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FINITE ELEMENT MODEL FOR 3-D ANALYSIS OF COMPOSITE
PLATES (*)

M. LEFIK (EODZ)

Homogenization theory is applied to the elastic analysis of plate composed of many
layers parallel to the middle plane of the plate. The cross-section of each stratum has
its own, complex structure. We analyse first the microstructure of the plate to define
the local perturbation of a global mean behaviour, due to nonhomogeneity. We describe
this perturbation using first order terms in the asymptotic expansion of displacements
in the power series of the small parameter. We use this description in the derivation of a
plate-type element for the analysis of plates with multiple, parallcl layers. In the kinematics
defining the global behaviour of the plate, additional degree of freedom is included. We
quote the formula for the stiffness matrix of an equivalenet homogencous plate element.
The computational process is then illustrated by an example.

1. INTRODUCTION

The main aim of the analysis of plates is to simplify the 3D problem by
introducing some internal constraints imposed on the change of unknown
functions across the thickness of the structure. Such a simplification in the
deformation-type approach is imposed on the displacements fields. The most
important examples are the Kirchhoff - Love hypothesis or a family of Reiss-
ner’s models. For a plate inhomogenous in the direction perpendicular to
its plane, another assumption should be made about the nature of the local
perturbation due to the nonhomogeneity. This leads to various theories (for
example Reddy’s approach) in which the number of degrees of freedom of
the problem increases with the number of layers. In our paper we show how
to avoid this disadvantage for the plate with periodic microstructure. We
assume that the local perturbation in the cross-section of the plate due to
the nonhomogeneity is given by the first order corrector resulting from the
theory of homogenization. We outline the procedure of a superposition of
such a microdescription with the given hypothesis about the deformation of

(*} Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September
5-9, 1994.
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the cross-section of the plate. A similar approach has also been presented in
7] and [8] in the analysis of a beam with parallel, superconducting fibres.

In this presentation we consider the static problem of the layered plate.
The cross-section of each layer has its own, complex structure. It is composed:
of families of a large number of parallel fibres arranged in regular arrays. As
usually, these fibres are ordered in the axial direction of the structure. In
the cross-section of such a plate we may distinguish 3-dimensional, repetitive
“cells of periodicity”. These cells correspond to the part of the cross-section
of a single layer and thus they are defined by its geometry and by the
properties of the materials used, see Fig. 1. We consider the structure shortly
described above as a composite with periodic structure. Qur approach to its
structural analysis is based on the asymptotic theory of homogenization that
is applicable in this case. The theory of homogenization provides the overall
behaviour of the composite material starting from the known properties
of the individual constituents of the single cell of periodicity (no a priori
assumptions are needed for the global composite response}. :

Fic. 1. Tayered plate and the single cell of periodicity.
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We do not intend to give here a full account of the theory of homogeniza-
tion. The interested reader will find in [2, 5] or [9] the rigorous formulation
of the method, its application in many fields and further references. In the
- frame of thig approach, first the local behaviour is studied, being understood
as a periodical perturbation of some unknown, mean solution. To this end
the displacement field, the stresses and strains are assumed in the form of
power series of a small parameter. Having introduced this microdescription,

the effective material coeflicients can be deduced, and thus the global be-
haviour will be defined. In this paper, however, we assume a priori some
special plate-like global behaviour of the structure and we combine it then
with the local perturbation.

This local perturbation is given in the form of the finite element solution
of the local problem. To obtain this solution, our Finite Element program
for homogenization is used. Then we define a homogeneous plate-type model
and we consider it as a hypothesis about a global behaviour of the composite.
The form of kinematical hypothesis we use is suitable for the 3D approach
we adopt when we derive the finite element for global numerical analysis
which is able to capture the microstructure, This element is based on the
Bogner - Fox - Schmidt rectangle and is included into our own Finite Element
code. An example of numerical applications and comparison with a result
obtained from ABAQUS Finite Element program conclude the paper.

