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KNOWLEDGE-BASED DISCRETE OPTIMIZATION OF TRUSS
STRUCTURES (*) |

M. PYRZ (LILLE)

The knowledge-based approach to discrete optimization is presented in the paper. The
minimization problem characterized by linear objective {unction and arbitrary constraints
is considered when design variables have to be chosen from a set of discrete values avail-
able. The controlled enumeration algorithm according to the non-decreasing values of the
objective function is supplied with an additional module manipulating the information
represented symbolically. This module contains the domain-oriented knowledge expressed
in the form of heuristic rules and is used to eliminate the useless constraints verification
for the propositions considered to be “non-promising”. The approach coupling the sym-
bolic and numerical computations enables a significant reduction in the number of design
variables variants that must be checked for feasibility in order to find the optimum. The
numerical examples for the minimum weight optimization of a cantilever truss siructure
and the corresponding simple heuristic rules are presented.

1. INTRODUCTION

The modern engineering design is based in many cases on prefabricated
components chosen from commercially available standard elements. It is not
rare that some parameters characterizing the number, positions or inter-
relations between structural components can take only integer or discrete
values. The structures to be composed using rolled beams or metal sheets
from catalogues, the systems with constraints imposed on nodes or support
location are examples of such situations. This type of practical applications
involves variables which are not continuous.

The solution of optimization problems in which some of (or all) design
variables are discrete and should be chosen from a set of available values
needs the application of adequate methods. The discrete variable engineer-
ing optimization dates from early 1970s and several techniques have been
developed so far. The recent survey of different approaches to the discrete
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optimum structural design can be found in [1], where the methods have been
classified into branch and band, dual, enumeration, penalty function, simu-
lated annealing and others. The first [IUTAM Symposium on Discrete Struc-
tural Optimization [2], held in Poland in 1993, emphasizes the considerable
attention paid by the researchers to this field.

The idea of controlled enumeration methods applied to the discrete op-
timization consists in using such algorithms which give the optimal solution
by a partial enumeration, without checking all the feasible variants. The
combinatorial techniques are applied to generate a sequence of design vari-
able vectors for which the constraints of the problem are checked until the
criteria for the solution are satisfied. The number of design variable sets that
have to be verified to find the global optimum can be very significant in real
problems due to the combinatorial explosion of possible propositions. The
constraints checking is usually connected with a heavy numeric processing
and implies a considerable time of calculus.

The knowledge of the problem to be solved can often substantially re-
duce the computational effort. The enumeration technique would be more
efficient if “non-promising” candidates were eliminated from the consiraints
checking procedure. The information about the problem under consideration
can be applied to remove the a priori unrealistic, redundant and infeasible
variants. The Artificial Intelligence techniques enable powerful processing
of symbolic data and are successfully applied in engineering problems. The
knowledge-based approach to the design optimization follows this trend (nu-
merous papers in [3, 4, 5]).

The purpose of this paper is to present a knowledge-based approach to
the discrete optimization of engineering structures using a controlled enu--
meration algorithm. The symbolic and numerical computations are coupled
in one computer program to form a knowledge-based optimization algorithm,
joining advantages of the traditional systems of numerical analysis and those
of knowledge-based systems. The enumeration algorithm according to the
nondecreasing values of the objective function is supplied with an additional
module manipulating the information represented symbolically. This maodule
contains the domain-oriented knowledge expressed in the form of heuristic
rules and is used to eliminate the useless constraints verification for the
propositions considered to be “non-promising”. The coupling symbolic and
numerical computations approach enables a significant reduction (with re-
spect to the “standard enumeration”) in the number of design variables

variants that have to be checked for feasibility to find the optimum. The ef-

fectiveness of the method is illustrated by the minimum weight optimization
of a cantilever truss structure. A decrease in the numerical effort necessary to
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find the global minimum, observed in all examples, demonstrates the poten-
tial of the proposed approach applied to engineering optimization problems.

