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ON A CERTAIN CLASS OF STANDARD STRESS FIELDS
FOR PLASTIC DESIGN

W. ZOWCZAK (WARSZAWA)

The paper presents a certain type of statically admissible stress fields that can be useful
in plastic design of structural elements of complex shape. It is shown that these stress fields,
constructed with the use of the method of characteristics, give better (more economical) es-
timates of designed shapes than the fields obtained by means of the piecewise-homogeneous
stress field technique. Plastic design of a transversely loaded beam is presented as an ex-
ample of practical application.

1. INTRODUCTION

A number of papers have been devoted to plastic design of structural
elements of complex shape, such as machine elements or connections of
steel structures. These papers contain numerous theoretical solutions as well
as examples of experimental verification. An extensive description of this
method of strength design and a review of the results obtained is presented
in the monograph by SzczEPINSKI and SZLAGOWSKI [3].

Plastic design (or limit capacity design) is based upon extremum prin-
ciples of the mechanics of plastic flow. According to these principles, upper
bound on the load bearing capacity of a structural element may be found
from any kinematically admissible collapse mechanism. Lower (safe) bound
on the load bearing capacity may be found from any statically admissible
stress field, i.e. such field that satisfies the equilibrium equation and stress
boundary conditions and in any point of which the yield condition is not
violated.

When the shape of a structural element is not prescribed in advance but
is to be designed, the outer contour of the statically admissible stress field
gives us safe estimate of this shape.

Two general methods of construction of stress fields for plastic design
are applied. The first one, described in detail in [3], consists in creating
piecewise-homogeneous stress fields, i.e. fields composed of a certain num-
ber of homogeneous sub-fields separated by the lines of stress discontinuity.
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It turns out however, that in many cases similar but more economical solu-
tions may be found by means of the method of characteristics (slip-lines),
well-known from the mechanics of plastic flow.

This paper describes a certain type of statically admissible stress fields
of this kind. These fields may be used as standard elements in larger stress
systems, replacing analogous piecewise-homogeneous solutions. The results
are presented in a form suitable for practical use. Possibilities of application
are illustrated by an example.

2. FORMULATION OF THE PROBLEM

Consider a plane stress field, generated by external load distributed along
the boundary ABB’'A’ (Fig.1). The loaded boundary consists of three sec-
tions: AB, BB’, and B'A’, whose lengths are respectively a, 2b and a. The
outer sections form angles ¢ with the central, horizontal one (0 < ¢ < 7/2).
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Suppose, that the load is at every point normal to the boundary, and
that along the sections AB and A’B’ it is equal to the yield stress op), while
along the BB’ it equals ¢ < 0. Tractions ¢ must satisfy the equilibrium
condition

(2.1) q = —opic/b = —opja(cose)/b.

The boundary AK A’ is stress-free and is a priori unknown. The problem
consists in constructing statically admissible stress field compatible with the
above boundary conditions, external contour of which will determine the
boundary AK A’. We are looking for the most economical solution, i.e. such
estimate, that requires a possibly small volume of the material.
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It is assumed, that the stress field is symmetrical with respect to the axis
K L. 1t is also assumed, that the element under consideration is of constant
thickness, that the stresses perpendicular to the plane of drawing vanish
and that the material obeys the Tresca yield criterion. Thus, the principal
stresses in the plane of drawing must satisfy the inequalities

(2.2) lo1| < op,s loz| < g, loy — 03| < oyl

3. PIECEWISE-HOMOGENEOUS SOLUTIONS

Elementary solution of the above defined problem is shown in Fig.2.
The stress field consists of three homogeneous sub-fields ABC, BB'C and

FiG. 2.

A'B'C. The material in the regions ABC' and A’B’C undergoes uniaxial
tension equal to the yield stress o). BC' and B’C’ are stress discontinuity
lines. In the region BB’C there is a homogeneous biaxial state of stress. The
stress in vertical direction ¢ is given by the formula (2.1) while the stress p
(horizontal) is equal to

. (c/b)tge
& P TE /B 1)

The stress field remains statically admissible for the values of the charac-
teristic parameter ¢/b within the range 0 < ¢/b < cose. In the limit case
¢/b = cose, we get the standard system of discontinuity lines, described in
[1-3]. Thereis k = A =¢/2,a = b and

sin¢

p= 1+ cose

Opl -
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Since in this case p — ¢ = oy, the material in the region BB'C is in the
plastic state.