2. HOMOGENIZATION PROCEDURE

2.1. Statement of the problem

We deal in the sequel with the problem of classical linear elasticity written
for a nonhomogeneous material domain. Let us consider an elastic body,
contained in a bounded open domain §2 of R3 with Lipschitzean boundary
242. On the part 42y of it boundary tractions are given. On the rest of 612
(i.e. on d12;) displacements-are prescribed.

The material of the body is supposed to be heterogeneous and anisotropic.
Flements of the given matrix of the fourth order elasticity tensor @ikl are
Y -periodic functions of a position vector x. It means that the traces of ikl
on the opposite faces of the domain ¥ = (0,Y;) x (0,Y2) x (0,Y3) C R®
-are equal. The symbol |Y| denotes the volume of ¥, since the 3D situation
is analysed in the paper. All material coefficients are discontinuous, with
discontinuities along a regular surface Sy. They satisfy the symmetry, pos-
itivity and uniform ellipticity conditions. We consider here only materials
for which ang33 and aeg43 are zeros.
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The set of governing equations can be written as follows:

of;;(X) + fi(x) =0,
o5;(x) = afj(x)en(0®(x)),
(2.1) eij(u*(x)) = 0.5(uf ;(x) + 5 ;(x)),
wi{x)=0 on 02 and af;(x)n; =0 on 8,
)] =0, o5l =0  on 5.

The superscript € is used to mark that the variables of the problem depend
on the cell’s dimension. Square parentheses denote the jump of the enclosed
value. Other symbols have the usual meaning: u is the displacement vect
e denotes the linearized strain tensor, ¢ is used for stress tensor, f sta,nds
for the body forces.

Since the components of elasticity tensors are discontinuous, the dlﬁer-
entiation (in the above formulae and below) should be understood in- the
weak sense. This is the reason why most of the problems will be presen’bed
in the sequel in variational formulation.

2.2. Assumptlions

To solve the problem defined above of the nonhomogencous body usmg
the homogenization theory we need only two, very natural assumptions.

The first one is the following:

It is possible to distinguish two length scales associated with macroscopic
and microscopic phenomena. The ratio of these scales defines the small p 1
rameter €. '

In the case of a sandwich plate, the macro-scale is defined by a typi
cal dimension of the plate cross-section, while the micro-scale is, given by
the height of the section of the single layer: Two sels of coordinates.re
lated by (2.2) formally express this separation of scales between macro aiid
micro-phenomena. Global x refers to the whole of the body {2 and local 3
is related to the single, repetitive cell of periodicity :

In this way the single cell Y is mapped onto the unitary domain Y. We wil
drop the prime in the sequel since we will deal only with Y.
The second hypothesis: 3
We assume that the periodicity of material characteristics imposes: al
analogous periodic perturbation on the studied quantities describing t
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mechanical behaviour of the body; hence we will use the following represen-
ation for displacements and stresses:

wt(x,y) = u¥(x) +eu'(x,y) + 20 (x,y) + ... + Fuf(x,y),

= 23) Us(x, y) = O’O(X,y) 4 EO’I(X,y) + 320-2()(,)7) + ...+ Ekg'k(x,Y))

nd u®, o for k > 0 are Y-periodic, i.e. its traces take the same values on
he opposite sides of the cell of periodicity.

2.3. Formalism of the homogenization procedure

By introducing the assumption (2.3) into equations of the heterogeneous
roblem (2.1) and by using the rule of differential calculus in the notation
“explained below (se also [9]):

d J 140 1
2.4) d:r:,-f = (8:4:,- + E—a*y“:) J=Fin+ gf,i(y) ,
e note that the equilibrium equation splits into terms of different orders:

(2.5) Ugv',j(y) (x%,y) =0,
354w (0 Y) + i) (% ¥) + fi(x) = 0,

he term of order = is the one containing the n-th power of ¢ in (2.3).
It can be seen that the term of order n in the asymptotic expansion (2.3)
or stresses depends on the displacement of order n + 1:

2.6) 735(%,¥) = aiju(y)(erz)(0°) + e (u)).
his is the reason, why we need u'(x,y) to define the main term in expansion

(2.3) for stresses.

