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NATURAL FREQUENCIES OF A CANTILEVER TIMOSHENKO
BEAM WITH A TIP MASS (%)

N.M. AUCIELLO (POTENZA)

The aim of the present paper is to deduce the free vibration frequencies of cantilever
structures with a tip mass at the free end, by taking into account the rotary inertia and
the shear deformation. The analysis is conducted by dividing the beam into rigid bars
with elastic constraints, extending a previous work by DE RosA and Francriost [1]. The
proposed method allows us to analyze beams with arbitrarily varying cross-sections, and
numerical comparisons with some previous results found in the literature show the good
performances of the approach.

NoTaTioN

E,G Young’ modulus; shear modulus;
L,L; span of the beam; length of the i-th rigid bar;
I, A, p moment of inertia; area; mass density;
m;, m,- ¢-th mass; beam mass;
M,I,, mass at the tip; moment of inertia of the mass;
J radius of inertia of the mass;
k shear factor; .
¢ vector of the Lagrangian coordinates;
vy, vz,v; displacements of the rigid bars;
Ap;, Av;  relative rotations, relative displacements;
@y rotation of the mass-at the tip;
M;,T: bending moment; shéar; ‘
kf, ks bending stiffness; shear stiffness;
Mv,ﬁ mass mabrix; matrix of the rotary inertia;
w, A Tfree frequencies; mondimensicnal parameter;
Ya,¥, mnondimensional parameters;
Y, Z nondimensional parameters;
. ¢ number of rigid bars.

(*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September
5-9, 1994. :
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1. INTRODUCTION

Cantilever Timoshenko beams with concentrated masses at the tip are
often used in order to simulate the dynamic behaviour of important struc-
tural members, such as moving arms of robots in mechanical engineering,
towers, tall buildings, etc..

One of the earlier studies goes back to To [2], who has given the exact
solution for a slender beam with constant cross-section. Later on, GUTIER-
REZ and LAURA [3] generalized the problem by considering beams with
varying cross-sections, and solving the problem by means of a combined
Rayleigh - Ritz and Schmidt approximate analysis.

The influence of the shear deformation and the rotary inertia has been
taken into account by BRUcCH and MITCHELL [4] for a beam with constant
cross-section and for a mass whose centroid coincides with the tip of the
beam; shortly after, ABRAMOVICH and HAMBURGER [5] extended the anal-
ysis to eccentric masses, A transfer matrix approach has been proposed by
L1v and Liv [6] in order to examine the dynamic behaviour of a cantilever
beam with an elastically flexible constraint. Recently, FARGHALY [9] was able
to find the governing equations of the problem, by using the above-mentioned
ABrRAMOVIC and HAMBURGER [5] paper.

If the cross-section is supposed to vary according to a continuous law,
then the exact solution is not available, Consequently, LAURA, R0ssI and
MAvuRriz1 [8] proposed a FEM-like algorithm, which was illustrated earlier
by PRZEMIENIECKT [7].

In the present paper a discretization method is employed which has been
already used in the past [1], and it is well tailored to the dynamic analysis of
one-dimensional structures. The method is immediately adaptable to every
kind of cross-section variation law, and furnishes lower bounds to the true
frequencies.

The results presented in [1] are extended by considering an additional
Lagrangian coordinate, which represents the rotation of the tip mass. In
this way it is possible to calculate the strain energy of the connecting cell
between the beam and the mass, as well as the kinetic energy due to the
rotary inertia.

The cross-section variation is taken into account directly, writing the cell
stiffness in correspondence to the discontinuity.

2. THE DISCRETIZED MODEL

The examined structural system is given in Fig. 1, together with its re-
duction to a set of rigid bars connected by means of elastic constraints with
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bending and shear stiflness. Consequently, the structure degrees of freedom
can be conveniently assumed to be the displacements at the ends of each
rigid bars, and the rotation at the tip of the beam.
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Fia. 1. Structural model.

In matrix notation, the degrees of freedom can be combined into a single
vector:

(2.1) ¢ = [0, V2,03, -, V2t @)

and therefore the relative rotations of the bars at the elastic constraints can
* be expressed as:

v — V2
Apy = —we—™
©1 Ll )
V2i—2 — V2{-3 Vg — U1
2.2 Ap; = - ,
(22) ' Lia L;
A =90M=f|'w:_l* (iﬁl,Q,...,t).

L

The relative displacements are written as:

, ‘ .
A'Ul = 1,

(2.3) 'AW = Vg1 — V22,
A’Ug_l_l:(] (’0“'“—”1,2,‘..,”.

Consequently, the strain energy of the generic elastic constraint is given by

1
(2.4) U; = E(Mgﬂfpi + T Avg),
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where
LIiq )
; = Ap; = kf; Ay,
M; =28 (IielLi‘FIiLi—l v fide
(2.5)
T; = 2Gk ( Aidina ) Av; = ks; A;
b AL+ ALy ' e

Equations (2.2) and (2.3) can be written, using matrix notations, in the

form
Ap = Aec, Av = Be,

and therefore the strain energy of the whole structure is equal to

(2.6) U= %CTKC,
with
(2.7) K = A'D;A + BTD,B,

Dy and D, are the (diagonal) matrices of the terms k f; and ks, respectively.
The kinetic energy T of the structure must also be expressed as a function
of the Lagrangian coordinates. From ¥ig. 1 we have:

12 ] 12 a1 _
(28) T = Ezm, ’U? +§ZQI,:L{ @ +§IM (‘o‘id' .
i=1 i=1

The absolute rotations of the rigid bars can also be expressed as functions of
the Lagrangian coordinates, by introducing the rectangular matrix V with
it + 1 rows and 2¢ 4+ 1 columns:

(2.9) @ =Ve.