2. PROBLEM STATEMENT

The discrete optimization of the problems characterized by a linear ob-
jective function and arbitrary constraints is considered in the paper.
The minimization problem can be generally formulated for N discrete

design variables z; (i = 1,..., N} as follows:
minimize
N
2.1y Fx) =) e = ex,
: i=1

subject to arbitrary consiraints
(2.2) X € S,

where f(x) is the linear objective function to be minimized, x is the vector of
N discrete design variables z;, ¢ is the vector of N constant real coefficients
¢; characterizing the components of the objective function, and § sta.nds for
a set of feasible solutions determined by arbitrary constraints.

The discreteness constraints state that each design variable z; (i =

1,...,N) has to be selected from a finite set D; of m; feasible discrete
values
(2.3) w; € D; = {mi,mé,z{g,...,xfm}, i=1,...,N.

The solution of the problem under consideration is based on a combi-
natorial algorithm of controlled enumeration. The enumeration method ac-
cording to the non-decreasing 'values of the objective function [6] has been
chosen. It guarantees the global optimum solution. Its effectiveness is, so
far, limited to smaller problems due to a combinatorial explosion of pos-
sible variants. A knowledge of the problem to be solved is included in the
solution algorithm and substantially reduces the computational effort. The
main ideas of the method have been already presented by the author in [7].
The presented approach can be applied to a larger class of discrete problems
using some linearisation methods for formulation of the nonlinear objective
function.
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3. KNOWLEDGE OF THE PROBLEM TO BE SOLVED

The traditional optimization programs are concentrated on the numeri-
cal aspects of the solution of the problem. They use efficiently and precisely
the procedural methods and are rather of a “black box” nature. The infor-
mation encoded implicitly in the algorithms is generally determined by the
expected behaviour of the simulated domain. The design process involves
many heuristic aspects, changing from one task to another. They can be
difficult to incorporate into a traditional computer program, even if they
are accessible in an explicit form.

Advances in the AI techniques have led to the knowledge-based systems
which provide tools for explicit representation and efficient processing of
knowledge in some domains. The specilic, problem-oriented knowledge can
complete the information contained in the conventional optimization algo-
rithm to form a more efficient tool for engineering optimization.

"The domain-oriented information useful in the optimization of engineer-
ing problems can result from:

o mechanical behaviour of the structure or given manufacturing, techno-
logical or economical constraints;

e methodology of modelling for the considered class of structures;

o designer’s experience based on previous results calculated for similar
problems;

o decision-making process for “equivalent” or “competitive” propositions
of solutions;

o utilities aspect, functional specifications, simplicity, aesthetic functions,
visual characteristics, etc.

The main idea of the approach proposed is to couple numerical and sym-
bolic processing in one algorithm. The information about the problem to
be optimized is expressed in the pseudo-natural language of the task using
the Prolog language. The knowledge base consists of domain facts, rules
and heuristics associated with the problem and accompanied by a reasoning
technique. An “IF condition THEN action” rule-based production system
representation has been chosen. It is easy to change or actualise thanks to
the declarative characteristics of the representation: one should only decide
what the system has to know.

4. METHOD OF SOLUTION

The following sections present two approaches to the solution of the prob-
lem in question. The first one, called “standard enumeration”, is a classical
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approach based on a controlled enumeration algorithm. The second is the
knowledge-based modification of the first one. In the numerical examples,
the optimal results obtained by both methods are compared. The number
of design variables variants that have to be checked for feasibility to find
the global optimum is studied to analyse the effectiveness of the proposed
heuristic rules. '

4.1. “Standard enumeration” method

In the paper a version of the enumeration method according to the
non-decreasing values of the objective function [6] has been adapted to the
discrete optimization problem (2.1)-(2.3).

The idea of the method is to find an ordered sequence of design vectors

(4.1) X1; X2; X3y -«

according to the non-decreasing values of the corresponding objective func-
tion

(4.2) ni<h<f<,  fi=fx)

If min is the smallest natural » € N, for which the condition x € S is
satisfied, then the solution of the minimization problem is

(4.3) Xopt = Xmin; fopt = f(xOPE)'

