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AN INTERACTIVE PROGRAM FOR SHAPE OPTIMIZATION
OF SECTIONS UNDER SAINT - VENANT TORSION USING
BOUNDARY ELEMENT METHOD (*)

P. BERKOWSKI LM SIECZKOWSKI (WROCEAW)
and M. DOBLARE L GRACIA (ZARAGOZA)

An interactive program for visualization of results generated during the shape opti-
mization of simply and multiply-connected isotropic sections under the Saint-Venant tor-
sion using B.E.M. is presented in this paper. The program includes some graphical fools
essential for preprocessing, analysis and postprocessing parts of the optimization system
and makes it possible to carry out boundary mesh modifications caused by changes in
its geometry and initial mesh, and also by the intersecting boundaries. In order to show
the influence of the geometric irregularities and intersections of the boundaries on the
optimization process as well as the advantages of the program proposed, some examples
of the shape optimization are presented.

1. INTRODUCTION

Shape optimization of elastic solids under various loads is a very com-
mon problem in civil engineering and mechanical system design. A lot of
reasons have caused the increasing interest and progress in this field: gen-
eral evolution of such methods as F.E.M. and B.E.M., the development of
new numerical linear and nonlinear optimization algorithms with multiple
constraints, and introductian of new, powerful computers.

As mentioned above, both the methods of analysis (F.E.M. and B.E.M.)
are used in solving general shape optimization problems, the basis of which
has been broadly presented by Soxorowski and ZoLesio in [1] and, in
particular, in shape optimization of shafts subject to torsion (DEMs [2],
Kikucul [3], KursuIN [4]), what also is the subject of this paper. However,
application of finite elements in shape optimization presents some disad-
vantages, such as the necessity of meshing of the entire domain and very

(*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September
5-9, 1994,
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laborious and difficult mesh redefinition. The same was observed by Hou
and SHEEN [5] who compared the optimization and sensivity design schemes
based on both methods.

Application of the B.E.M. as an approximation method in shape opti-
mization allows us to avoid these disadvantages. MoTA et al [6, 7] have
developed some particular models for the optimum shape design of hollow
shafts based on maximization of the torsional stiffness. A similar model has
been proposed by BurczyNskI and ADAMCZYK [8, 9] by formulating the
optimality condition and using the Newton - Raphson method to solve the
nonlinear problem. A very extensive discussion on different approaches to
this problem is presented by GRACIA et al in [10, 11, 12, 13] containing
a general description of the shape optimization model for 2D elastic bod-
ies, including hollow shaft shape optimization. KOBELEV described in [14]
an optimization problem aimed at finding the optimal shape for an elastic
bar in torsion with minimization of the stress concentration. Recently Znao
and ADEY [15, 16] presented main elements of shape optimization with the
material derivative and design sensivity analysis.

The second aspect of the shape optimization problem under considera-
tion, besides the method of analysis, is the computational one, concerning
the way of incorporating computer analysis programs into the global optimal
shape design procedure.

ATREK [17] has designed a program to be used in production environ-
ment. The program is integrated with the finite element analysis program
and compatible with that for pre- and postprocessing. A general concept
of an optimization system has been developed by KiscaarD ef af [18].
In that system they define the optimization problem within a general CAD-
system for pre- and postprocessing and for any finite element analysis pro-
gram. An interactive system for structural design sensivity and optimiza-
tion, based on the F.E.M., has been introduced by SaNTOs et al [19]. A
menu-driven system in a multi-window graphics-based workstation is used
to assist the interactive performance. ARIAS et al. [20] developed a struc-
tural model for a geometric representation oriented towards an automatic
shape optimal design, based on a CAD model and the finite element analysis
model.

A very brief presentation of the shape optimization background, included
in this paper, obviously does not cover all the aspects and advances achieved
in this field in the last decades. However, its aim is to point out some of the
most important problems that caused the interest in developing a graphical
tool which could facilitate the solution of some problems that appear during
the shape optimum design.
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An interactive program for visualization the results generated during the
shape optimization of simply and multiply-connected isotropic sections un-
der Saint - Venant torsion by using B.E.M. is presented and discussed in this
paper [21]. The program incorporates some graphical tools essential for pre-
processing, analysis and postprocessing parts of the optimization system and
allows us to carry out the boundary mesh modifications caused by changes
in its geometry and initial mesh, and by the boundary intersections. At the
present stage, the optimization program includes only the shape optimiza-
tion problem defined for simply and multiply-connected isotropic sections
subjected to the Saint - Venant torsion. The optimization problem is formu-
lated so as to obtain the given torsional stiffness under the minimum area
condition, and the expression of the stiffness is established as a function
of boundary integrals which depend on state variables based on the nodes
coordinates of the boundary. The variables are obtained by means of the
B.E.M. To solve the optimization problem, a method based on the ideas of
the feasible direction methods and the gradient methods are employed.

