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KINEMATIC APPROACIH TO DYNAMIC CONTACT PROBLEMS -
THE GEOMETRICAL SOFT WAY METHOD (*)

C. BOHATIER (MONTPELLIER) and CZ BAJTER (WARSZAWA)

A method of taking into account the geometrical constraints in evoluiion problems of
solid systems that limit the possibility of mction by the history of variation of the velocity
field is developed in the paper. The presented formulation can be adapted to numer-
ous problems of solid systems subjecied to dynamic effects with large deformations, large
displacements, large rotations. The computational cost of one iteration in the method pro-
posed is the same as in other classical methods because of the {rontal approach. However,
the iterative process converges faster. If an adaptive space and time meshing were chosen,
it could become a less expensive method. A numerical example of the contact analysis, in
which both the spatial and temperal partition was adapted according to the evolution of
the geometry, proved the approach to be more efficient.

1. INTRODUCTION

Several possibilities of taking into account the unilateral contact condi-
tions are described in the literature [1, 2]. However, numerical experiments
show that the time of computation is not the same for each approach chosen
for a particular problem. The choice of geometrical constraints as restric-
tions imposed on the variation of the velocity field enables us to reduce the
computational time.
~ First the velocity formulation is presented. It can be adapted particularly
to a wide range of problems such as rigid mechanisms [3} or deformable solid
systems subjected to dynamic effects [4]. It must be emphasized that the
choice of the velocity formulation is not incompatible with the description of
large deformations, large displacements and large rotations. Moreover, the
expressions are less intricate and the formulation of the contact evolution be-
tween deformable solids is easier than in a tangent space formulation. The
fundamental general formulation {(instantaneous updated Lagrangian for-
mulation) is convenient for discretization by the space-time finite element
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method [5—10] which avoids the separation of the spatial and time dis-
cretization. The interpolation formulas depend on both the spatial and time
terms. We can recall here that in the classical approach used in solutions of
dynamic problems, the space is discretized by one discrete method (finite
element method, finite difference method) applied to a structure in certain
moments, while time derivatives are integrafted by another method (central
difference, Runge-Kutta, etc.). In our approach the virtual work principle
is formulated by the integration in time of the virtual power principle. The
velocity field is considered as the principal variable. Space-time elements
used in the formulation have linear time-dependence of the real interpola-
tion functions. The appropriate choice of the virtual velocity field and virtual
interpolation functions are discussed.

The problem of points entering into contact is formulated by means of the
introduced special elements. These elements have additional nodal points in
time that are eliminated by the normal contact conditions. The interpola-
tion functions are piece-wise continuous in time. The tangential conditions
are formulated by friction laws with the same type of formulation as the
rheological laws. The tensor theory in dynamics of surface allows us to join
the space behaviour and the surface behaviour. Certain conditions of com-
patibility have to be fulfilled, but a phenomenological way permits to use
a more suitable law to a specific problem with dry or lubricated friction. The
viscoplastic friction law is used as a more realistic behaviour, commonly ap-
plied, particularly to the forming problems.

The solution algorithm uses a fixed point method that leads to a gain of
computation time in comparison with the Newton - Raphson method. In the
former paper [4] the Newton - Raphson method was used to a similar mech--
anical problem. In the present paper the solving by a fixed point method
gives good results because of the low number of arithmetical operations
and the well-conditioning of the system of equations. The algorithm uses
a frontal method of the solution of the system of equations. It reduces the
size of the problem to the same size as we have in the classical finite element
method. Therefore, the usual classical software can be simply implemented.

Numerical examples related to different application fields are presented.

2. VELOCITY FORMULATION

The velocity is considered as the main variable. Generally, the virtual
power principle can be formulated by

(2.1) PidPe—Pe =0,
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where for a deformable solid

‘Pf":-m/cr:D*d.Q,

It

(2.2) P /pf v*dQ-|—fF v d(80),

Pr= /p—de

D - the Euler strain rate tensor, ¢ — the Cauchy stress tensor, p — the mass
density, f — external body forces, ¥ — external surface forces.
The virtual work W* within the interval [ty; ¢1] is defined by the integral

(2.3) W* = fp* dt.

