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IMPACT OF A CYLINDER AGAINST A RIGID TARGET
PART II. INITIAL CONDITION

A. NOWINSKA (SINGAPORE) and W. KOSINSKI (WARSZAWA)

An analysis of widely known Taylor’s experiment that concerns the impact of short
deformable cylinders made of a rigid-viscoplastic material against the rigid target, is per-
formed. The case of axi-symmetric geometry with finite deformations and radial inertia is
considered. The velocity initial condition given by the jump of the vertical component of
the field does not belong to the problem solution as the equations describing the problem
do not permit the first order discontinuity. To create the procedure initiating a numerical
algorithm for this impact problem, the idea of a thin viscoplastic layer is introduced and
a parametric approximation of the velocity field in a power form is proposed. The velocity
field obtained from the approximation approches for ¢ — to the profile characteristic for
the viscoplastic model.

1. INTRODUCTION

There are several attempts to give the theoretical description and further
to analyse the so-called “Taylor experimental configuration” (see [1]). The
widely known Taylor’s experiment concerns the impact of short deformable
cylinders made of different materials against the rigid target. Numerous
authors carried out the one-dimensional analysis of that experimental con-
figuration assuming a rigid-viscoplastic material (see e.g., [2-5]). In 1991,
the first analysis for the case of axi-symmetric geometry with#finite defor-
mations and radial inertia using rigid-viscoplastic material has appeared
in [6].

One of the crucial points of the problem formulation is the assumption of
the initial conditions for that process. Some authors gave initial conditions
for the one-dimensional models in terms of velocity or uniaxial stress (cf.
[2-5]). However, in their formulation the material model did not take into
account the strain rate effects and the initial contact stress was finite (e.g.,
[1]), or they treated the material as a viscoplastic one and dealt with infinite
initial stress.

In the paper the idea of a thin layer near the contact plane in the
two-dimensional formulation is proposed. The global energy balance and
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the global momentum balance equations for the layer have been derived.
The discrete form of these equations supplies the numerical code (see [7])
for the first time-step.

2. FORMULATION OF THE PROBLEM

A short and stress-free cylindrical specimen strikes perpendicularly on
a rigid target with velocity vo. Thermal effects, body forces and friction
forces between the target and the specimen are neglected. However, radial
inertia and axi-symmetric state of stress only are taken into account. The
axial-symmetry condition allows to restrict considerations to the fields de-
termined for two space Euler variables z, 7 and the time 2.

)

t>t,

FI1G. 1. Specimen under deformation.

In the region W, (Fig. 1) the behaviour of the material is described by
the rigid-perfectly plastic constitutive equations (2.1) and (2.2) proposed by
PERZYNA [8].

3
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where d is the stretching tensor, s the deviatoric Cauchy stress tensor, J;
the second invariant of s, v the viscosity coefficient and k the yield limit
in shearing. Hence equation \/J; = & represents the yield condition. In the
problem under consideration, tensor d is equal to its deviatoric part because
of the incompressibility constraints trd = 0.

On the moving surface S4 (Fig. 1) separating two parts of the specimen,
the plastic one W, and the rigid one W; (where the condition VIe—k<0is
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valid), the relation v/J; — k = 0 holds. The following equation of the global
momentum balance governs the movement of the rigid part W,

(2.3) g% v(t)/dv =/tnd3+ / t, ds,

Wie Sa S5USe

where t,, (continuity of the traction was proved in [6]) is the traction (Fig. 1)
and v(t) is the velocity of the rigid part Wj.
The boundary conditions for ¢t > ty are given by

(24) Tn=20 on _5—1 U§5U§6,
(2.5) ven =0, Tn:-v=0 on S,
(2.6) v-.n = 0, Tn-t=0 on S3US7,

where T is the Cauchy stress tensor, T and n denote tangent and normal
versors, respectively, outside the region Wy, U W, (Fig. 1).

The initial configuration of the specimen xo and the striking velocity vg
describe the initial conditions at ¢ = tg as follows:

(2‘7) X = Xo,
(2.8) v-i=w, v-j=0 on W,

where x is the function of motion and yo describes the initial specimen
configuration, i and j are versors of the z and r axes, respectively. Hence for
t = to the velocity jump [v] = 0 — vy at the contact plane occurs.

