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OPTIMIZATION OF THE STRUCTURE OF A MULTILAYER
CYLINDRICAL SHELL UNDER STABILITY LOSS CONDITIONS

G. MIELCZAREK (WARSZAWA)

The computer program presented here has been devised for minimizing the thickness
of a thin cylindrical shell composed of linearly elastic, macro-homogeneous, orthotropic
layers, resting on hinged supports and threatened with stability loss under the action of
static compressive forces directed along the axis and uniformly distributed along the curvi-
linear edges of the shell. The optimization process is based on the method for determining
the critical loads (T.;), presented in [1] and on the kinematic broken line theory, and the
static distribution theory of lateral shear stresses.

1. INTRODUCTION

The recent years were characterized by a growing intensity of develop-
ment of research works devoted to the design of safe optimum structures.
This requirement, which is a consequence of the growing needs and the fact
that there exist methods for producing new materials, give rise to a natu-
ral desire to make use of the properties of the latter. The number of works
devoted to problems of optimum design of a structure is now more than a
few thousand. They are discussed in detail in many monographs, textbooks
and surveys [2-5, ...]. Among other fundamental structures in the leading
domains of technology there are multilayer thin-walled shells [6—26].

It is a well known fact that elements made of composites are more com-
plicated than those made of traditional materials, and the methods required
for forecasting their behaviour under definite types of load are more sophisti-
cated [6, 7). An essential feature of composite materials which is decisive for
the growth of their popularity is the possibility of selection of optimum com-
position, structure and form of the object, to obtain the required physical
 properties, satisfying the loading conditions of the structure.

The subject of investigation in the theory of optimum design are situa-
tions in which trends or requirements mutually exclusive or opposite have
to be reconciled. The type of application, the working conditions and the
production methods of the object considered are represented in its mathe-
matical model. There are several directions in which contemporary research
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works are conducted as regards the shaping criteria or objective functions
or, finally, the solution methods.

The classical way of seeking for optimum solution is based on solutions
obtained by the methods of variational calculus and makes it possible, in the
case of composite materials, to solve problems of determining appropriate
reinforcement of the structures to satisfy the criterion assumed as require-
ments for uniform strength, or maximum load, value of the natural vibration
frequency, uniform reduced stress distribution or coincidence of the direc-
tions of the reinforecement with those of the principal stresses. Those criteria
do not always lead to optimum solutions, especially in problems in which the
geometrical parameters are fixed. The most important group of criteria now
being used are those of minimum volume of the structure, minimum weight
of the material and minimum cost, geometrical parameters being used as
decision variables. The limiting values determining the load carrying capac-
ity depend, among other factors, on the geometrical parameters and the
internal structure (the mechanical properties of the materials, the direction
angles and the relative contents of the layers). It follows that, to formulate a
problem of optimun design we must include into the set of decision variables
not only the geometrical parameters, but also those describing the internal
structure. This increases, however, the problem to the extent at which no
closed-form solution is possible. In addition to the analytical optimization
methods in which a few variables can be used at most, numerical methods
(such as those of finite elements, mathematical programming, multi-criterial
methods etc.) are now of growing popularity, and are particularly useful for
greater systems, or more accurate models of behaviour of the structure.

The multitude of practical problems to be solved is a strong stimulus for
the development of various minimization methods. The existing commercial
software packages offered by computation centres of large aircraft or au-
tomobile factories are expensive and require high quality hardware. Their
adaptation for particular needs being not always possible, an idea has been
conceived to prepare a program for minimizing the thickness of a multilayer
shell, which would require not too large a store and not too long a com-
putation time, and could be used to evaluate the critical loads according
to [1].