For the ordered coeflicients ¢; of the objective function, the algorithm con-
structs recursively a virtual tree structure, assigning a unique value of f; and
x; to each vertex. The suitable vertices (or all groups of vertices) are next
examined making use of the monocity properties of the created graph. All
variants of X; corresponding.to the same value of the objective function are
found at each step. The algorithm guarantees the global minimum soluiion.
The search can be started from any arbitrary value, stated as a lower bound
for the objective function values to be generated in non-decreasing order. It
means, that the search would be accelerated, if the solution of the equival-
ent problem formulated for continuous design variables was already known.
The algorithm does not require much computer memory. This approach is
schematically represented in the Fig. 1, In reality, the design variable vectors
are generated in packets corresponding to the same value of the objective
function.
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Fia. 1. Algorithm of the “gtandard enumeration” method.
4.2. Knowledge-based enumeration

The enumeration method presented in the previous chapter needs veri-
fication of the constraints for all subsequently generated design variables
vectors X; Xg X3 ... until reaching a Xmin satisfying (2.2). The optimization
procedure would be more efficient if one eliminated non-promising candi-
dates without checking them numerically for feasibility. A lot of design vari-
able sets can be removed a priori thanks to an understanding of the expected
results and a knowledge of the problem to be solved. Many decisions of skip-
ping non-promising variants can result from the technology, manufacturing,
mechanical or other problem-oriented properties that can be stated “with-
out calculus”. The different forms of an incorporated, “domain-oriented”,
knowledge can improve the efficiency of the optimization process.

The main idea of the proposed knowledge-based approach is to cre-
ate three separate modules corresponding to different levels of processing
(Fig. 2). The explicit separation of modules is a natural consequence of the
application of a controlled enumeration method.
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Fig. 2. Algorithm of the “knowledge-based enumeration” method.

4.2.1. Fnumeration module. The enumeration module generates a se-
quence of design variable vectors (4.1} corresponding to the non-decreasing
values of the objective function (4.2). For these vectors the constraints of
the problem have to be verified. Only the coeflicients ¢; and the discreteness
conditions of type (2.3), defining sets of available discrete values, are needed
at this stage.

4.2.2. Knowledge module. 1t manipulates a knowledge symbolically rep-
resented in the Prolog and acts as a filter between the generation of can-
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didates and the verification of the constraints. This module removes the
candidates from the checking constraints procedure if they are considered
infeasible on the basis of the “problem-oriented” information contained in
the knowledge base. The symbolic processing module is created to limit
“without calculus” a combinatorial explosion of possible variants that have
to be verified to find the optimal solution. Tt contains a specific knowledge
of the problem to be solved, however some general Tules or heuristics can be
included. As a result, a sequence of “promising” variants corresponding to
the non-decreasing values of the objective function is generated.

4.2.8. Constraints module. In this module the design variable variants
issned from the knowledge module are subsequently checked for feasibility.
The first design vector satisfying the constraints (2.2) of the problem gives
the optimal solution (4.3).

5. NUMERICAL EXAMPLES

5.1. Minimum weight design of 18-bar truss structure

The weight minimization of an 18-bar cantilever truss structure (I'ig. 3)
is presented to illustrate the proposed approach. The design variables are
cross-sectional areas A; of 18 bars, limited to the case of tubular sections
with the thickness ¢ = 0.2R, the cross-sectional area A = 0.36xR? and
the moment of inertia [ = 0.3625A2, where R is the radius. The material
characteristics £ = 7 - 107 kN/m? and p = 27.5 kN/m? correspond to alu-
minium. The structure is loaded by 5 vertical forces P = 10kN acting in
the downward direction.
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FiG. 3. The 18-bar truss structure.

The structure is optimized for different combinations of constraints im-
posed on:
vertical displacements u; of nodes

|t] < trmax = 0.05m,  § =129
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elastic stresses

|oi| € Omax = 2 10°kN/m?,  i=1,...18;
buckling stresses

o; € Obuaa = 3.5TT9EA;/LE, i=1,..,18.

The calculus have been carried out for geometrically nonlinear formulation.
The optimal solutions are given for two different ways (called Case 1 and
Case 2) of dividing the structure into zones of identical elements.

5.2. Optimization of 18-bar truss — Case 1

The structure has been divided into 6 following linking zones, grouping
elements of the same cross-sectional characteristics: zone 1 — bars 1, 4, 8;
zone 2 — bars 12, 16; zone 3 - bars 6, 10; zone 4 — bars 14, 18; zone 5 — bars
3, 7,11, 15; zone 6 — bars 2, 5, 9,13, 17.