The viscoplastic process for t > t, when Wy # () is governed by the
system of equations

(2.9) ov = div T,
(2.10) d= % [gradv + (grad v)T] "
(2.11) tr [gradv + (gra.dv)T] =0,

together with Eqgs. (2.1)-(2.3) and initial-boundary conditions (2.4)-(2.8).

3. DISCUSSION OF THE TYPE OF THE PDE SYSTEM

The determination of the type of the system of equations is an essential
point in solving the initial-boundary-value problem. It allows to impose the
admissible initial and boundary conditions for that problem.
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Let us make the inverse transformation of the constitutive equation (2.1).

) \/J—dl/s d
(3.1) s_nl:(T) H]\/_J_d’ Ja> 0.

Note that s is some nonlinear tensor function of the velocity gradient. If we
denote that function by § and recall the geometric relation (2.10), then the
constitutive equation (3.1) has the following form:

(3.2) s = §(grad v).

Recall the definition of the material derivative; then the system of Eqs. (2.9)-
(2.11) and (3.1) can take the form, with T = s + o1,

(3.3) div [s(grad v) 4+ o1] — g% —ogradvv = 0,
(3.4) tr [gradv + (gradv)T| = 0.

The equation (3.3) after transformation can be written as follows:

ov

(3.5) 5

1 1 - ;
+gradvv — —grado — —divs(gradv) = 0.

o o
The last vectorial term of the above equation can be expressed in the indicial
notation

1 1 05y

3.6 — [divs(grad v)], = — —;..
(36) § [avs(erad v, = - Sy,
where v;; = v;;;, and the semicolon denotes the covariant differentiation. If
we introduce the nonlinear matrix function A with the components A =
05k1/0v;; and denote by ¢ multiplication with contraction related to the
above indicial notation, we get

1
(3.7 édiv§(grad N = EA(grad v) @ grad grad v.

Finally, the system of Eqgs.(2.9)-(2.11) and (3.1) can be expressed in the
following matrix form

ov
(3.8) # Bt P grad v L - grad grad v ’
' Jdo grado 0 |gradgrado ’

at
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where the matrices P, Q, R are to be specified from the Eqgs. (3.3)-(3.4)
after the specification of the matrix A.

The above system of equations is unclassifiable as the first order system
(2.9)-(2.11) and (3.1); reduced to the form (3.3)—(3.4), it is a mixed system
of different order equations and verges upon the parabolic system, because
two scalar equations (3.5) are, for a fixed s, parabolic ones if the matrix A
(see (3.7)) is nonsingular.

Because of the unclassifiable character of the system, one can not de-
termine a priori the initial-boundary conditions but it can be done on the
basis of heuristic considerations and physical interpretations.

4. VELOCITY FIELD APPROXIMATION

Now we propose the velocity field approximation for the discrete initial
condition formulation investigated in the paper.

The impact, as a physical event, implies a finite initial stress in the con-
tact plane. The initial conditions for the impact problem can be posed by
introducing into the problem the initial stress or velocity jump at this plane.
In the paper [6] it was proved that the initial condition (2.8) does not be-
long to the problem solution because, as the analysis on the moving surface
shows ([6]), the equations describing the problem do not permit the first
order discontinuity of the velocity field.

Taking into account the discontinuity of the physical initial conditions
(2.8), one should look for the solution of this problem in a one-sided open in-
terval (o, 1x]. Hence, the numerical solution of this initial value in the whole
interval (Zo,%x] needs an extra treatment of the initial conditions. Similar
difficulties take place in the one-dimensional case for the rigid-viscoplastic
rod impact. The papers [3, 5] and [9] related to the Taylor’s experimental
configuration for the one-dimensional formulation and rigid-viscoplastic ma-
terial, give some interesting treatments of initial conditions. In [3] e.g., the
non-physical instantaneous cross-section change is assumed to achieve the
finite initial stress at the impact plane. The contact plane is the shock wave
front, because the artificially introduced strain jump implies the velocity
jump, what can not occur for the rigid-viscoplastic model.

