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COMPUTER ANALYSIS OF DAMAGE DEVELOPMENT
IN RECTANGULAR PLATES (*)

JL.BIALKIEWICZ and P. MIKA (KRAKOW)

A numerical analysis of the time-dependent rupture of a plate of moderate thickness
is presented. The solutions focus on the time and localisation of appearance of the first
macroscopic cracks as well as on the mode of rupture front propagation to the instant of
failure. The damage development is coupled with the variation of the plate thickness.

1. INTRODUCTION

In this paper a study is made of the rupture mechanics of metal plates of
moderate thickness which operate at temperatures sufficiently high to cause
material deterioration due to damage evolution. The problem of particular
interest is to determine the motion of the rupture front in orthotropically-
damaged material, the current state of which is described by the symmetric
second rank damage tensor due to MurAKAMI and Onno [21].

The basic studies of failure modes and time predictions of structural com-
ponents subject to multiaxial stress have been performed by the application
of scalar damage representations. The theories adopted here generalize the
classical approach to damage description introduced by KAcuanov [10] and
RaBoTNoV [23]. In particular, interesting proposals of various creep damage
theories verified by experimental investigations with multiaxial loads have
been elaborated by HAYHURST [6, 7], LECKIE and HAYHURST [14], Mu-
rRAKAMI and OrNO [21}; LEMAITRE [15], KraJCINOVIC [11], LEMAITRE and
CraBoctE [16}, Hurr [9], GLoCKNER and SzyszkowskKi [5]. Some of these
theories have found application in the analysis of damage of structural com-
ponents. The combination of creep and the motion of the rupture surface,
interpreted as a ductile creep rupture, has been performed by BrapKIEwicz
[1] for a rotating disk of variable thickness.
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The problem addressed in this paper is focussed on the mode of rupture
propagation to the instant of the carrying section failure. As it is known, the
material damage consists in reduction of the net cross-sectional area caused
by nucleation and growth of fissures and grain boundary cavities. Such an
internal damage process has directional character resulting also in the de-
velopment of material anisotropy (cf. CHABOCHE [3]). The solutions limited
to orthotropic distributions of microdefects can be investigated by means
of a tensorial damage description as proposed by LITEWKA [18, 19}. How-
ever, the correctness of this analysis will require the assumption of initially
isotropic materials under proportional loading (cf. Krazcmovic {12, 13]).

This paper is based directly on a previous study (cf. BIALKIEWICZ and
OLEKSY [2]), but with a more complex modelling development of the dam-
age zones. The damage evolution in the plate cross-section is coupled with
. the variation of the plate thickness. This procedure will initiate the stress
redistribution and accelerate the propagation of the damage front.

2. ''ENSORIAL DAMAGE MODEL

The current state for orthotropically-damaged material is described by
the symmetric second rank damage tensor I} as proposed by VAKULENKO
and KAcEANOV [24] and MURAKAMI, QHNO [21], with principal values D;
(for i = 1,2,3) defined as follows (cf. LITEWKA, 17

(1) D; = scifsLi,

where s.; and sr; stand for the respective areas of the crack and of the
material Temaining on the plane orthogonal to the principal directions z;.
In the limit case of absence of cracking on a given plane (s = 0), the
appropriate principal component of damage tensor is equal to zero. In the
opposite case, if the damage growth reduces the net area (the ligament
between the adjacent cracks) to zero (sz; - 0), the respective principal value
increases indefinitely causing loss of stiffness in the considered direction.

In further investigations we also use the more convenient (particularly
for the equation of damage evolution, cf. MURAKAMI and SANOMURA, [22])
damage tensor £ whose principal values [2; are related to those of the tensor
D through

(2) 2; = D;/(1+ D).