9. BASIC ELEMENTS OF AN INTERACTIVE GRAPHICAL PROGRAM

The proposed interactive program for definition, visualization and mod-
ification of the shape optimization problem and results consists of two fun-
damental parts: the graphical unit used to define and redefine the problem
geometry (graphical pre- and postprocessors), and the optimization unit
that performs the design process, basing its analytic part on the B.E.M. A
general idea of an interactive work with the program consists in giving to
a program user a possibility to define graphically the geometry of an initial
shape to be optimized, and then to have a chance to observe the oplimiza-
tion process at any iteration step. The program gives information about the
current. design by its graphical presentation on the screen, allows us to in-
troduce all necessary changes in the boundary mesh, and then enables us to
continue the design process until the optimal shape is obtained.

The graphical unit of the DIFOPTI program contains a group of geomet-
rical tools (calculation of boundary element length, areas contained within
the boundaries and angles between the elements, detection of boundary in-
tersections and mesh redefinition), completed by those of the visual presen-
tation of optimized shapes (drawing of boundaries with different zoom levels,
graphical presentation of the objective function and restriction evolution).

The process of data preparation for the shape optimization problem by
means of the DIFOPTI interactive program, that can be performed in a
numerical or a graphical mode, consists of the three following parts:
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e definition of general parameters that direct the optimization method;

¢ introduction of additional information to carry out the mesh redefini-
tion;

e definition of initial shape geometry.

After hierarchy organized general menu offers to the user the capabilities
for making definition of the design problem by using tree defined sub-menus
(Figs. 1, 2). Selections can be made through the use of a mouse. The mouse
button is used to realize selections from different button-menus and from the
keyboard printed on the screen. The data can be introduced in a numerical
manner from the keyboard, or by “drawing” it on the screen.
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Fra. 1. Main menu system,

The user begins a definition of any shape optimization problem with
defining some general parameters that are included in the Opti.Data menu:

o General problem data that have to be defined numerically (number of
the example, maximum number of iterations, maximum value of an angle
between elements; parameter of geometrical redefiniton type and checking
element’s length, bound adjusting parameter, stiffness constraint, constraint
error value, error value at the minimum).
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e General problem data which can be defined numerically or graphically
in defining the initial shape (number of origins, boundaries, nodes, elements,
internal points and materials).

In other menus (Fig. 1) of the main branch menu, the user defines the
initial shape of a section to be optimized. Every one of them contains some
graphical sub-menus, such as: definition, modification, cutting, listing and
drawing of its elements (Fig. 2).
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Fic. 2. Sub-menu system.

The user has also the possibility of editing the shape on the screen by
its enlargement, reduction and clearing. These options are included in ad-
ditional graphical menu. A special data menu contains some options which
allows to define the units, select the groups of any variables to be edited,
and to define the type of data entry (graphical or numerical) and data exit
(file, screen, etc.).

At the present stage, the DIFOPTI graphical program has been con-
nected to the shape optimization program of sections under the Saint-
Venant torsion based on the formulation presented in [10, 11, 12].
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3. MESH REDEFINITION DURING OPTIMIZATION PROCESS

3.1. Introduction

The optimization process leads to redefinition of the initial boundary ge-
ometry until it gets the optimal shape. However, this process can produce
irregularities in the boundary geometry or the boundary mesh at any iter-
ation step. In this case it is necessary to include in the program different
safeguards, in order to guarantee the convergence of the process and the
fulfilment of geometric restrictions.

In general, there are three main types of the irregularities which ne-
cessitate the mesh redefinition and which should be detected during the
optimization process. They are [10, 11, 12, 21]:

e geometric irregularities;

e variation in mesh element’s length;

e intersectiones of boundaries.