Therefore it is calculated by the integration over the space and time domain

{Q x [tg, tl]}f

ty
(2.4) W*=f/}"u*dd’2dt,
o 12

where F is a generalized force and v* is a virtual velocity. The chosen virtual
velocity field v* is formulated as a product of a space and time functions

(2.5) v =1(x{1)) glt),

where f(x(t)) is a spatial distribution which in a general case can vary in
time, since the geometry depends on time and g{t) can be either a constant
distribution within the step of time or composed of one or several Dirac
peaks. In the first case we recognize the momentum theorem and in the
second case we recognize the equation of motion.

After the integration (2. 3) the equa,tions are implicitly described by the
velocity field _
(2.6) =0,

Boundary conditions mdude contact dissipations, and the variation of the
domain and its boundary Q is the function of variation of the velocity field.
Points x of § are estimated by

: t
(2.7) x=x0+/vdt.
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In the case of large rotations the objectivity of the rheological law is guar-
anteed by an objective derivative used in the formulation of the law. The
commonly used derivatives are either the Jauman derivative or the Truesdell
derivative,

However, the respective expressions in a fixed coordinate system are not
easy to evaluate. We determine here the variation of stress tensor in the
relative coordinates of Jauman. For instance, the elastic behaviour can be
well formulated by hypoelasticity, where the relation between strain rate
tensor and the time derivative of the Cauchy stress tensor is linear when the
components are considered in the corotational axis [11]. Truesdell derivative
is well adapted when the Piola stress tensor is considered. The components
can also be considered in corotational axes.

3. DYNAMIC CONTACT CONDITIONS

The solid 5; is considered as a reference one. The external normal (ef-
fective or predicted) nj; is determined at the effective or predicted contact
point. Afterwards the base of the tangent plane defines two remaining ref-
erence axes.

Below we will use indices 7 and j to denote (number) the body. n is the
normal direction and T is the tangential one.

The relative normal displacement of a point of the solid §; with respect
to a solid §; is

Ungy = Wi - Mgy,

(3.1)
u,;j(t) = /V,‘j dt .

Let us notice that u;;({o) = 0 and vy; is the relative velocity of the solid 5;
with respect to the reference axis associated with 5;. v;; has a normal and
a tangential component

(3.2) Vij = Vn; T VT

The normal force from the solid 5; to the solid 5; is defined by
(33) Fn,'j = Fj'i i YT
and the tangential contact force Fr;; by

(3.4) FT,'.'_ =Fj — Fn,my ;.
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A friction law takes here the form
(35) : FTJ‘,‘ = H(V:Tij) .
As an example, the Norton-Hoff law can be formulated by

(3.6) Fr; = _a“VTej”p_lvaj .

The Signorini conditions are satisfied at time f; and t,:
Unyy — dD <0 )
(37) F'n.j,f <0,

Fnjs(“nij —dp) =0,

where dp is the distance between ¢ and j. Furthermore, at any time ¢ we
have the power of the normal force within the time step

(38) Fnj"vn.'j =0 ’

where vy, is the normal velocity. Therefore the work is equal to zero,

ty
(3.9) [ Fuinssdt =0.
o

This expression is associated to the duality of the normal force and the
normal relative velocity. Therefore the virtual velocity field is chosen to be
compatible with these contact conditions.

We can integrate (3.9) by parts to obtain

£ y: d.l'-, -
(310) [Fn,'j(un.'j - d[))] f e ] % (u’ﬂij — dg) dit = 0.
to

Therefore, with the Signorini conditions for the interval [tp; #;] we have

f 3 .
dFy,;
(3.11) | / L ;= do) dt =0,

)

4. SPACE AND TIME DISCRETIZATION

The instantaneous updated Lagrangian description is used in our for-
mulation. The new velocity field is the main variable which is iteratively
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calculated, based on the initial velocity field and the description of evolu-
tion. In each iteration the improved final geometry in the time interval (time
step) is calculated [4]. The final geometry is then succesively improved. The
inegrations of the elemental matrices arve performed over space and time. Let
us notice that the spatial domain is altered by the iterative process. This
{echnique is contributed as a new element.