2.4. Global and local so{ytion

Let us analyse Eq. (2.5)1; By introducing (2.6) in it and adopting a vari-
tional formulation, we obtain the problem defining u'(x,y),

"ﬁnd-i u} € Vy such that: Viy; € Vy,

/aijkl(}’) (“i},J(m) + ’Ur},j(y)) Yk () dY = 0.
Y

2.7)

n the above equation and in the sequel, symbol Vi denotes the space of
unctions that are locally square integrable together with their generalized
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first derivatives and are Y-periodic. This space may be identified with t
space of the functions from H'(Y) (Sobolev space) with coequal traces on
the opposite faces of Y. '

It can be shown [9], that ul(x, y) can be represented by a function defined
for the single cell of periodicity scaled by the mean value of strains over thig
cell. This will be called the function of homogenization. It is denoted by ¥

in (2.8),

(2.8) ul(x,¥) = —0.5(u gy + w)xd (¥) + Cl(x).

We can rewrite now the problem (2.7) in th following form:
find x*¥ € Vy such that: Vv e Vy,

/ aii(y) (Fobia = X050y (9)) Ve Y = 0.
b4

(2.9)

The effective ma,t;eual coefficients can be computed via the formula obta,med
by averaging a°, given by (2.6), over the cell Y:

(2.10) aliy, = Y™ f aiih(y) (ol = X5,y 4Y-
.Y

Integrating Eq. (2.5); over Y and taking into account the hypothesis about
Y-periodicity of ul(x,y), we arrive at the equilibrium condition for the

average stress,

(2.11) | | E?j,j(z)(x) = —fi(x),

where

(2.12) 50(x) = ¥ f % (x,y)dY.
¥

We can solve now the problem of the composite as 2 homogeneous one W“i_th
effective material coefficients given by (2.10), and obtain global displac
ments, strains and average stresses. Then we go back to Eq.(2.6) for local
approximation of stresses. The stress recovery (up to the zero order) wﬂl
called in the sequel “unsmearing”.

2.5, Approzimation of the stress vector and first order unsmearing

We note that the homogenization approach results in two different kin
of stress tensors. The first one is the average stress field defined by (2. 1
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“In this way, having in mind equilibrium equation (2.11), the stress tensor
or the homogenized, equivalent but unreal body has been established. Once
he effective material coefficients are known, this equation may be solved,
.q. by a standard F.E. structural code, see [8].

The other stress field is associated with the uniform state of strains over
ach cell of periodicity Y. Below, the final form of (2.6), which defines this
ocal stress, is explicitly written:

2.13) ali(%,¥) = aiju(y) (5kp61q - Xi?l(y)) €pq(z) (1°).

ecause of (2.9), this tensor fulfils the equations of equilibrium everywhere

3. FINITE ELEMENT ANALYSIS APPLIED TO THE LOCAL PROBLEM
For the numerical formulation it is convenient to nse matrix notation for

he above introduced quantities. The homogenization functions (Fig. 2) are
rdered as defined by (3.1),

31) XT(y)= [ ()HX Z(y)}{xaa(y)}{x”(y)}{xﬁ?’(y)}{x”(y)}]

‘his is in accordance with the ordering of strains

3x6

3.2) e = {e11 ey ez €13 23 613}3; = {epq}g-

‘he superscript e denotes the values of a function in the nodes of Finite
lement mesh. We have the usual representations for each element

3.3) X(y)=N(y)Xs,

here N contains the values of standard shape functions.
. It is easy to show that the variational formulation (2.9) can be rewritien
5 follows:

find X € V¥ such that: Vv € V4,

[T @D - LX(s))e(?) dy = 0.
Y

3.4)

1 the above formula I denotes the matrix of differential operators, D con-
ins the material coefficients a;;z; in the repetitive domain. Matrix X® which
ontains the values of homogenization functions in the nodes of the mesh is
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T1G. 2. Some of fanctions of homogenizations for the cell of periodicity. These function
scaled with the value of global strains at the center of the cell, define the shape of th
known local perturbation across the cross-section of the plate. "
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_obtained as a finite element solution of (3.4). The equation to solve is the
following:
(3.5) KX+ F=0;