3.2. Geometrical mesh irregularities

The evolution of the shape design during the optimization process can
result in the appearance of acute angles between the mesh elements, which
may slow down the convergence of the iterative process. In order to avoid
the problem of acute corners, they are detected by calculating the scalar
product of the normals of two adjoning elements (Fig. 3a):

(3.1) cosa = —nj_1 - 0 < €08 ag.

F1G. 3. Geometrical mesh irregularities and redefinition; a) initial mesh with acute angle,
b) mesh redefinition.

If the value of cos @ > cos ag (@p — an arbitrary limit angle), the mesh is
to be redefined by changing the coordinates of the node introducing acute
angle between elements. New coordinates can be calculated depending on
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the geometrical situation (Fig.3) using one of the two following equations:

X511+ X4
(3.2) e

1 Xi—1 + Xit+1
(3'3) x.‘;zﬁ(xj-F ! 9 J_)a

where x, x’ are vectors of the old and new coordinates, respectively, or by
removing the node with acute angle and its adjacent elements and defining
a new element between the previous node and the next one (Fig.3b). A
relatively fine mesh is necessary to complete this action, and also an analysis
of the lengths of the elements is necessary at each optimization step.

$.3. Length distorsion of mesh elements

As a comsequence of the changes of nodal coordinates during the opti-
mization process or as a consequence of the changes caused by elimination
of the mesh irregularities, important variations of element length can ap-
pear. To solve this problem, a study of the lengths of the elements must be
carried out at each iteration step, redefining the mesh when it proves to be
necessary.

In case of the element length greater a times than the mean value L,
(¢ = 1.5 in this study), the element is divided by introducing some new
nodes (n) along the element (Fig. 4a) according to the following criterion:

(3.4) n=a-(L/Ln).
In case when the length is less than L., /a, the element should be removed -
(Fig. 4b).
a) , B

1

FIG. 4. Checking of element’s length; a) long elements, b) short elements,

The mean length value (L,,) is calculated for each boundary as the mean
value of the lengths of its elements, or as the mean length of all the elements
belonging to all the boundaries that compose the optimized shape.
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3.4. Intersection of boundaries

If we optimize a multiply-connected domain, it is possible to obtain the
intersections between its boundaries. This enables us to avoid the erroneous
resulis.

The procedure of detecting the boundary intersections is based on deter-
mination of the value of the integral

r-n
(3.5) 1:/ _Rdr.
r
Values of integral I (3.6) depend upon the position of the reference point P
(origin of radius r) with respect to the boundary over which we integrate.
Two different cases should be taken into account (Fig. 5):

e Intersection of a boundary with itself (it can happen to an internal or
an external boundary). '

o Intersection of two boundaries (two internal boundaries or an external
and an internal one).

I=2r if Pen,
(3.6) I=x if Pel,
I=0 if PgR+T

Fia. 5. Values of integral I.

a. Intersection of external or internal boundary with itself

In that case we look for a change of the sign of the integral I, when it is
computed in all the nodes which belong to this boundary (Fig. 6). Its values

are as follows:
Ip = /+/:7r+0=7r,
Iy I

quf+/=p+eﬂ:_m

Iy Iy

(3.7)
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P

F1G. 6. Intersection of a boundary with itself.

b. Intersection of two boundaries

Intersection of internal and external boundaries. In this case we de-
termine the value of the integral I computed in the nodes of the internal
boundary Iy with respect to the external one, I'y (Fig. 7). Its values are as

follows:

Ip:]:?‘n’ if P e,
r
(3.8) Ip=/=1r if Pel,
I
Ipzfzo if PO+ Th
r

A
I

(]

F1a. 7. Intersection of internal and external boundaries.

Intersection of two internal boundaries. In this case we also determine
the value of the integral I computed in the nodes of the internal boundary
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I'; with respect to the external one, I; (Fig. 8).Its values are as follows:

h:/:ﬂ if P+ I,

I
(3.9) b:/:—wifPG&
I;
h:f:—%ifPe%.
I

Fia. 8. .Intersection of two internal boundaries.

All the cases of boundary irregularities are detected antomatically during
the optimization process and are eliminated after breaking the iteration
process, an interactive graphical boundary mesh redefinition being used.