In [5] and [9] the one-dimensional rigid-viscoplastic model is considered
and consistently, the initial stress at the contact plane tends to infinity. In
the numerical solution of [9], the authors have assumed that the initial stress
is 200 so (where sq is the yield limit), and after four time steps the proper
distribution takes place.
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The present paper proposes the velocity field approximation for the first
time step. Let us consider the first stage of the cylinder impact. The veloc-
ity of the elastic wave in the rigid-viscoplastic material is formally infinite,
so the elastic loading and unloading of the stress-free specimen take place
instantaneously after it gets in contact with the rigid target at ¢ = ty. If the
velocity of striking is high enough, yielding of the specimen near the contact
plate takes place. The surface bounding the viscoplastic region will then be
moving towards the free end of the specimen.

One can assume that for the small time increment At (around 10~7s;
notice that the duration of the deformation process is within the range of
10%s =+ 10~°s, see [5]), the viscoplastic layer between the contact plane
and the moving surface is a cylinder with the base identical with the initial
cross-section of the specimen.

Let us also assume that the height of this viscoplastic layer z,, is of the
order of 10~%m, so we consider it to be small as compared with the base
radius (Fig.1).

We treat the above mentioned time increment as the first time step for
the computational code. In order to give the initial velocity field profile,
one has to determine the position z, (Fig.2) at the moving surface for
t = to + At. For this reason we have to formulate the global energy balance
equation for the deforming specimen (see Fig. 1) for ¢ € (to, o + At).

Ar

target >

e

Fia. 2.

The general form of this equation is following (see [7])

dK
(4.1) /terdv+—d—t—0,
B

where K is the kinetic energy of the specimen, while By is the specimen
configuration for ¢ € (1o, to + At).

Let us present this equation for the velocity field we are searching for.
For this field the incompressibility and the kinematic boundary conditions
have to be satisfied. Moreover, due to the geometry of the viscoplastic layer
(zg, ® 107° +107*, Ro = 1072), the homogeneous boundary conditions at
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the contact plane and at the moving surface being
(4.2) A0, 7 7) =0, VL) A 8 ) = (1),

where v, is the component of the velocity field v, z4(t) is the position of the
moving surface for ¢ € (o, 1o+ At) (see Fig. 2), one can assume the condition

dvs

(4.3) =

=0 on Wy for t€ (to,to+ At)
to be satisfied.

For the incompressibility equation in the region W
ovy,  Ov,
oz i or

one can give the following solution for the velocity component v,:

(4.4)

+X =0,

(4.5) V% -7;'211,(7'0) + (%) /T—f(:l:,s,t)s ds.

Due to the symmetry condition on the z-axis v,(z,0,t) = 0 and passing
with 7o to zero, in the last expression f = dv,/0z, we get the final form of
the solution (4.5).

Using the above relation one can express the velocity component v, as
follows:

vy
(4.6) by -—/ s ds.

With regard to (4.3) we get the relation

(4.7) Vp = —= —T.
In order to approximate the velocity field in the viscoplastic layer for
t € (to, 1o + At), the following form of v, is proposed:

1AW 4 1AW
(4.8) va(z,t) = — xsitg 2&23

+ B(t)z + C(t),

where functions A(t), B(t) and C(t) are to be specified from the boundary
conditions

d
—uvz(z, 7,1 = 0, v.(0,7,t) =0,
oz ( ) z=z4(t) ( )

4.9
(48) ve(Zg(L)imit) . 0(t).
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These conditions follow from the observations that the gradient jump [gradv]
on the moving boundary S4 vanishes (see [6]) and gradv = 0 on W,.

Taking into account the above boundary conditions, the velocity compo-
nent v;(z,r,t) is given by the polynomial

o) 4, oD) 5, ()
A0 "m0

and the gradient component by

(4.10) va(z,1) =

t t t
”4( ) 23 6&3) 2249 v(t) i
O g z(t)
Taking into account the incompressibility condition (4.6), the v, compo-
nent is given by

(4.11) %v,(z, ty=4

(4.12) mumﬂz_kﬁﬂa_3W)z+NﬂP

& z
zy(t) 25(t) & g4(t)
and satisfies the condition v,[z,(t),7,t] = 0.