The above stress field has a simple structure and can be easily constructed
for a wide range of characteristic parameters ¢ and b/c. It gives, however,
rather crude estimate of the optimum shape, especially for small values of
the angle ¢.

Better estimates may be obtained by means of more complicated stress
fields shown in Figs.3 and 4. The first one consists of six homogeneous
sub-fields and its stress-free contour includes two corners C' and C’. The
area of the field is thus smaller than in the previous case. The construction
of this field (denoted as elementary stress field of type A) is described in
detail in [3]. This description includes formulae for calculation of the state
of stress in every region, so it will not be repeated here.
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The monograph [3] contains also a detailed description of the second
field (Fig.4), denoted as the elementary stress field of type B. This field
is composed of ten homogeneous sub-fields, and its free boundary includes
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three corners. And again, the area of this field is smaller than that of the
field of type A.

So, increasing the number of homogeneous regions within the stress field
and the number of corners at the free boundary, may result in a more eco-
nomical solution. This observation led to the supposition formulated already
in monograph [1], that the best solution of this problem (for the case ¢ = 0
and ¢/b = 1) can be found as a limit of a certain sequence of solutions. Each
consecutive solution in this sequence includes greater amount of homoge-
neous regions, while the differences between the stress tensors in most of the
neighbouring regions become smaller.

This limit can be found by direct application of the slip-line method. The
solution for a more general case 0 < ¢ < 7/2 and varying values of the ¢/b
ratio will be presented later on.

4., METHOD OF CHARACTERISTICS (SLIP-LINES)

The method of characteristics (slip-lines) is a standard method of solving
of various plane strain boundary-value problems in the mechanics of plastic
flow. It can be also applied to plane stress problems (as the one discussed
in the present paper) provided the principal stresses are of opposite signs.
The equilibrium equations together with the yield condition form a system
of partial differential equations which is of hyperbolic type, thus it has two
families of real characteristics (denoted as a- and §-lines). They are deter-
mined by the equations

dy
dz

dy s 5
(4.2) is tg (cp - Z) , X — ¢ = const (B-family),

(4.1) tg (cp + Z—) ; X + ¢ = const (a-family),

where the function
1
(4.3) X = 5(01+ 02)/opi
(01,2 - the principal stresses), and ¢ is the angle between the z axis and the

direction of o (larger principal stress). Since for the Tresca yield condition
there is 0y — 03 = op), thus we have

i 1
(4.4) o1 = x+§ Opl d2=\X~3 Opl -
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It follows from (4.1) and (4.2), that characteristics of both families form
an orthogonal net and are inclined at angles 7 /4 to the principal directions,
so they coincide with the lines of maximum shear stress (slip-lines). The
method of solution consists in numerical integration of the equations of
characteristics. As a result, one obtains the coordinates of all the nodes of
the net and the corresponding values of the functions x and ¢ describing
the state of stress at each node. The method of characteristics is described
e.g. in [3] or in any other monograph or textbook concerning mechanics of
plastic flow or its applications and it will not be presented here in more
detail.

5. SLIP-LINE SOLUTION

The solution to the problem under consideration, obtained by means of
the method of characteristics is presented in Fig.5. There are two slightly
different versions of this stress field shown respectively on the left and on
the right-hand side of the axis of symmetry.

The external loads distributed along A BB’ A are the same as for the stress
fields presented above. The boundary AB is loaded by uniaxial uniform
tensions of magnitude o). The same state of stress exists within the whole
region ABC bounded by the slip-line BC' which belongs to the a-family.
At the point B we have discontinuity of the stress boundary conditions.
Assume that this point is a center of a fan of slip-lines of the a-family with
the angular span equal 7. The a-lines within the fan are straight, so, along
these lines ¢ = const and, according to the formula (4.1), ¥ = const i.e. the
state of stress does not change. It does however change along the f-lines,
which are the family of circular arcs with the center at B. The curve CD
belongs also to this family. The state of stress at the point C is the same
as within the triangle ABC, i.e. o1¢ = op1, 02¢ = 0, oc = 7/2 — ¢, and,
according to the formula (4.3), xc = 0.5. At the point D we have

(5.1) $p=7[2—¢€—17.

It follows from Eq.(4.2);, that

(5.2) XD =Xc —¢c +¢p =0.5—7.
Thus we have

(5.3) o1p = (1= 7)oy, 02D = —Y0p.
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The same state of stress exists at every point of the line BD and is assumed
to exist within the whole region BDIH.