4. FORMULATION OF SAINT— VENANT TORSION PROBLEM BY USING
B.E.M.

4.1. Formulation ofl torsion problem for isotropic solids

The solution of the Saint-Venant torsion problem described in this chap-
ter is based on that formulated by Gracia [10] and Gracia and DOBLARE
in [11, 12], where they presented a general problem of shape optimization
of 2D elastic bodies based on the boundary element method. To formulate
the Saint - Venant torsion problem for isotropic and homogenous solids and
for multiply-connected domains (Fig.9), we can use the so-called Prandtl
function, obtaining a Poisson equation:

¢ 3¢
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with
(4.2) b = k; in [f;, +=0,1,..., N,
where N is the number of boundaries,
o :
(4.3) 5;;0!11——214,, i=1,...,N,
Iy
and where
1
(4.4) A; = 5 Z(rj . nj)Lj
J=1

is the area enclosed by each internal boundary, N*¢ is the number of elements
of each internal boundary, L; is the length of the j-th element, n; is the
normal to it, and r; is the radius-vector between the element and the origin
of coordinates.

YA

r

g

X

F1¢. 9. Two-dimensional maltiply-connected domain.

The tangential stresses at any point can be written in the following form:

Tez ='G@g—§ .
(4.5) 5
Tyz = —G@%,

where & is the shear modulus and © is the twist per unif length.
The magnitude of the tangential stress is expressed by

(4.6) =GO (g%)z + (3—3)2
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and, taking into consideration that the tangential stress has no normal com-
ponent, we obtain
dp  0¢ o9 n d¢

. = Rzp— a., - ya s
(@.7) Oz dn Oy on

a¢
T =G6E ml
The torsional moment can be expressed by
(4.8) M = D6,

where D is the torsional stiffness defined by (with N denoting the number
of boundaries)

(4.9)

N
[#an- ZkiA,-] .
0 =1

After solving Eqs. (4.1)-(4.3) we obtain ¢, and then the torsional rigidity
from Eq. (4.9). If the torsional moment is given, we can calculate the value of
O from Eq.(4.8), and then the tangential stresses from Eqs. (4.5) and (4.6).

4.2. B.E.M. formulation of Saint— Venant torsion problem

The introduction of the second Green’s identity between the Prandtl
function (4.1) and the fundamental solution of the Laplace equation leads
to an alternative formulation of Eq. (4.1) in terms of boundary integrals [10,
11, 12]:

(4.10) c(Q)¢(Q)+f¢;—n (m%) dr = g¢ 1n—_fv2¢1 Lan,
r

where the constant ¢ takes the values as shown in Fig. 10 and r is the
radius-vector joining boundary points and the origin of the coordinate sys-
tem (Fig. 11).

Value of the constant (@) for @ € I’ corresponds to the principal value
of the integral

- o1 1
(4.11) [ %[m;]dr,
sBA(@)

where B.(Q) is the unit circle centered at @ and with radius ¢, and §B.(Q)
its boundary. This principal value is equal to the angle subtended by the
left and right-hand tangent to I" at Q.
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2n if QEQ
cf@)=4{ O if QEQ+I
O<c<2n if QEr

r
F1G. 10. Values of the constant c.

F1a. 11. Definition of the geometry.

To transform the last integral in Eq.(4.10) we can use Eq. (4.1}, what
allows us to obtain the basic equation of B.E.M.:

_w!g—ilnr—l—!(%—lnr) (r-n)dl.

Using a similar way, we can transform Eq.{4.9) for the torsional stiffness
into the boundary integral function:

(4.13) D:—G_[ /2(1' nydl'+ - /(%2 ]

r

(4.12)

If we approximate the normal derivative of the Prandtl function ¢' =
(0¢/On) for every boundary (with ¢' values constant along the boundary)
- using the following form:

(4.14) ¢ =Y e
i=1
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where ; represents the approximation function (in this paper the sim-
plest constant and linear aproximations have been included), qj- are New un-
known variables, N is the number of elements of the boundary I} (Fig. 12),
Eq.(4.13) can be formulated in the form

NEI

615 (@@ -3 kY [t
=0 =17,
_—é:\fééqj.[@kinrdf+§;iz;j (——lnr) {r-n)drl.