Henceforth, the kinetic energy becomes:
1
2
where the lumped masses at the ends of the bars are grouped into the
(diagonal) matrix My, and the entry of the M matrix read:
JE:QI.;Li, 1=1,2,...,1,
1’T’-’l"-t—{d = QI M

S —~ .
(2.10) T:%éT Myedt+=—9@ M<15=~2—cT (MV+VTMV) c,

Finally, the equation of motion can be written as:
(2.11) Mc +Ke =0,
and the free frequencies can be found by solving the eigenvalue problem

(2.12) (K — w*M)c = 0.
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3. NUMERICAL RESULTS

As the first example, a beam with constant cross-section is examined,
with a mass at the tip, ratio E/G = 2.6 and I,, = T2M. The free vibration
frequencies and the related nondimensional coefficients

C N = e pAL%
i — Wy Fohi

are given as functions of the parameters

- M J 1

Y = — L= 2o —

me’ AN Y7

The shear factor is equal to & = 2/3 (see TimosHENKO [14]). In Fig.2 the
first nondimensional frequency A is given, for an increasing number of La-
grangian co-ordinates. Nevertheless, it seems suflicient to divide the beam
into 20 bars, in order to obtain a good compromise between computational
costs and numerical accuracy. Therefore, all the following numerical exam-
ples will be performed by dividing the structure into 20 rigid bars.
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FiG. 2. Convergence curve of the first non-dimensional coefficient

for r = 0.02, z=105,Y = 1.

The results are given in Table 1 together with some results from the
literature. It is worth noting that the first two nondimensional frequencies
are approximated with -a very small error (0.5%), whereas the error for the
other coeflicients increases up to 1.3%. _ .

The nondimensional coefficients A; for k = 5/6 are given in Table 2,
because the above-mentioned shear factor is also often used for beams with
rectangular cross-section (see CowPER [15]). Iven in this case, the first
eigenvalues agree very well with the results of the literature, whereas the
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Table 1. Coefficients A: (i = 1,2,3,4) for r = 0.02, k= 2/3.

Mode 1 2 3 4 z Y
Bruch [4] 1.40 5.73 23.64 58.41 05 | 1
Abramovich [5] 1.27 4,53 23.32 58.24
Farghaly [11] 1.2717 4.5272 23.3163 58.2375
Author 1.2709 4.524 23.22 57.84
Bruch [4] 3.50 21.35. 57.47 - 106.93 t] 0
Abramovich {5] 3.50 | 21.35 57.42 106.58
Author 3.50 ] 21.23 56.84 105.22

Table 2. Coefficients \; (i = 1,2,3,4) for Z =0, k = 5/6.
Mode 1 2 3 4 r Y
Laura [8] 3.50 21.47 58.14 109.02 002 | 0
Author 3.49 231.23 56.84 105.108
Lin [13] 3.5262  21.152 54.5419 0.04
Farghaly [10] 3.4636 20.0147 50.5619
Rossi [12] 3.46 20.01 50.56
Author 3.469 19.895 50.067
Laura [8] 1.55 15.93 48.40 95.94 0.02 | 1
Author 1.5588 15.854 47.820 94,041
Liu [13] 1.5585  15.6712  45.2083 0.04
Farghaly {10] 1.5438 15.1038 42.8233
Rossi [12] 1.54 15.10 42.82
Author 1.5446 15.045 42.550

fourth nondimensional frequency A4 shows an error which can increase up
to 3.5%.

The nondimensional coefficients of the beam in Fig.3 are given in Ta-
ble 3, compared with the results of LAURA et al. [8]. The cross-section dis-
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FiG. 3. Stepped beam.
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continuity implies greater discrepancies between the frequencies, but the
errors can obviously be reduced if the number of Lagrangian coordinates is
increased.

Table 3. Coeflicients A; for vp = 2/3, y4 = 0.8, r = 0.02,

Mode 1 2 3 4 Y
Laura [8] 3.82 21.35 55.04 107.50 0
Author 3.75 21.50 53.03 99.20
Laura [8] 2.26 15.87 46.21 95.44 0.4
Author 2.20 15.53 45.00 88.91
Laura [8} 1.75 15.17 45.53 94,72 0.8
Author 1.71 ]4.88 44.34 88,27
Laura [8} 1.60 15.01 45,37 94.56 1
Author 1.56 14.73 44.20 88.14

4, CONCLUSIONS

A simple model of Timoshenko beams has been presented, in order to
calculate the free vibration frequencies of a stocky cantilever beam with a
tip mass at the end, taking into account the rotary inertia and the shear
deformation. The obtained results seem to be quite satisfactory, at least for
the first eigenvalues, and in any case arbitrary precision can be achieved by
simply increasing the number of degrees of freedom. The proposed proce-
dure can be easily adapted to beams with arbitrarily varying cross-sections,
and, more generally, to all the cases in which analytical solutions are not
attainable.
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