Recall that the stretching tensor component d,, vanishes on S, (due to
(2.1), (2.5), cf. Fig. 1), hence taking into account

(4.13) dyy = % (.‘9& N Bvr)

ar oz

and the assumption for the thin Viscoplastic layer dv,/dr = 0, we get for
t € (to,t0 + At] the following condition

=0

r=0

iv,.(:v, T, t)

(4.14) 5

for t € (to,t() + At]
As all the gradient components disappear on the moving surface Sy, the
condition

=0

r=14(t)

(4.15) ve(z,r,t)

oz
has to be satisfied.

dv,
After differentiation of (4.12), the gradient component 5 —(z,r,t)for the
7
thin viscoplastic layer takes the form

(416) %vr(z,r’t) = - <6:Lv;((tt)) 2 — 6;%(;2) .’L‘) T

Note that now the conditions (4.14) and (4.15) are satisfied.
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The above considerations lead to the conclusion that the velocity field on
W given by polynomials (4.10) and (4.12) satisfies the kinematic boundary
conditions.

Let us assume the functions v(t) and z,4(¢) to be affine
(4.17) o(t) = %t oo,  z,(t) = %t
for t € (to,to + At) and for the small time increment At =~ 10~7s, where
= ’U(to + At)

a) Vx t=t,
|
Ly x
Yo
b) Ve 4 (:to’
|
Loy x
Yo
¢) ve A t=t,
)
Ly x
d) Ve &
t=tg
\ 1
Lo X
FiaG. 3.

The plots of the calculated velocity components are given on the graphs
above (Fig. 3). Their limiting values are as follows:

lim+ Vo(25(2)s 7, 1) = 100,

t—tg
lim v,(0,r,t) = 0,
t——-»tg'
(4.19) :
lim v.(z4(t),r,t) = 0,
t—td

lim v,(0,7,t) = oo.
t—-»tg'
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Introducing the constitutive equations (2.1) and (2.2) into the equation
(4.1) we obtain the global energy balance equation for a rigid-viscoplastic
rod striking a rigid target in the following form:

Ry z4(t) 1/3
(4.19) 4/ / n[(‘/T‘Td-) +1] Vardedr

0 0
Ry Lo

d
d—g//[ z,r,t) + vi(z, rt)]rdwdr—O
The first term represents the plastic work rate for the viscoplastic layer,

where

3 z

T g 1 1
(4.20)  Jalz,mt) =) [3 (%40) BEON xg(t)>

iEz T :
(35~ 0) }

while the second one expresses the time derivative of the kinetic energy of
the specimen.

For the numerical calculation it is more convenient to use the equation
given below instead of (4.19),

to+At z4(t) Ro ~—\ 1/3
(4.21) / / /H [(%) + 1} ViJdrdzdrdt
0

0 0

1

[vf,(a:, r,to + At) + v3(z, 7, t0 + At)] rdz dr

+
NS
b L

1 i
L §9123(1:0 — zg, )0} - 591331:0@3 =0,

where the second and the third terms express the kinetic energy after the
impact, i.e., for t = to + At, and the last one represents the initial energy of
the specimen; v, and v, are given by (4.10) and (4.12).

The solution of the system of equations composed of the last relation for
the unknown quantity z,4; together with the basic system of equations with
the initial-boundary conditions (2.1)—(2.11) formulated for the recurrent
iteration (see [7]), gives the procedure for the first time step.
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5. CONCLUSIONS

To conclude the above considerations, one should notice that the initial

condition for velocity given by the jump of the v, component does not belong
to the problem solution since the equations describing the problem do not
permit the first order discontinuity of the velocity field. This viscoplastic
process has to be considered in a left-sided open interval (¢,tx] and the
component v, for t — tp is a function with a high gradient.

To create the procedure initiating the numerical algorithm for this impact

problem, the idea of a thin viscoplastic layer is introduced, and the par-
ametric approximation of the velocity field in the form of (4.8) is proposed.
The velocity field obtained from the approximation approches for t — #o the
profile characteristic for the viscoplastic model.
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