Fi1G. 12. Boundary nodes and unknowns,

If the Eq.(4.15) is calculated in all nodes of the boundary, we obtain
a system of N¢ equations with N® + XN? — 1 unknowns. These N - 1
additional unknowns correspond to the values of the Prandtl function along
the internal boundaries with ¢ arbitrarily assumed to be equal zero along
the external boundary (kg = 0). So we obtain the final equation

(4.16) [f I:] [ﬂ ) [p]

Using Eq. (4.4) for all the internal boundaries we obtain
1 N2 NE
(4.17) — Z Z - Z(rj -m;) ;.
i=1k=1 J=1
FElements of the matrices of Eq. (4.16) are defined as stated below:
T - matrix that corresponds to the left-hand side part of Eq. (4.15),
G~ matrix of the first right-hand side integral of Eq. (4.15),
p — vector of the second right-hand side integral of Eq. (4.15),
q, k — represent vectors of unknowns,
L. — represents a diagonal matrix of lengths of the internal boundaries,
a — represents a vector of areas enclosed by internal boundaries.
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The torsional stiffness can be then expressed by

N
(418) D=-G EZ] r¥(r - n)dl; + 5 ZZ

1= 03"“11—- = 1 k=1

2

>S4 / orrtdly
I

or in an equivalent form, by

N N N N
(4.19) [ PIDIMEHE ZEQJ(I )1] .

=0 =1 =0 =1

Integrals in Egs. (4.15) and (4.18) are calculated, in general, using numer-
ical integration formulae (Gauss quadrature rules). However, in the presence
of the singularity due to the fundamental solution, more accurate integration
. methods, based on special transformations, are used.

5. FORMULATION QF OPTIMIZATION PROBLEM

The problem of shape optimization of sections subject to the Saint-Venant
torsion can now be stated as it was formulated with details in [10, 11, 12, 13]:

Obtain the shape of the section with minimum area having a given tor-
sional stiffness, fulfilling certain constraints related to the section geometry.
It should be mentioned that as its dual problem, the problem of finding
the section of a given area and maximum torsional stiffness could also be
considered. _ '

These additional constraints are as follows:

o some coordinates of the nodes can be bound;

» some boundary nodes can be fixed,;

o the boundaries cannot intersect;

o symmetry conditions have to be fulfilled.

The objective function is then defined by

Nc,l

(5.1) S f(x) = EZ(I'J n;)L;

1H0 j=1

and the restriction corresponding to the torsional stiffness is

D
(5.2) hx) = 1= 5~ =0
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or, in an equivalent form,

1 N Nei ' 1 N Net )
(5.3) h(x) = Do+ G ZZZ(I})TF 722 o,
=0 j=1 =0 j7=1

where D is defined by Eq.(4.18), and in this first approximation to the
optimization problem, the non-restricted boundary node coordinates have
been taken as the design variables x.

The method used in the optimization problem is based on the feasible
direction method and the gradient projection method, with some modifica-
tions that tend to avoid some disadvantages, as it is described in [10, 11].
It is necessary to add that the restriction imposed on the torsional stiffness
can be transformed into “the constraint strip” by using the error bound &,.,
so that the restriction is satisfied when

(5.4) (1-g)< Dﬂ <(1+e),

where D is the torsional stiffness of the current design and Dy is the con-

straint stiffness,
The next important remark concerns the method of automatic constraint
strip adjustment at each iteration step, as is presented in Fig. 13.

FiG. 13. Constraint strip adjusting.

When the solution approximates the minimum, the angle between —grad £
and grad h tends to 0 and, in some situations, it is impossible for the incor-
porated optimization method to reach the minimum, so it is necessary to
include some saveguards to avoid this impossibility.

It is completed by defining the error bound £:

grad h grad f

(5:5) : cosy = lgrad b - |grad f]’




AN INTERACTIVE PROGRAM FOR SHAPE OPTIMIZATION 61

(5.6) @ < o = cos(m — £m),
(5.7) gl = (sin(arcsin(¢))? < &, ,

where g, is the admissible error in the minimum for the Kuhn-Tucker
condition (an angle between —gradf and grad h).