According to LITEWKA'S suggestion [19], the one-parameter damage evol-
ution equation written in the principal directions of damage-stress o;, will
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be assumed in the form
TY? .
(3) 08 =k (MN ) o H{a;), 1=1,2,3.
Here for mathematical simplicity, the definitions of the vectors of mater-

jal-damage M and stress-damage N have been introduced

_[1—-2v 14+v ¢
(4) M_[GE - 2E QE]’

:'(5) N=[tr2T tr§? tr(TzD)],

“where E, T and S are the strain and stress tensors and stress deviator,
respectively, ' and v are Young’s modulus and Poisson’s ratio of the un-
damaged material at current temperature. The magnitude k is a tempera-
ture-dependent material constant. The Heaviside step function H(o;) has
been applied for elimination of damage development in the directions of
.compressive stresses. In this way the principal compressive siresses are as-
sumed here to leave the already existing damage unchanged (the principal
‘values of the damage rate tensor are equal to zero, 3;42; = 0). This descrip-
‘tion is justified by the experimental investigations indicating that damage
‘orientation is mainly associated with the positive values of the principal
‘stresses (cf. HAYHURST [6]; DavsoN and McLean [4]).

The state of rupture in a particle of the structure identifies with a critical
_combination of the damage tensor components which can be determined
from the criterion of failure (cf. LirewkA and HurT [20])

(6) CR — s = 0,
"{vhere
(81+ 82+ s3)?

o 1 8 + &+ 5% — 5981 — 838, — 8283
{1 R=— .
51

g2 2
2 S L sam N $ari
A\St—rmfy  si—raddy sy —rafh

H

5;-;(8) C= [Cl Cy Cy.

The equation (6) has been formulated in terms of dimensionless principal
stresses

(9) 8 = 0‘,;/0’1 i= 1,2,3,
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(10) 8y = Ju/o'l

where oy is the maximal tensile stress, and s, denotes the dimensionless
ultimate strength o,. The multipliers

(11) r; = s H(8;), 1=1,2,3

expressed by the Heaviside function H(s;) eliminate the influence of com-
pressive stresses on the damage growth.

The vector of material constants C is dependent on the temperature and
on the state of the damage growth process. Its components (; are determined
by applying the Eq. (6) to three different states of stress: uniaxial tensions in
the two principal directions of the damage tensor, and equal biaxial tension
in those directions. This procedure leads to the following set of equations:

(12) ucT =1,
where

[ (1 ,)? %(1-91)2 (1= 02

(13) U= (1 — 1‘2.91)2 g(l — 7'2.91)2 (1 - Tg.Ql)Tg.Ql 3
| 4(1- )? %(1 -2 21— 20)%
(14) ' IT=[1 1 1].

The numerical analysis of the damage process will be carried out on the
basis of the following set of equations: the differential equations of damage
evolution (3), and the failure criterion (6) coupled with {12). The solution of
this set of equations will be investigated in fixed discrete point pattern of the
plate. Rupture in all the points occurs when (2;, increasing monotonically
according to damage evolution (3), satisfy the failure criterion (6}, where the
constants C[C}, Cy, C3] are calculated from (12). The Runge - Kutta integral
procedures have been applied io solve the Equations (5). The material was
assumed to be undamaged in the initial state, i.e.

(15) 2ty =0  for i=1,2,3,

where 1y is the instant of loading.

The principle values §2; corresponding to the material rupture will be
assumed as the critical ones. The critical values attained at the same time in
different points of the structure form the rupture front propagation surface.
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The numerical solution of the plate problem is carried out by means of
the Mindlin - Reissner finite elements. The plate is discretised by 9 nodal
isoparametric elements of heterosis type, where the shape function is inter-
polated by Lagrange’s formulas. For the numerical integration of volume
the Gauss nine-point quadrature was applied. The rupture within the plate
thickness is analysed using a layered approach. The details of the algorithm,
including the conditions for numerical stability and accuracy, can be found
in monograph by HINTON [8]. The stresses obtained here, after transforming
to the principle directions, are the input data for the analysis of the damage
process. :

3. NUMERICAL ANALYSIS

To illustrate the process of a brittle rupture, appearing in the form of
reduction of the plate thickness, we consider a uniformly loaded, square
plate with entirely clamped edges (i.e. lateral displacement, tangential and
- normal edge rotations are zero, Cp, : w = 8; = 6, = 0), Fig. 1. The plate
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has a thickness-to-span ratio (h = h/a) of 0.025. In all presentations of the
numerical solutions, in case of symmetry we analyse a symmetric quadrant
ABCD in the zone £ € (0,1}, 9 € (0,) in which the functions sought for are
syminetric with respect to the diagonal AC. The following dimensionless
quantities have also been assumed: uniform load § = ¢/, = 1.7 1073,
Young’s modulus E = E/o, = 416.7, Poissons ratio v = 0.47, material
constants of damage evolution (5) ¥ = ko3t = 6.81 - 105, where 7 = 1[h]
is unit time, and o, = 288 [MPa}]. These material data correspond to the
carbon steel AISI at a temperature of 811 [K] (cf. LITEWKA and HurT [20].