We also assume existence of the homogeneous state of stress in the trian-
gle BH B’ adjacent to the boundary BB’. In order to assure compatibility
with the boundary conditions on BB’, the principal directions in this region
must be respectively perpendicular and parallel to the boundary, and the
principal stress in the perpendicular direction must be equal q. BH is the
discontinuity line. Figure 5b shows an element of this line (the arrows point
at the positive directions of all the stresses). The equilibrium equations are
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as follows:

(5.4) pdlsin A o ty dlsin pcos(A — p) — ta dl cos psin(A — p) = 0,
' —qdlcos A — ty dlsin psin(A — p) — tadl cos pcos(A — p) = 0,

where t; = o1p, to = oyp are principal stresses in the region BDIH, A is
the angle of inclination of discontinuity line with respect to the horizontal
direction, and p is the angle between the discontinuity line and the principal
direction of the stress ;. Substituting into these equations the formulae (5.3)
and taking into account trigonometric identities, one obtains the following

(5.5) (p+)sin A = sin pcos(A — p),
. (94 7)cos A = —sin psin(A — p),

where p = p/op and 9 = g/op = ¢/b. Since slip-lines form angles 7/4 with
the principal directions, A and p must satisfy the geometrical relation

(56) €+")/+)\—p,=7'['/2.

The quantities € and q in the above equations are the problem parameters
and are assumed in advance. The span angle of the fan 7 is to be chosen and
is arbitrary to a certain degree. The question of the choice of a particular
value of 4 will be discussed later on. Having chosen the value of 7, the other
unknown quantities A, 4 and p may be calculated from the set of Egs. (5.5)
and (5.6).

The assumption of a homogeneous state of stress in the region BDIH
causes, that the slip-line DI (continuation of the arc C'D toward the axis of
symmetry) is a straight line. According to Eqs. (4.2), the course of the whole
characteristic C'I uniquely determines the state of stress along it. We can
then solve the so-called inverse Cauchy problem based upon thé known state
of stress along CI and the condition that the boundary C'E is stress-free.
The relations that determine this boundary are
(5.7) % = tgy, x = 0.5.

The numerical procedure of solving the inverse Cauchy problem in such
case is described in [3]. The solution determines the unknown course of the
stress-free boundary CE and the stress field within the whole region CDIE.

The discontinuity line BH intersects the axis of symmetry at the point
H. This point is assumed as the beginning of another discontinuity line,
separating the stress field being a solution of the inverse Cauchy problem
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(and constructed by the method of characteristics) from the stress field
adjacent to the axis of symmetry. This stress field must assure equilibrium
between both the symmetrical parts of the element. It is thus convenient to
assume that principal directions within this field are respectively parallel and
perpendicular to the axis. Denoting the principal stresses by s;, s; (Fig. 5 c),
we get the following equilibrium conditions along the discontinuity line

(5.8) sy dlcosn — oy dlcos(n — @) cosp + o2dlsin(n — ¢)singp = 0,
' spdlsinn — oy dl cos(n — @) sin ¢ — o2 dlsin(n — ¢) cosp = 0.

As previously, in Fig. 5 c the positive directions of all the stresses have been
shown (in fact o2 < 0).

If we assume the particular value of s; in the above equations, we may use
them for numerical integration of the discontinuity line. At each particular
point of the line, the state of stress determined by the slip-line field (i.e. the
values of 01, 02 and ¢) is known. Thus from the Eq. (5.8); one calculates the
unknown angle of inclination 7 at this point, while from (5.8); — the value of
s1. Two possible cases are of practical meaning. In the first case one assumes
that the stress s, = 0. The course of discontinuity line for this case is shown
on the left-hand side of Fig. 5 a. The curve intersects the stress-free contour
at the point E, where the tangent to the contour is horizontal (and therefore
@ = 0). In the second case one assumes that s; = oy,). The discontinuity line
(shown on the right-hand side of Fig.5a) intersects the external contour
at the point E’. It follows from the global equilibrium conditions, that this
point must be situated on the symmetry axis. This condition may be used
to check the accuracy of numerical procedures.