Fach iteration step requires the calculation of the objective function (5.1)
gradient and the constraint (5.2) gradient with respect to the coordinates
(design variables). The objective function gradient with respect to the node
coordinates is calculated directly (5.8), while the constraint gradient (5.9)
needs derivation of the Prandtl function and its normal derivatives. These
derivatives are obtained as follows:

Of(x)  Yip1 — ¥

ox; 2 ’
5.8 .
(58) 0f(x) _ i1 —2in

dy; 2 ’

where (i—1) and (i+1) are the anterior and the posterior nodes, respectively,
and

N N {
69 B8t i+ zz[?&m 28 ]
K 3—03 1

To obtain the value of the derivatives of state variables g;, it is necessary
to calculate at each iteration step the direct derivative of the equation system
(4.16) in the form of

0G oH [ da dp
dJx; Ox; q G H dzr; | _ 3_3,,
(5.10) oL [k] [L 0] ok | = | oa
Oz L de; dx;
and in order to separate dq/dx and 9k/dx,
da caq-t [[2R] 26 oH
(5 11) Ox; | GH 11 Oz, _ dz; Ox; q
' Ok | "{Lo Oa ) | 0L |k
3331' ‘_ am,;- 0:1:5

Matrices G, H, L, and vectors p and a depend only on geometric vari-
ables — nodal coordinates. Differentiating them with respect to coordinates
of each particular node, only the elements directly related to the node of
derivation are affected [10]. In that case only rows and columns that corre-
spond to the node of derivation and its neighbours are different from zero
what significantly simplifies the numerical procedure.
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6. EXAMPLES

In order to present the situations in which, during shape optimization,
geometrical mesh irregularities or boundary intersections can appear, and
to verify the numerical method employed to solve the optimization problem,
some examples have been studied. The interactive graphical program, called
DIFOPTI [21], has been incorporated to perform the pre- and postprocessing
and to present the iteration steps of the shape optimization of sections under
the Saint - Venant torsion. In analysis the B.E.M. has been used.

Graphical presentation of the calculated examples (Figs. 14, 16, 18, 20,
22) contains selected pictures of the optimized section with its initial, final
and some intermediate shapes appearing during the iterative optimization
process. Other graphs (Figs. 15, 17, 19, 21, 23) show the evolution of objec-
tive function and restriction during the optimal design process.

¥

mitial shape

%%/ final shape

K
7

=Sl

Fii. 14. Example (a). Evaluation of section’s shape during the optimization process
without mesh redefinition.

The first of the examples studied refers to the shape optimization of a
simply-connected domain called “Greek cross” (Figs. 14, 16, 18, 20), with an
obvious final result having the shape of a circle.

During the optimization process, using the graphical program DIFOPTI,
a study of the influence of some geometrical irregularities on the optimiza-
tion result has been made. In some examples (Figs. 14, 16) the optimization
process was carried out without mesh redefinition until the final result (until
the Kuhn - Tucker conditions were satisfied), while in others (Figs. 18, 20)
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the mesh modification has been introduced when the geometrical irregulari-
ties appeared. In these cases, when it was necessary to eliminate nodes that
caused the presence of acute angles between mesh elements, the nodes have
been eliminated and then, to improve the accuracy of the optimal sclution,
new mesh was introduced. '

For the first shape optimization of the “Greek cross”, the following cases
have been studied:

(a) Linear mesh elements and constant approximation of the function of
unknowns without mesh redefinition (24 mesh elements, Dg/G = 32 cmf,
Em = 10%, Ep = 30) (FigS 14, 15),

3
352
af .
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5 3}
19 -
$ § [
5 8 31.865
o Q
g I
L¥)
g
Ee)
- o0t
; | o 268
0 2 3 2 6 285 Z 8 2z %
iteration iteration

Fia. 15. Example (a). Evaluation of objective function and restriction during
optimization.

(b) Linear mesh elements and linear approximation of the function of
unknowns without mesh redefinition (24 mesh elements, Dy/G = 32 cm?,
em = 10%, e, = 3°) (Figs. 16, 17);

(¢) Linear mesh elements and constant approximation of the function of
unknowns with mesh redefinition (24 and 16 mesh elements, Dy/G = 32 cm*,
Em = 10%, e, = 3°) (Figs. 18, 19);

(d) Linear mesh elements and constant approximation of the function
of unknowns untill mesh redefinition and then linear approximation of the
function with mesh redefinition (24 and 32 mesh elements, Dy/G = 32 cm?,
£ = 10% and 1%, ¢, = 3° and 5°, respectively, in both cases) (Figs. 20, 21).

