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RAIL ON LINEAR STOCHASTIC SUPPORTS (*)

M. MORAVCIK (ZILINA)

The field tests revealed that the vertical rail deflection under various service conditions
is of a random character. The static linear rail response under vertical wheel load P = 1 kN
the rail deflection and the bending moments of the rail are presented. The stiffnesses of
fasteners, sleepers and subgrade are included by a set of discrete springs. The linear finite
element procedure is applied, Parametric studies are carried out to examine the effect
of randomly variable stiffnesses of the supports. Two types of reduction of the support
stiffness are modelled: the nonstationary reduction in the stiffnesses of some supports, and
the stationary random reduction in stiffnesses of the supports. The deterministic response
results and the random ones are compared.

1. INTRODUCTION

During the lifetime of the track its components operate under conditions
of repeated variable loading, variability of the foundation, irregularities of
the rail etc., which introduce stochastic components to the problem, and the
response of the track structure is of a random character. The quasi-static
response of the track for these conditions can be described in terms of the
deflection of the rail loaded by the concentrated force P, in the form of
equation

(1.1) Llv(a)) = 8(z) - P,

where »(x) is the vertical deflection of the rail at point z, L is a linear
differential operator, §(z) is the Dirac delta function.

The formulation of the problem and the boundary conditions of Eq. (1.1)
' require the deflection, its slope, the bending moment and shear force at infi-
nite distance to the right as well as to the left of the force P will be zero, see
Fig. 1. Under these assumptions the beam is in a so-called quasi-stationary
state, i.e., its behaviour depends on the distance from the moving point of

(*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September
5-9, 1994.
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application of the force, and the origin is moving together with the moving
force P. In this paper the static case of the problem is analysed, i.e. w1thout
the dynamic effect. For more than one load, a solution may be obtained by
superposition of the various wheel loads P. In a standard linear analysis, the
deterministic quasi-static response was tackled by several authors 2], wh_1 ;
the stochastic character was investigated in a few cases only. :
In order to develop a rational method taking into account the variabil-
ity of the input parameters, it is necessary to formulate the problem in
a stochastic framework. Such stochastic formulation consists of two mam
elements:
a. Characterisation of the uncertainty of the input parameters.
b. Development of the relationship between the statistical characteristi
of the output. '
The aim of the paper is to present the quasi-static rail response for vario
support stiffness conditions. The rail response analysis is concerned with the
determination of the vertical displacement (), bending moments M (z) ang
support reactions R;. Stiffness of the foundation is a random variable and
other input parameters of the problem are considered as deterministic data,
Tn this analysis, the track components such as fasteners, sleepers, ballast
and subgrade are modelled by a set of vertical springs. The finite element
method is used to find the response. Using the IDA computer program [3]
the analysis has been conducted to investigate the effect of variability of th:
support stiffness on the response. Practically, we could take into accou
other random factors of the problem, such as irregularities of the rail or th
load of the rail. We suppose these sets are stochastically mdependent ant
we can investigate their effect in detail.

9. LINEAR TRACK MODEL

In a standard linear analysis the railway track structure consisting o
ra.lls, pads, sleepers, and subgrade is modelled as an irtfinitely long beam re
ing on a deterministic continuous Winkler foundation (Fig. 1a). The mode
just mentioned has been widely accepted for calculation of the rail respons
and it may be generally extended to a stochastic case (see Fig.1b).