2. FORMULATION OF THE PROBLEM

The subject of the present considerations is a thin circular shell con-
structed of N homogeneous layers of linearly elastic, orthotropic composite
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materials (Fig. 1). Our task is to find its optimum initial structure and the

load T'°®d to be carried. Some aspects of the method of determining the criti-

cal load T, were discussed in (among other works) (1], and in the doctoral

thesis of the present author. It is only the result concerning the optimization
of the internal structure of the shell that will be presented below.
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The decision variables x = (hy,®1,...,hy,¢y) are thicknesses k; and
the direction angles ¢; of particular layers constituting the shell. They can
assume values belonging to a domain C C R*" determined mainly by con-
straint ¢(x) = T%* — T, < 0. The optimum solution x* is sought for, in
C, satisfying the condition of minimum shell thickness

F(x*) = mi = min h.
() = 2ip o) = g

The constraint for ¥(x) being nonlinear, the optimization problem cannot be
actually solved by analytical methods. In view of the linearity of the object
function F(x) and, thefefore, the constancy of its gradient, the presence of
x* at the edge C and the fact that the constraints are of the inequality
type, the optimization procedure is based on the Rosen gradient projection
method [27 — 29], which yields solutions of high reliability, approaching global
solutions, even with non-convex constraints. This method consists essentially
in projecting the gradient VF(x) on the surface tangent to the constraints,
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then seeking for an extremum of the object function in direction d thus
determined, which is corrected at each subsequent k-th iteration step.
To determine the direction d, we construct a matrix

P(x*) = T — A(ATA)71AT
of the projection on the sub-space by the set of active constraints:
W) = [giy(x5), 95, (65, Binac(x*)]

The é-th constraint is an active constraint for x € C if g;(x) = 0 (in the
numerical practice we have |g;(x)| < é, where § is the assumed accuracy).
Symbol i; is j-th element of sequence of numbers of active constraints. The
quantity NAC is a number of active constraints in x*,

I is an NAC-by-NAC identity matrix, A is a matrix of active constraint
gradients

A= [Vg,(x*): j=1,...,NAC].
The direction d tangent to the constraints is determined by the formula:
d = —P(x*)VF(x*) /|| P(x*)VF(x*)).
Then, knowing the direction just determined, we seek for r:
x(r) = x* + rd(x*),

K (r) = x(r) - [AAT A (x*) 962 (X(7)), -, Giwno (X(P))]
W )< 6.

The algorithm is finished, when the criteria connected with the assumed
accuracy of computation are satisfied.

On the basis of the algorithm of the Rosen method (the Appendix) and
the procedure of determining the critical load T¢; [1], a program for opti-
mization of a multilayer shell has been written. It will be further referred to
as ProgContShell. Because for the determination of the value of T, determi-
nants of symmetric matrices of the order of 4N +5 and 4N 44 are computed
for each combination of buckling modes, the method for computing those
determinants proves to be decisive for the efficiency of the program. The
method selected for this purpose is the Householder three-diagonalization
method [30]. For inverting a symmetric matrix the syminversion procedure
is used [30). In addition, a procedure for finding and arranging the set of
active constraints was worked out as well as some procedures for iterative
return to the boundary of the domain C, selection of the step length 7, etc.
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In its realized version, the ProgContShell program enables us to select
the optimum structure {by determining the thickness h; and direction angles
; of i-th layer) in the case of an axially symmetric load T1°2d acting on a
cylindrical shell, the length ! of which is fixed, as well as radius R of the
internal (or middle) surface, the number of layers is N and their properties
are given (Fig. 2).

1-st layer

L A

FiG. 2.

For complete option of the program the decision variables are the direc-
tion angles and the thicknesses of the layers. In the case of a simplified
option, they are only the thicknesses of the layers. In reality the num-
ber of layers N is also a decision variable. If the algorithm is used with
floating-point arithmetic, the thicknesses of certain layers are negligible, -
therefore they are rejected to remove. the singularities, which have been
generated in the structure.
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3. THE RESULTS AND DISCUSSION

Initially, the shell is composed of layers of the same thickness h? = h°/N,
made of No. 1 material, the elastic constants of which are Fy = FEy =
13.9 GPa, E3 = 6.56 GPa, Glg = 1.134 GPa, G23 = G13 = 1.869 GPa,, 12 =
vy = 0.1628, v3y = v4; = 0.163 [31] or a material, the angle ; of which
is marked by a subscript 2, the elastic constants being one-tenth of those
for the material No. 1; B = 19.75mm, ! = 0.26 m and h° = 1.5mm. The
direction angles of the principal anisotropy axes in the layers are listed from
the inner to the outer layer. The shell is to carry a compressive load, the
intensity of which is 7%°*d = 10/(x R)kNm™,