The catalogues for discrete sections [in m? - 0.0001] in different zones are
given below:

Ay € {1.0; 2.0; 3.0; 4.0; 5.0; 6.0; 7.0; 8.0; 9.0; 10.0},
Az € {4.0; 5.0; 6.0; 7.0; 8.0; 9.0; 10.0; 11.0; 12.0; 13.0; 14.0; 15.0},
Az € {1.0; 2.0; 3.0; 4.0; 5.0; 6.0; 7.0; 8.0; 9.0; 10.0},
Ay € {4.0; 5.0; 6.0; 7.0; 8.0; 9.0; 10.0; 11.0; 12.0; 13.0; 14.0; 15.0},
As € {1.0; 2.0; 3.0; 4.0; 5.0; 6.0; 7.0; 8.0; 9.0; 10.0},
Ag € {1.0; 2.0; 3.0; 4.0; 5.0; 6.0; 7.0; 8.0; 9.0; 10.0}.

The full survey of all possible variants would need checking of 1440000 combi-
nations. The starting value for the enumeration algorithm was fixed to 187 N.

The following heuristic rules have been included into the symbolic mod-
ule of the knowledge-based algorithm. They are formulated on the basis of
the statics of the structure and the constraints imposed on displacements.
They can be viewed as a predimensioning of the cross-sectional areas of the
bars., The rules take into account positions of the loads and tend to prevent
the displacement limit excess. The heuristic rules precise the cross-sectional
interrelations and state simply, that the sections of the bars supposed to be
more stressed are to be greater than those of the less stressed bars. They
are presented using the Prolog syntax in the form as they look like in the
computer program.
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rule 1:  IF downward_acting_loads
THEN flezion_of_the_structure
and lower_part_compressed.

rule 2;:  IF flezion_of_the_siructure
THEN left_part.more_stressed.

rule 3:  IF left_part_more_stressed
THEN (Ag > Ay and A, > Asg and A; > Aﬁ)
and (A4 > Az and A4 > As and Asq > AG)
and (Ag > A3) and (A3 > As and Az > A6)

rule 4:  IF lower_part_compressed
THEN (A3 > Ay and A4 > A])

The results of the optimization are given in Table 1. The number of vari-
ants that have to be checked to find the optimum for different constraints is
compared for the “standard enumeration” and the “knowledge-based enu-
meration”. The number of equivalent solutions is given but only the first
optimal variant is referenced. The best solution among the equivalent ones
could be obtained using additional information included in the knowledge

module.

Table 1. Optimal solutions for Case 1.

constraints stress stress stress displ.stress
displ. | buckling | buckling
Optimum weight {N] 996.2817 | 306.0317 | 253.7817 | 317.0317
cross-sectional areas * ok
Az {mz] 0.0002 0.0003 0.0003 0.0003
Az [m?] 0.0006 | 0.0011 | 0.0006 0.0008
As [mQ] 0.0004 0.,0007 0.0005 0.0006
As [m7] 0.0008 | 0.0013 | 0.0008 0.0015
As [m?] 0.0003 | 0.0003 | 0.0005 0.0005
As [m?] 0.0004 | 0.0004 | 0.0004 0.0004
Number of checked variants
for standard enumeration 62008 419492 | 148292 490481
Number of checked variants
for knowledge-based enumeration | 8507 48431 18941 55620

* 5 equivalent solutions exist, ** 10 equivalent solutions exist
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§.8. Optimization of 18-bar truss — Case 2

This time the structure has been divided into 6 zones grouping elements
of identical cross-sectional characteristics: zone 1 — bars 1, 2, 3, 4; zone 2 —
bars 5, 6, 7, 8; zone 3 — bars 9, 10, 11, 12; zone 4 — bars 13, 15, 17; zone 5 —
bars 14, 16; zone 6 — bar 18. The linking groups have been chosen to divide
the structure into the zones of expected similar stresses.