X is Y-periodic, with zero mean value over the cell, where

(36)  F= /BTD(y), K = fBTD(y)B, B = LN(y).
Y Y

_The periodicity conditions are taken into account using Lagrange multiplier
‘in the constructions of the finite element code. Also the requirements of
the zero mean value is implicitly included in the program. A more detailed
_description of this code is given in Ref. [6].
Having computed X* and by consequence u
‘material coefficients, according to

(3.7) D" = 1Y|—1f1:)(y)(1 - BX®) dY,
: Y

L, one can derive effective

3.1. Local plane stress problem

Periodicity conditions describe well the kinematical constraints of the
single cell inside the body. For the plate problem these conditions are not
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suitable in the direction perpendicular to the plane of the plate. We define.
the plane stress homogenization functions (and the related plane stress effec:
tive coefficients) as the solution to the problem (3.4),in which the periodicity:
conditions are retained only in the directions z,, while in the direction 23 we.
have a free surface. In Fig. 3 the so-called plate-type homogenization func-
tions are shown. To obtain them we have solved again the problem (3.4).
with periodicity conditions only in directions z4, but in the direction 23 we.
have added some brick elements filled with the (unknown) effective material.’
The height of such a cell is equal to the thickness of the plate. In this wa;
we have some intermediate values of the eflective coeflicients.

4. EQUIVALENT HOMOGENEOQUS MODEL OF THE PLATE AS THE GLOBAL
PROBLEM o

In this part of the paper we follow the macromechanical approach to
derive an equivalent, homogeneous model of a plate. This was already done:
in [8] for a beam. We take for granted that the global behavionr of th
structure (macroscopically) is that of a plate. As a consequence, we impose:
the plate-type kinematical constraints on the global displacements u and we..
superpose it with the local perturbation, already known,

4.1. Assumptions

We assume that the 3-D plate’s domain 2 is described by its main surface.
S C R? and the geometry of the normal to it # = {—h, k) C R' in each point.
of the §. Displacements, strains and stresses in the interior of the domai
occupied by this plate are described using wa(z3), wa(z3) — the transversal.
and in-plane displacements of the central surface of the plate.

We suppose that the number of layers is too high to be directly take
into account by the simple discretization of the plate cross-section. At the
same time, however, we are able to identify each particular layer with its:
coordinates without any numerical troubles. Therefore we suppose that the
description of the whole plate’s domain “layer by layer” is possible.

We assume furthermore that the local stresses and strains can be de
scribed using the functions of homogenization derived above.

4.2. Definition of the equivalent homogeneous model of the plate

We consider the field of displacements of the form (2.3) up to the term.
of the first order. Let us assume that global displacements u® may be rep:
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* resented by a set of unknown functions defined along the central surface of
- the plate,

0
Uo(Tas T3) = WalZo) — T3w3,6(Ta),

0
U3(Tar 23) = w3(Ta) + fap(@3)bap(2a)-

- bap(#o) denotes three additional unknown functions defining the influence of
. w on the variation of w3 across the normal to the plate. The set of functions
o Will be chosen to make o33 minimum

(4.1)

2 G533

: [s4
(4.2) Jop = —w3——.
: 3333

- We define the three-dimensional strain field as the zero order term in the
asymptotic expansion of strain (this expansion is analogous to that of the

stresses (2.3)):
(4.3) eij (¥, %) = (6inbg — XT3 (¥))epy (%),

where

e?j(x) = 0.5(u?’j(x) + u?ﬂ-(x)).
The three-dimensional stress and strain fields are then defined according to
the formulae (2.6), (4.1), {4.3). The functions w, b which determine the
; presented model of the plate are chosen to satisfy the stationary point of
the three-dimensional potential energy functional:

. (4.4) H(W, b) = 0.5 / aijk[(y)eij(w, b)ek[(w, b) dfl — R(W, b),
2

where
R(w,b) = /f,-u?(w,b)d()+fFiu?(w,b)dS.
2 3

5. FINITE ELEMENT ANALYSIS APPLIED TO THE PROPOSED PLATE MODEL

For w,{z3) we use the Hermitian interpolations over a two-dimensional
finite element parametrized with —1 < £ < 1; ~1 < 5 < 1. For wo(2a),
ba{zo) linear shape functions are used, but in this case it is also possible
to apply the interpolation with higher order of continuity. In general, our
code enables us to define an individual type of interpolation for each of the
unknown functions.
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To mark the different orders of approximations for different components:
of w;(zy) or b;(x4), we label the corresponding shape function with super

scripts, for example: No(£), Nb(¢).
The nodal degrees of freedom are

(5.1) vl = {{wshe {w}s {0{}s},
where the superscript e is used for the vector of the unknown nodal va.lue
of the element. Vectors w§, w®, b® are of the form:

{wi} = {w; ws,& “":g,w “’3,&1 LWy w3,£ wg.n wS,&J}T’
(52) {w} = {w} wh ... wi wi}7,

{6} = {b1 by ... 303}, bi=bi, by=ba, bip=0.

F1G. 4. Degrees of freedom.

The interpolation can be defined using the shape function (there is n
summation over repeated indices in the following),

wa(€) = (N(E))1s{ws}1s,
wa(€) = (N*(€))s{w}s,
bo(€) = (N*(£))s{b°}s,
(5.3) w3,a{€) = (N (N(E)))1e{ws s,
Wa,g(€) = (N (N?(€)))s{w’}s,
ba8(£) = (N5 ()))s{b°}s,
w,ap(%) = (Nop(N(E))he{ws}e.
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For vectorial representation of matrices with indices from the set 1,2, the or-
dering 11,22, 12 is used. If we have all three values 1, 2 and 3, the settlement
is stated like in formula (3.2).

5.1. Global displacements and strains

The vector of the global displacements u taking into account (4.1) may
be written as (see [8])

(54) ll(ﬂ’?o,, 33) = (Nu(ma) + xu($3)NL($G))Va

where

N. = [ 04 [No(&)]axs 08]
N (s 05 0s |’
[ | -2 0
(5.5) X, = 03 —x3 Ozx2 ,
01x2 (z3f1 =3f2)
N [N, 0 O
- 0 0 [Nbu(g)]‘zxs 4%x32

Using the interpolation functions and the vector of nodal unknowns v, e’

“may be written as
(5.6) €%(2a, 23) = (Ne(a) + Xe(23)Ne(za))V,

- where
[ (NF(N*(E))s ]
(N3(N*(£)))s
Osx16 O1xs Opxs
(NN (E)))s
O1xs

L Oixs |
(5.7) - 1
' 23 0 012 0 Oixz  Oix2

3 Oixz 0 Oixe 01x2
0 (fi)ixa 0 O1x2 D1y
0 01x2 3  O1x2 O1x2
0 012 0 (fa)ixz Oix2
0 012 0 Oixz  (fa)ixz]
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(Na(N©) O O
(N,22(N(£))> O1xs 01xs “
(5.7) Onxis Oz [NPY(N'(E)],
[cont ] e | (N12(N(£))) Oixs O1xs

O2x16 Oaxs [N,bza(Nb(f)):
02x16 028 [Nﬁa(Nb(f)):

2x8

2x8

5.2, Local strains

The complete formula for strains up to the zeroth-order term, following
(4.3), becomes

(5.8) e(x,y) = (1 - LX(y))(Ne(a) + xc(23)Ni(wa))v.
The work of the internal forces is calculated next,

(59 x=v ( [ (N7 4 NST) (1 - x7L7)
12

xD(y) (1 — LX) (N, + x.N’) dﬂ) v

Introducing new symbols K, Eq.(5.9) can be rewritten in the form
(5.10) m=vI(Ky +K; 4+ Kz + Kyv.

For the limiting case, we have for K the formulae

h
K, = f / NTDHN, de; dS,
S —h

h
K, = f N7 f Dhx, des | N’ dS,
S

—h
(5.11)

Ks = / NT | [ x"D" das | N. d5,
S

K4:fN;T
g

-

D%, des | N’ dS.

Xe

/
/
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The matrix D” contains the effective material coefficients. These coeflicients
have been defined earlier by (3.7). We emphasize that in the derivation of
the plate element it was not previously assumed that the global behaviour
was governed by the effective material coefficients calculated above. The
formulae for effective coefficients follow here from (5.9). The presence of
very large number of zero terms in the introduced matrices is taken into
account during the numerical computation.