For a static case of the Bernouli - Kuler beam on elastic foundatmn, th

operator L takes a form

(2.1) Llv(z)] = ——'v(fﬂ)+ ¢(z) - o(z),
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and the model in Fig. 1b is described by the stochastic differential equation

d v(:v)
dz?t

where v(z) is the vertical deflection of point 2 on the rail axis, ETI is the -
constant bending stiffness of the rail, P is vertical wheel load and () is the
stiffness of the foundation that varies randomly along its length coordinate .- =

In Eq.(2.2) the coefficient is of a random character and the equation. "
belongs to the class of differential equations with random coefficients. The -
solution of Eq. (2.2) is cumbersome, and one of possible approximation tech- -
- niques is the perturbation approach. L. FRYBA in [5] has applied this method -
to a similar dynamic problem. Because of the difficulties connected with the E
solution of the stochastic differential equation (2.2), a finite element model
of the rail, a finite beam resting on discrete elastic supports with constant
spacing (Fig.2), was introduced and solved. The spring stiffnesses of dis-
crete rail supports include the stiffnesses of fasteners, sleepers and of the
subgrade. The spring supports are attached to the rail at the sleepers, see
Fig. 2. ' :
The stochastic finite element method [7], the direct Monte Carlo simula- -
tion or direct finite element method (FEM) simulation are suitable methods
of solution of the problem. Because of the cost of the Monte Carlo simu-
lation, the simple direct FEM was applied to estimate the track response.
In the FEM, the structure is approximated by a set of discrete elements.
interconnected at nodal points, see Fig. 2. By using the virtual displacement
theorem, the equilibrium equation of the set has the form '

(2.2) EI + &z) - v(z) = P,

(2.3) _ K.v=P,

where K is the stiffness matrix, P is the force vector, v is the vector of nodal

displacements. .
The elements of K are given in terms of the geometric variables I, elas-
ticity variables E and spring stiffness k. Nodal displacements v are found-

from Eq.(2.3) directly
(2.4) v=K'.P.

The set of load effects S = f(L,E,P,k) is correspondingly related to the
nodal displacements v by :

(2.5) | S=D.v,

where the elements of D are given in terms of L and E as well.
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Inserting Eq.(2.4) in Eq. (2.5) yields
(2.6) S=D.-K!1.P=C-P,

where C = P - K- is a matrix connecting the load effects and extema,ls._

loads.
This linear finite element procedure was applied using the IDA computer:

program [3].

3. MODELLIING OF THE INPUT PARAMETERS
The track stiffness, & (Nm~?), is defined as

(3.1) k==,

where P is the concentrated wheel force applied to the rail, » is the rail

deflection under the force. :
The track foundation modulus, ¢ (Nm~2), is a widely used parameter to
represent the vertical stiffness of the rail foundation, and it is defined as‘a

force per length squared

< "3

(3.2) ¢

where p is the vertical rail foundation supporting force per unit length, and
v is the vertical rail deflection. The relationship between the track modulus

¢ and the track stiffness k is as follows
k4/3
(33) Cc = W .

The spring stiffness of discrete rail supports k, should include the stiff:
ness of fasteners, sleepers and of the subgrade. The conditions of the traék
stiffness are modelled by the four characteristic levels of the spring stiffness
of the discrete supports with the mean value k) = p.s:); i=1=+4,see
Table 1. . .

Idealised linear spring characteristics kq(f) of discrete rail supports are
expressed by the spring constant of the elastic joint kg, and the sprin

constant of the subgrade kgi), Fig. 3.
k- k)

m, 251'?:‘4:

(3.4) ED =
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Table 1. Characteristic stiffness levels of rail supports.

. level of | spring spring modulus of
stiffness| const. | charact. |compressibility
of subgrade| of subgrade
: 'ui") =" 20 KO
[Nm™] | [Nm™Y [Nm™]
1 09-107 | 1.2-10" 5.+ 107
2 1.5-10" | 2.4-107 10 - 107
3 2.5-107 | 6.7-107 30 - 107
4 3.2.107 | 16.0 - 107 70 - 107
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Fic. 3. Idealised linear spring characteristics &, of discrete rail sepports. Replaced linear
spring characteristics.

The spring constant ks was taken as the mean value ky = 4 - 10" Nm~*.

Four characteristic levels for the mean value of kg) were chosen to model
the foundation of the track, see Table 1.