When the motion of any point of the spatial domain is regular during the
time-step, we can interpolate the velocity field by the linear interpolation in
time. The interpolation must be chosen so as to take into account the fact
that, when a point comes into a contact, the velocity becomes a discontin-
uous function and the acceleration is not defined. For most of the problems
it suffices to assume such a simple kind of interpolation. A higher degree
of interpolation could be chosen if another strategy of contact analysis was
used, for example the mesh would be refined in time.

We must emphasize that the test examples presented in the paper allow
to check the ability of the proposed modeling. However, the method similar
to the one applied here has already been used for more complex problem,
i.e. the viscoplastic deformation problem [12].

t

£ €2

reference element malerial element

Fi1G. 1. Space-time element,

The choice of the interpolation in space is determined mainly by the type
of the material behaviour. When the motion of a boundary point becomes
non-smooth since it comes into a contact during the time-steps, it is necess-
ary to divide the time inferval into several steps of time, In the domain of
a reference space-time element (Fig.1) we consider a space-time interpola-
tion function defined by a product of a spatial interpolation function and
time interpolation function {(Fig. 3):

Pi(z,7) = Ni(z)g;(7),
v(z,7) = Z Pii(e, m)V (735},
T = (1 — to)/h, where h = t; — 1.

(4.1)
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F1G. 2. Variation of the normal relative velocity within a step of time and
piece-wise linear interpolation.

4n

1

-

Te 1

Fia. 3. Time interpolation functions.

Hf the solid S; comes to a contact at time ¢, within the time step h, two
space and time elements are considered instead of one (Fig.4). The step
of time is assumed to be sufficiently short. In the first element the initial
value of the velocity vg is known. At time i it is possible to assume the
same velocity or to apply an explicit linear interpolation function from the
previous step of time.

In the second time step ‘the initial value of the velocity at time tF is
zero because of the contact. The velocity is discontinuous at time ¢, (Fig. 2).
The velocity at time #;'is unknown. For instance, in I'ig.4 we present a rod
subjected to a dynamic elongation. In the second time step the right-hand
end of the rod comes into contact with a wall. A space-time remeshing is
performed for the elements neighboring with the contact area. The Fig.4
shows only the principle. The depth of the space and time remeshing in
practice is not large. The range of the remeshing, both in space and time, is
limited to the nearest space-time elements in the mesh.
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F1c. 4. Space-time mesh evolution,

5. NUMERICAL RESULTS

Two examples were solved to verify the efficiency of the presented ap-
proach. In the first example the elastic bar of length I = 1, Young modulus
E =1 and mass density p = 1, hits the rigid wall with a speed v = 1. The
spatial mesh is composed of two elements. The elements were divided in the
contact zone into trapezoidal and triangular element as depicted in Fig.4.
Figure 5 presents the time-dependent positions of both ends on the bar.

T~

X

4

N

. 1 , W

| N

8] 2 4 8 ] 10 12 14 16 18

Fig. 5. Collision of an elastic bar with rigid wall.

The second example was calculated with the same mesh as in the previous
case. However, here the end of the rod was fixed while for the frontal nodal
point, the initial velocity v=1 was assumed. In I"ig. 6 displacements of two
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Fi1g. 6. Vibration of a bar without contact (upper figure) and with contact (lower figure}.
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remaining points are presented as functions of time (point of the contact
— thick line, inner point — thin line). A case with the unilateral constraint
additionally imposed upon a nodal point was compared with the case with
only one point fixed.

6. CONCLUSIONS

The presented formulation and analysis of contact conditions has proved
to be very efficient in view of the small computational effort and the simplic-
ity of application. Tt is the result of the kinematic approach to the formula-
tion and the space-time interpolation, which takes into account the change of
the status of a boundary point during the time-step. The presented method
of analysis is also convenient in the case involving thermo-mechanical prob-
lems and thermal processes during which the change of phases take place.
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