The distribution of the principal values of damage tensor £21 at the in-
stant of the first appearance of cracks in points B and D in the upper surface
of the plate is illustrated in Fig.2. The compressive stresses in vicinity of
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the mid-point C are related to the zero principal values of the damage ten-
sor. The very steep gradients of the principal stresses at the clamped zone
in the upper surface of the plate (disregarding the neighbourhood of point
A) indicate a high intensity of the damage growth in the narrow edge layer
(directions DA and BA). The first macroscopic cracks will decrease the
thickness of the plate in points B and D. The changes of the plate thickness
are here computed by means of layer elements. The plate is divided into eight
layers with constant dimensionless thickness Ah = 3.125 . 1073 (points B;,
for ¢ = 1,2...8, Fig.1). The changes in the plate thickness are associated
with the redistribution (increase) of stresses accelerating the damage devel-

opment.
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The redistribution of stresses s1 in points 4; (for ¢ = 1...9) of the damage
front, forming along the clamped edge BA in the upper plate surface, is
shown by dashed lines in Fig.3a. The dimensionless time is related to the
time of the first cracks #; (¥ = t/t;) arriving in point A;. The stress state in
an undamaged state is represented by the initial value of functions at 7 = 1.
Rupture will occur in points A; which define the critical curve in the sy ~ 1
plane (continuous line).
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The damage state in points A; is illustrated in Fig.3b. The starting
points on the £2; axis for dashed curves are related to the principal values of
damage tensor §2; at the instant of the first crack at point A; (ﬁf‘ =04). A
continuous line with points A; shows the variation of the principal value of
the damage tensor on the front of the rupture. It is seen from the course of
this line that the critical damage £2; is decreasing in the process of rupture
propagation. The opposite phenomenon can be observed when the changes
in the plate thickness caused by rupture are neglected and nominal stress
analysis in damage development is applied. The solution in such a case is
illustrated by a continuous line with points A} (for ¢ = 1...9). The rupture
propagation is associated with an increase of the principal values of the
damage tensor. Also the interval of incubation time to the instant of rupture
increases when compared with the results of previous analysis.

A similar analysis of damage front motion in the direction of plate thick-
ness (points B;, for ¢ = 1...8) is shown in Fig. 4a-b. Here the state of rupture
in points Bg, By and Bg appears at a time when, in the course of stress re-
distribution, the ultimate compressive stresses in these points are reached,
Fig. 4a. The principal values of the damage tensor in these points are equal
to zero, Fig. 4b.

High discrepancy between the scales of time for the analysis with the
assumption of nominal stresses makes it impossible to present a suitable
~ solation in Fig.4b. The rupture in point By will appear at instant 7 = 6.3

for £, = 0.59.

The dimensionless function of deflection w® in point C' related to the

instantaneous deflection w®(tg) of undamaged plate is shown in Fig. 5. The
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asymptotic course of this function indicates the time of rupture of the plate
i, = 3.25. The damage process at the instant close to i has an avalanche
course.

Two chosen stages of the damage development are shown by shaded
zones in BA and BC cross-sections in Fig. 6a-b. Figure 6a corresponds to
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the instant 7 2 2.2 when the crack appeared in point Bg, whereas Fig.6b
illustrates the state of rupture close to the instant #.

4., FINAL REMARKS

The numerical analysis indicates a different course of the rupture process
in time, depending on the assumed model of deterioration. For plates display-
ing no changes in thickness (uncoupled theory), rupture on the front surface
occurs for increasing principal values of the damage tensor. The reverse re-
marks can be formulated when real stresses are used in the rupture analysis.
The real stresses introduced through the variation of the plate thickness
influence the acceleration of rupture front motion. The rupture will occar
in a shorter time at lower principal values of the damage tensor (Fig. 3b).
This indicates that the coupled theory, in which the rupture determines the
current geometry of the structure, gives safer design conditions.
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