_ (1a1)2+ (la— 2b2+2:((if§21)) — 1]+ az)? .
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Looking at (5.3) it is seen that it is worth, for simplicity, to restrict the
class of Lyapunov functions by the relation (see [3])

(5.4) a=2b>-2b+1,

where b € (1,2). Under such an assumption all quantities dependent on the
matrix S are in fact functions of a scalar variable b € (1,2). For this reason
the Lyapunov function optimization can be easily performed.

According to general descriptions given in Sec.4 it can be calculated that

11(S) = @1 max(8) = (b= 1)(2 = b)/b,
43(S) = azmax(b) = 2(b — 1)/b(2  b)

under assumption (5.4). The optimization (maximization) performed inde-
pendently with respect to f0(S) = @1 max(b) - @2 max(b) and p;(S) = @; max(b),
i=1,2,over b € (1,2), gives the following parameters of optimal Lyapunov
functions

bo =~ 1.5486, s ~ 2 6991,
b =2 ™~ 1.4142, @ =5—2V2 21715,
by = 1+2/221.7071, @y =242 =3.4142,

and optimal values of the measures:
po(So) 2 0.1467,  p1(S1) =3 -2V220.1715,  pa(Ss) =1,

respectively.

Applying the above results one can easily deduce from (5.3), (5.4) that
an estimate of the stability set of the oscillator in the space of parameters
a = (aj,a2) € R?‘_ can be described by the following inequalities (compare
with the result obtained in [14])

(5.5) 452 = b; — 201)(B2 = 1)* > (2biay + a3)?,  i=0, 1, 2.

It is easy to see that the obtained estimate in R_2*_ is bounded by three
parabolas. Applying approximate index (4.7) for the analysis and formulae
(4.17), (4.18) and performing an optimization e.g. with respect measures
(4.8), (4.9), one can obtain more conservative stability region of the form
(4.19) bounded by straight lines. On the other hand, one can improve the
result (5.5) by performing the optimization in a two-parametric class of
Lyapunov functions (i.e. without restriction (5.4)).



430 A. OSSOWSKI

APPENDIX

We will prove in this Appendix some useful formulae that enable us o
express stability indices of uncertain linear systems in terms of eigenvalues
of certain symmetric matrices.

Let A, C, S, D be constant, real matrices n X n, such that C, S are
symmetric ones, S is positive definite and D = v/S. Let us also denote by
Amin(C), Amax(C) the minimal and the maximal eigenvalue of the matrix
C, respectively. Then one can prove the following

ProprosITION 1 (see [3, 5, 9, 11])

xTS A x
o = e = Amin )
s1p = g = Mmin(C)
where
I
(6.1) O=So® AD '+ D 'ATD).
Proof
xTS A x xTDT(DAD“1 +D‘1ATD)Dx
= e . - BUp ™T
x#0 X' SX xTS x=1 2x'D'Dx
= = sup ¥ (-C)y = —Amax(—C) = Amin(C).
yTy=1
Similarly one can prove
PRroPOSITION 2
IxTSAx| '
il:él()) _;T?;— = max [l/\mln(c)l’ l/\max(c)l]a
where C is given by (6.1).
Proof
- |xTSAx| _ ]xTDT(DAD‘1 + D‘IATD)D x|
x;ﬁI()) XTS X - xTS x=1 XTDTD X

sup y!(-C)y
yTy=1

y

|

= max [[Amin(—C)|, [Amax(—C)|] = max [|Amin(C)|; [Amax(C)|].

Now we prove that in the general multidimensional case, the exponential
rate of convergence (4.16) of a given uncertain linear system can be expressed

= sup IyT(—C)yI=maX[

inf y'(-C)y
yTyzl y y=1
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in terms of eigenvalues of certain matrices (see [5]). First, let us introduce,
for a binary sequence 71,...,7%, 7; € {—1,1},7 = 1,..., k, the matrix B; =
Ao+ rai1Ay + ...+ rrar Ay and the corresponding characteristic index

xTSB.x
d:(S) = — e s
3L3) ,Sci% xT'Sx ’
where
.1 o
J:E_[(r1+2r2+...+2’° ) + (25 - 1)

It is clear that j = 0,1,...,2* for the corresponding series and, according
to Proposition 1,

Moreover, as one can easily prove, the following proposition is true:
PRroPOSITION 3

F(Sy@1yr sy )= min 2k[(lj(S)],

=04

where the index ¥(S, a1, ..., ax) is given by formula (4.16).

The above formula tells us that the minimal possible speed of exponential
convergence of trajectories of the system is achieved for certain constant
perturbations z; = 7, ¢ = 1,...,k, where 71,...,7; is a binary sequence
(see e.g. [5])

In particular, we have

Bo = Ap— a1Ay, By =Ao+ oAy, 7(S, 1) = min[do(S), di(S)]

for k = 1.
Similarly, for £ = 2, there are four matrices:

Bo = Ag — a1A1 — oA, B; = Ag+ 1Ay — a2A,,
B = Ag —a1A; + a2A,, Bs = Ag+ 1A + azA,

and the stability index

¥(S, a1, az) = min[do(S), d1(S), d2(S), ds3(S)].
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