Two basic models in the stiffness reduction of support were investigated:
a. Nonstationary reduction in the stiffness of some supports, see Fig. 4.

b. Stationary random stiffness of the discrete supports, see Fig. 5.
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F1G. 5. Stationary randomly variable stiffness of the discrete supports. Characteristics
of supports: kj, pex, ox.
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4, PARAMETRIC STUDY

Using the computer program IDA [3], the parametric studies were con-
ducted toinvestigate the effect of reduction of the support stiffness, Two- di-
mensional finite element model with 57 beam elements supported by springs
was used to represent the rail. The rail of type R65 was used for the stud-
ies, with the flexural stiffness £I = 7.875 . 108 Nm?, and spacing of the
sleepers | = 0.6 m. The rail response analysis consists in the determination
of the vertical displacements v(z), bending moments M(z), and support
reaction R;.

a. Results of the standard linear analysis for constant stiffnesses of sup-
ports, kj(,-t) = const., for the four characteristic deterministic stiffness levels
of the rail supports ¢ = 1 + 4 (Tab.4.1) are shown in Fig.6. The vertical
force P = 1 kN is applied to the support.

b. Nonstationary reduction in the stiffness of some supports. Such mod-
elling provides the basis for predicting the track performance with relatively
poor ballast, or dipped rail joints. Typical result of the response analysis for
the cases from Figs. 4e and 4g are shown in Figs. 7 and 8.

The elastic deflection curves illustrated in Figs.6, 7 and 8 are, at the
same time, the influence lines for deflection of the rail, because the unit
force P = 1kN was applied. For the wheel force P acting on the rail at
the point z = 0, the deflection v(z = 0) can be found by multiplying the
influence line ordinate by the magnitude of the force P. A comparison is
made between the results of nonstationary response and the deterministic
response for the characteristic levels of the support stiffness in Table 2.

¢. Linear analysis of the stationary random stiffness of supports. For a
chosen mean value us:)‘ and coefficient of variation Vi (Vi = 0.1 + 0.3),

the random variables stiffness kj('z) were generated by means of the random
number generator having a rectangular density function, Typical results of
- the response analysis for randomly variable stiffness of supports are shown
in Figs. 9 and 10, and those for the characteristic stiffness levels 1 = 2 and 4
are displayed in Table 3.
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FiG. 8. Response analysis for the nonstationary modelled reduction in stiffness of some’
supports corresponding to Fig. 4g.

The rail with a stationary, randomly variable stiffnesses of discrete sup-
ports was successively statically loaded by the force P = 1kN in positions
4 = 1-+19, and the corresponding amplitudes v;, M; in positions j were
computed. As an example, two elastic deflection curves of the rail for the
input parameters p, = 1.5 - 107 Nm~! and Vi = 0.1 + 0.3, are shown
Fig. 11. They represent the static deformation of the rail that is successively
loaded by the force P = 1kN in positions j=1-+19. -
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5. CONCLUSIONS

In the presented parametric studies of the quasi-static rail response, the
effect of reduction of rail support stiffness is examined. The rail response
analysis is concerned with the determination of the vertical displacement
v{x), bending moments M(z) and discrete support reactions R;. The stiff-
ness of discrete supports is a variable quantity and other input parameters of
the problem are considered as deterministic ones. The reduction in stiffness
of the supports models some important practice cases. The finite element
method was used to find the response. Two types of reduction of the sup-
port stiffness modelled: the nonstationary reduction in the stiffness of some
supports and the stationary random reduction in stiffness of the supports.
The first type enables the qualitative prediction of the rail performance with
relatively poor ballast or dipped rail joints, while the second type of reduc-
tion enables us to assess the effect of random variation in sleeper stiffness.
Numerical studies showed that the simulation is an effective method for re-
sponse analysis of the track structure. The response results for the stationary
random reduction in stiffness of the supports show that the response is not
so unfavourable as in the case of a nonstationary reduction in support stiff-
ness. Thus, the stiffness of vertical springs can considerably influence the
response of the track. The knowledge of the rail variable response is impor-
tant both for determination of the force transfer from the rail to the sleepers
and for assessing the serviceability of the railway track.
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