6. APPLICATIONS AND DISCUSSION

For a numerical test we solve the problem of the sandwich place twice:
first by standard solution process provided by ABAQUS finite element code,
and then using our procedure.

The problem consists of a layered plate illustrated in Fig. 1. The cross-
section of the single fibre is 2 mmx2mm. The directions of fibres in layers
are perpendicular. The thickness of the stratum formed by two successive
layers of fibres is 4.5 mm. There are ten layers of filament across the thick-
ness of the plate. Young’s modulus F for fibres is 2.1E6 kG /cm?, Poisson’s
ratio ¢ Is 0.2. Material data for an epoxy matrix are I, = 2.1E5 kG/cm?,
vy = 0.2,

6.1. Test solution by ABAQUS finite element code

The plate is modelled by the ten-layer composite. For each layer the same

‘orthotropic material is defined. Numerical values of material cofficients result
from our HOMOGENIZATION code and are as follows:

D111 = 2.08E6, Dii19: = 4.31E4, Dggoe = 2.03E5,

D1133 - 467E4, _D2233 = 321E4, D3333 = 26E5,

Dioyz = 2.60E5, | Dig13 = 4.08E4, Dgags = 4.10E4.
Passing from layer to layer the values of material coefficients remain the
same, the only orientation of the axes of orthotropy changes in the sense
that Dyqyy and Dq133 should be replaced with Dggg and Dogss, respectively.
The model is made of 100 shell elements as is shown in the Fig. 5. ABAQUS
solves this problem as a homogenized one. The global displacements will
be comparable with the results of our method. It is possible to define the
stress for a single layer, but neither the fibres nor all the microstructure were
present in this model.
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Fi1G. 5. Test problem: plate under the uniformly distributed load.

6.2. Our solution procedure

We see the same plate as a five-layer structure. The cell of periodicity
can be distinguished as shown in Fig. 1. Using our program HOMOGENIZA-
TION we compute first the matrix of effective material coefficients D%, The
we solve the global problem using finite element mesh like before, and o
equivalent finite element. D* and homogenization functions are the inp
data here. Having found the plate-type global solution, we compute the full
vector of strains in the center of the cell of periodicity of interest. This
is done via formulae (5.6). These strains are sufficient to perform the local
unsmearing by means of the UNSMEARING suboption of our program HO
MOGENIZATION. The last step results in a file containing stress values fi
each Gauss point in the domain of the cell of periodicity. In this way the:
real microstructure is taken into account in our model.

6.3. Comparison

The only comparable results are those defining the global model. It is
seen in Fig. 6 that the results differ, but differences never exceed 10%. -
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FiG. 6. Deflection of the plate. Continuous line is used for the results obtained by
ABAQUS, circles for onr results obtained by 3D homogenization, squares denote our
resuits of plate-type homogenization. Small squares at the bottom of the picture denote
the function b in the common scale.

T

Unfortunately, we compare two approximate solutions and we cannot
decide which one is better. We can conclude that our method gives results
qualitatively similar to the classical ones. The possibility of localisation for
the stress seems to be the advantage of our method. Qualitative image of
stress over the single cell of periodicity is shown in Fig.7 and Fig. 8. The
value of stress is proportional to the displacements of the finite element
mesh. Stresses are extrapolated from the Gauss points to the nodes and
meared between elements of the same material.

6.4. Conclusion

A finite element procedure has been proposed for the analysis of plate
with periodic microstructure. An equivalent plate model based on the ho-
mogenization theory and on a refined stress microdescription has been de-
fined. The corresponding finite plate-type element for the global analysis of
the structure has been derived. This procedure allows for a substantial size
eduction in the analysis of composites,
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The state of stress over the single cell of periodicity of the composite
material is analysed via the proposed localisation procedure. A finite ele-
ment code for both the homogenization and unsmearing process has been
developed. This finite element routine yields realistic stress diagrams over
the single cell. These diagrams exhibit local features needed for engineering
design.
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