It is seen in Fig.15 that the optimization process converges rapidly
with the constraint value Do/G always inside the constraint strip. How-
ever, boundary of the final design is not very smooth due to the lack of the
mesh redefinition in case when geometrical mesh irregularities appear.
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F1G. 16. Example (b). Evaluation of section’s shape during the optimization process
without mesh redefinition.

36
I 352
o~ 7S
£ X
& -
g e 3271 A= ]
Q [x]
E, —~ r 31996
3 g 30
2
-ﬁ. 28t 288
K]
26
13 1 A, A 1 1 1 1 1 1 1 1 i 1 L 2‘ I 1 1 1 1 1 1 1 1 1 1 i 1 L
o 4 8 2 % 20 2 2 o 4 8 B2 1B 20 24 28
iteration iteration

F1G. 17. Example (b). Evaluation of objective function and restriction during
optimization.

In Fig. 17 it is possible to see that in Example (b) with linear approxima-
tion of unknowns, the optimization process converges to its optimal value
in more steps than in Example (a), leaving in some cases the limits of re-
striction. The final design represents the section boundary line much more
smooth than in the previous case.

In this example the mesh redefinition after the Gth iteration has been
introduced. Using the DIFOPTI application, some nodes and elements have
been eliminated and the boundary mesh has been modified. The sharp
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FiG. 18. Example (c). Evaluation of section’s shape during the optimization process
without mesh redefinition.

| change in the value of objective function and restriction (Fig. 19) represents
the point of mesh redefinition. The final boundary mesh, although with a
lower number of elements than in Example (a}, is considerably more smooth.
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F1a. 19. Example (c). Evaluation of objective function and restriction during
- optimization.

. In this example (Fig.21), after elimination of the nodes and elements
~around the acute angles, finer boundary mesh is applied and the linear ap-
_ proximation of the unknowns are introduced. It was necessary to perform
- much more optimization steps to get the optimal solution, but it is possible
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F1G. 20. Example {d). Evaluation of section’s shape during the opiimization process
without mesh redefinition,

to stop the process almost at every step after the 25th step, without leaving
the restriction strip.
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Fig, 21, Example (d). Evaluation of objective function and restriction during
optimization.

The second of the studied examples concerns a triply-connected domain
with an external fixed boundary and two moving holes inside. In that case
the well-known solution with a single quasicircular central hole has been
obtained. Here the method of boundary intersections detection has been
verified. The following optimization problem has been studied:
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(e) Linear mesh elements and linear approximation of the function of un-
knowns with mesh redefinition (72-and 80 mesh elements, Do /G = 1300 cm?,
£m = 2% and 0.125%, ¢, = 5° and 3°) (Figs. 22, 23).
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Fic. 22. Example {e). Evaluation of section’s shape during the optimization process
without mesh redefinition.
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F1G. 23. Example (e). Evaluation of objective function and restriction during
‘ optimization.

In this case (Fig.23) the intersection between internal boundaries has
been detected by the program at the 5th iteration step. Using the interactive
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. graphical program, the intersected parts of both internal boundaries have
been eliminated and one new internal boundary has been defined basing on
the left nodes and elements. It has also been defined with more elements
than the previous internal boundaries.

7. CONCLUDING REMARKS

The interactive graphical program applied to the shape optimization of
sections under the Saint-Venant torsion has been presented in the paper. The
boundary element method has been used in the analysis, and to solve the
optimization problem, a method based on the ideas of the feasible direction
methods and the gradient methods have been applied.

The developed computer program enables us to modify, in an inter-
active way, the mesh of the optimized section at any optimization step.
The necessity of mesh redefinition occurs due to existence of geometrical
mesh irregularities caused by changes of coordinates of the nodes of the
optimized boundary, and intersections of different boundaries in case of
multiply-connected domains. It is obvious that, in some cases, disregard-
ing the control of mesh changes can lead to erroneous results. DIFOPTI
program allows us to control the optimization process and to introduce all
the boundary modifications necessary to obtain the optimal design.

The authors understand that at the present stage, the DIFOPTI pro-
gram has but a narrow application. However, it can easily be modified and,
in the future, there exists a possibility of introduction of more adequate
mesh models, automatic mesh redefinition, and other numerical methods of
optimization.
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