The catalogues for discrete sections in different linking zones are {in m? .
0.0001]:

Ay € {1.05 2.0; 3.0; 4.0; 5.0; 6.0; 7.0; 8.0; 9.0; 10.0},
Ay € {2.0; 3.0; 4.0; 5.0; 6.0; 7.0; 8.0; 9.0; 10.0; 11.0},
Az € {3.0; 4.0; 5.0; 6.0; 7.0; 8.0; 9.0; 10.0; 11.0; 12.0; 13.0; 14.0},
Ay € {3.0; 4.0; 5.0; 6.0; 7.0; 8.0; 9.0; 10.0; 11.0; 12.0; 13.0;‘ 14.0},
As € {4.0; 5.0; 6.0; 7.0; 8.0; 9.0; 10.0; 11.0; 12.0; 13.0; 14.0; 15.0},
Ag € {4.0; 5.0; 6.0; 7.0; 8.0; 9.0; 10.0; 11.0; 12.0; 13.0; 14.0; 15.0}.

The full survey of all possible variants would need checking of 12073600 com-
binations, The starting value for enumeration algorithm was fixed to 193 N.

The following heuristic rules have been applied. They precise simply
that the cross-sectional areas of the bars to the left of the structure are
to be greater than those to the right, according to the expected stress
distribution. '

rule 1: IF downward_acting loads
THEN flexion_of_the_structure,

rule 2:  IF flezion_of_the_structure
THEN stress_increasing to_the_left.

rule 3:  IF stress_increasing_to_the_left _
THEN (A > A; and Ag > Ay and Ag > A3 and
Ag > Ay and Ag > Al)
and (As > A4 and As > Az and A5 > Ay and A5 > Ay)
and (Ag > Ay and Ay > Ay)
' and (A3 > Ay and As > Al)

The results of the optimization are given in Table 2. The number of equiv-
alent solutions is given but only the first optimal variant is referenced.
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Table 2. Optimal solutions for Case 2.

] stress stress | displ.stress
constraints stress | gicpl. | buckling | buckling
Optimum weight [N] 192.6144 | 294.5599 | 270.9489 | 309.4489
cross-sectional areas *
Ay [m?) 0.0001 | 0.0002 | 0.0004 0.0004
Az [m?*} 0.0002 | 0.0004 | 0.0004 0.0004
Az [m?) 0.0004 | 0.0006 | 0.0005 0.0005
As [m®] 0.0005 | 0.0005 | 0.0005 0.0005
As [m?) , 0.0006 | 0.0010 | 0.0007 0.0011
As [m?] 0.0008 | 0.0015 | 0.0008 0.0014

Number of checked variants -
for standard enumeration 5 118600 57825 175196

Number of checked variants
for knowledge-based enumeration 3 13337 8411 17006

* 2 equivalent solutions exist

6. CONCLUSIONS AND FINAL REMARKS

Tt is seen from the presented examples that the knowledge-based ap-
proach implies an enormous reduction {with respect to the “standard” ver-
sion) in the number of variants that must be checked to find the optimum.
Even for a very simple knowledge base, the average economy with respect
to the “standard enumeration” version was about 88%. It means that the
constraints for only about 12% of the generated variants needed to be ver-
ified to reach the optimum. The way of dividing the structure into linking
zones influences, of course, the optimal weight solution. A

In the knowledge-based discrete optimization method, a domain-specific
knowledge is an active component of the algorithm and is used to eliminate
the a priori “incorrect” design variables sets. The inference mechanism con-
tained in the knowledge module is able to extract and apply an information
given in the explicit or implicit form, represented in a “natural language”
of the problem. The separation of numeric and symbolic processing enables
easy changes or modifications.

Including non-algorithmic and non-numerical ability into conventional
optimum design programs can improve performances of the engineering-ori-
ented optimization tools. The potential of symbolic computations applied
to problems of discrete optimization has been emphasized, however an ad- .-
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ditional development work in this field is necessary. The further studies of
the knowledge acquisition, formalization of heuristics or automated learn-
ing from the database of optimization examples are indispensable fo code
and utilise this knowledge properly. It is hoped that the knowledge-based
approach used in conjunction with numerical techniques can considerably
enhance other conventional optimization procedures.

.
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