The method of construction of the stress field described above assures
its internal equilibrium. In order to assure its statical admissibility, the in-
equalities (2.2) must be satisfied. This imposes certain limitations on the
value of the angle 7. Firstly, it follows from the Eq. (5.3),, that

(5.9) ¥ < L

Then the angle ¥ must be chosen in such a way, that the value of p calculated
from the Egs. (5.5) and (5.6) will satisfy the inequalities

(5.10) Il <1, 00 o~ L

At the end, the stress s; must not violate the yield condition. Thus, for the
case shown on the left-hand side of the axis of symmetry (Fig.5a), it must
be

(5.11) Is1] < o1,
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while for the case on the right-hand side of it, the condition
(5.11%) Opl > 0pl — 81 20

must be satisfied.

B

FiG. 6.

The above conditions should be accompanied by geometrical ones. The
first condition consists in the requirement, that the angle between the tan-
gent to the stress-free contour and the external direction of the axis of sym-
metry is equal to m/2 or less, as it is in Fig.5. In other words, the value of
the angle ¢ at the point of intersection of the external slip-line BDE of the
fan with the stress-free contour (Fig. 6)

(5.12) vE < 0.
According to Eq. (4.1),, there is

(5.13) Xp +¢p = XE +¢E,
and from (5.7) we have

(5.14) X5 = 0.5.

It follows from the equalities (5.1), (5.2), (5.13) and (5.14), that the condition
(5.12) is equivalent to

(5.15) w/d—¢e)2 < 7.

Although it may be possible to build a statically admissible stress field which
does not satisfy the above inequality, it would have different structure than
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the stress field shown in Fig. 5. Such stress field would be of minor practical
importance.

The second geometrical condition consists in the requirement that the
angle of inclination of the direction of the principal stress oy at the point D
(Fig.5) and within the whole area BDIH should be positive, i.e.

(5.16) ¢p > 0.
It follows from the equality (5.1), that this is equivalent to the condition
(5.17) y<m/2-k.

When the value of 4 comes close to 7 /2 —¢, then the point H moves towards
the loaded boundary BB’. At the limiting value of 4 the boundary and the
discontinuity line BH coincide. It is not possible to build a stress field of
the structure described above for larger values of 7.

Thus, for a particular problem defined by the angle of inclination of the
loaded external boundaries ¢ and the ¢/b ratio (denoted by §), the angle v
must satisfy the inequalities (5.9), (5.15) and (5.17). The choice of y within
these limits is free provided the conditions (5.10) and (5.11) are satisfied.
It must be emphasized, that this choice does not affect the shape of the
external contour of the field. The problem presented in Fig.5 was defined
by the values ¢ = m/4 and 9 = ¢/b = 0.707, and the stress field has been
constructed for v = 0.600.

6. APPROXIMATION FOR PRACTICAL APPLICATIONS

Similar solutions may be found for various combinations of characteristic
parameters ¢ and 4. In paper [5] the solution for ¢ = 0 and 9 = 0.667 was
presented, and in [6] another one for ¢ = 0 and § = 1. Stress-free contours
for all these solutions are, according to the prior assumption, symmetrical
with respect to vertical axis. Each half of such contour consists of a straight
segment and a curve, which either ends with another segment perpendicular
to the axis or intersects the axis at an angle close to 7/2. It would be
troublesome and unnecessary to calculate the course of this curve and then
to reproduce it .in a real construction for every possible set of parameters
¢ and 4. Instead of this, the contour may be, with a very good accuracy,
approximated by segments and circular arcs. Their dimensions are tabulated
and the choice of their appropriate values requires very few calculations (if

any).
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Consider the contour shown in Fig.7. The loaded segment AB has the
length a. It is convenient to use this dimension as a reference which deter-
mines the magnitude of the whole field. The other dimensions are propor-
tional to a; ¢ = a/cose and b = ¢/9 = a/(3cose). Thus, @ may be taken as
equal to unity.

The stress-free contour consists of three straight segments AB, DD’ and
A'C’, connected by circular arcs CD and C’D’. The segment AC is perpen-
dicular to AB and has the same length a. Thus, the position of the point
C in relation to B is uniquely determined by the value of the angle . The
dimension h is defined as the elevation of the highest point of the slip-line
field over the base BB'. It is easy to see from Fig.5 that for v satisfying
the condition (5.15), h also depends only on ¢. Line DD’ is parallel to BB'.
The circular arc approximating the curve CE of Fig. 5 is defined as tangent
to AC at the point C' and to the line DD’ determined by the distance h.
These two conditions uniquely determine the arc and its radius r. The end
of the arc determines the position of the point D. The whole arc lies outside
the curve C'E of Fig. 5, so the distance between the point D (Fig.7) and the
axis of symmetry is slightly greater than that between the point E (Fig.5)
and the axis. The approximation in Fig. 7 is thus safe.

The course of the contour AC'D in relation to B is determined uniquely
by the parameter €. Only the length of DD’ depends on g, and may be
easily calculated from the other geometrical quantities. Table 1 presents the
calculated values of h and r for the most commonly used values of the angle
€. The table also shows the minimum and maximum values of the second
characteristic parameter § within which the stress field of Fig. 5 is possible
to construct. They result from the conditions discussed at the end of the
preceding section.
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Table 1.
€ h/a 7‘/a Yo Imax
0 2.276 1.276 0.635 1.000

0.262 (15°) 2.134 1.227 0.523 1.000
0.524 (30°) 1.955 1,179 0.426 1.000
0.785 (45°) 1.746 1.132 0.332 0.785
1.047 (60°) 1.512 1.088 0.232 0.524
1.309 (75°) 1.260 1.045 0.123 0.262

For the particular set of parameters ¢ and g, one has to check first if §
does not exceed the above specified limits, and then, taking the values of h
and r from the table, one can determine with a good accuracy the course of
the stress-free contour. The approximation similar to the one just described,
was given in [1], for the particular case ¢ = 0, 9 = 0.667. The recommended
solution was equivalent to h/a = 2.5 and r/a = 1.5, so it was less economical
than the present one.

The stress field described here may be used directly e.g. to design the
shape of a head of a tension member (as in [5] or [6]), or as an element of
a larger stress system — constructed partly or as a whole by means of the
piecewise-homogeneous stress field technique. In this case the present field
simply replaces the standard system of discontinuity lines of Fig.2 or the
elementary stress fields of type A or B. In analogy to this notation, we shall
denote the present field as a standard stress field of type T. The example
of its application within the larger stress system will be shown in the next
section.

7. EXAMPLE: DESIGN OF A TRANSVERSELY LOADED BEAM

Consider a structural element shown in Fig.8. It is a short beam loaded
transversely in its center and supported at the ends. The external tractions
of the magnitude oy are uniformly distributed along the segment GG’ of the
upper edge of the beam. The total load is equal to F' = op)2ag (2a — length
of the segment, g — thickness of the beam). This load is in equilibrium with
the bearing tractions of the same magnitude oy, distributed along AB and
A'B'. If the assumed distance d between the loaded segment GG’ and the
plane of supports AA’ cannot be too large, some parts of the beam must
be situated below the plane AA’. Figure 8 shows possible solution to such
a problem.
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The piecewise-homogeneous stress field is presented in some detail on
the left-hand side of the axis of symmetry. The whole stress field includes
three subfields of the type shown in Fig.2. Two of them, BACDE and
B'A'C'D'E' (not shown here directly), have the stresses of signs opposite
to those of Fig.2, while the third one, JKLK'J', has the same signs. All
three have been drawn for ¢ = /4 and 9 = ¢/b = 0.707, but JKLK'J'
is larger than the other twoj; its characteristic dimension is av/2 instead of
a. Besides, the stress field includes three other subfields BEIH, B'E'I'H’
and JJ'P'P of the type originally proposed by WINzER and CARRIER [4].
These subfields change the magnitude of uniaxial stress from p to op. Their
structure is described also in [3]; they are denoted there as elementary stress
fields of type D. The connection of subfields of these two types for the
above specified values of ¢ and q has been presented in [7]. The regions
HIJK and H'I'J'K' undergo uniaxial tension equal to the yield stress Fols
while DEFG, D'E'F'G’ and FF'P'P are uniaxially compressed also to the
yield point. The region GG'F’F undergoes biaxial compression of the same
magnitude and the regions EFPJI and E'F'P'J'I' are stress-free, so no
material is needed there.

The whole stress field is in equilibrium and the yield condition is nowhere
violated. Thus, the contour of this field, drawn by the thick line on the
left-hand side of the axis of symmetry constitutes the safe design of the
beam. This solution may be, however, improved by replacing the subfields
BACDE, B'A'C'D'E’ and JK LK'J' with the fields of type T presented in
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this paper. The corrected contour is shown on the right-hand side of the axis
of symmetry. One can easily observe, that this solution is more economical,
has smaller cross-section in the center and a rounded shape. In fact, most
of the piecewise-homogeneous solutions may be improved in this manner.
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