Table 1.

x° x! _ x*
N @1 P2 Pa h[mm] | N V1 P2 hy [mm] | & [mm]
1| o0° 0.78 9.85°
1 | 45° 0.97 79.55°
1 | 90° 0.78 99.91°
2 { o° 03 1.27 9.83°
2 | 03 0° 1.29 1 9.86° 0.77
2 | 0° | 458 1.27 9.91°
2 [ 02 | 45° 1.38 79.52°
2 | 45° | 0f 1.55 79.56°
2 | 458 | 0° 1.27 9.87°
2 [ o | 0 0.78 —.45° 44°
2 | 45° | 45° 0.73 —.50° 44°
2 | 45° | o° 0.87 —.42° —46°
3 | o° | 45° 0.98 89.5° 44°
3|0 | o | 0° 0.79 _.48° 44°
3 |45 | 45° | o0° 0.75 2 —.44° 44° 0.41 0.73
3 | 45° | 0° | 45° 0.83 —.44° 44°
3 | 0° | a5° | a5° 0.98 —89.55° 44°
3 | oS 0° 0° 1.09 —.44° —46°
3 | 45° | 453 | o° 0.87 —.48° 44°
3 [ 45° | 0* | 453 1.18 —52° —46°
3 | 458 | 45° | 45° 1.35 89.5° 44°

The resuits of the complete option of the ProgContShell program as used
for shells of prescribed original structures are presented in Table 1. The x!
column contains shell thicknesses on attaining in an iterative manner the
boundary of the domain of admissible solutions C', that is after the first step
of the algorithm has been made. Depending on the type of the structure
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of x° considered, the use of the ProgContShell program gives the following
more or less apparent results:

o For a two-layer shell {0°, 45°], that is for a shell approaching the optimum
structure, the optimization process reduces the thickness by scarcely 0.24%.

e For a three-layer shell [453,45° 45°] the thickness of the shell can be
reduced, as a result of an optimization process, by 46%.

e For single-layer structures [0°], [90°], change in the direction angle en-
ables us to reduce the thickness by hardly 1.5%.

e Tor a structure [45%,0°] the result is improved by about 50.2%.

Apparent disagreement between the optimum direction angles may be
explained by the fact that the directions 1 and 2 are identical in the materials
considered.

To conclude our considerations it may be said, on the basis of the results
obtained, that for various initial structures x° as determined by [hy, ¢4,...,
k., ¢y), the individual solutions obtained are located in a sufficiently small
neighbourhood of the optimum solution x*.

APPENDIX

The algorithm of the gradient projection method devised by J.B. Rosen

Step 1:
Select a point:
ecC
Step 2: \Ir
Go along —V F' to attain the boundary 8C:
x'=x* - VFr
x* = x!
Step 3: l
Select a set of active constrains:
W(xk = [g"l (xk)! iy (xk)' yiNAc(xk)] .
Step 4: . l

Calculate:
. I;he matrix of gradients of active constraints:
[Vg,, (x*), Vgi, (x* ) <+ Viivac (=* )]
¢ the matrix: V(x } = (4"-1:['1‘1)_1
o the vector r{x*} of return to C: r(x*) = V(x")ATVF
o the projection matrix: P(x*) = I — A(ATA)'AT
o the direction: d = —P(x*)V F/| P(x*)VF||

!
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Siep 5:

Step 6:

Step T:

Step 8:

Step 9:

Step 10:

G. MIELCZAREK

!

Calculate the criterial coefficients:

81 = max{0.5r1v5", ..., 0.5r .V
M=1i: /i = 0.51‘,‘1/'.'..'5

# = max{|| P(x*)V F|}, 81}

—.5
NACNAC }

Yesn

7 IﬂSEI_)‘ Theendl

No

‘Test whether the set of active
constraints will be reduced after the
step made in the direction of d(x*);

IPx*)VF| < B ?

l Yes

Pass to the Step 10, I

No

a

Determine the point x*t
x?o) =x* 4+ d(x)r
Xis1) = X5y — A(x")V(xk)W(z_:f‘j) J=0,...,1
[ — prescribed number of iterations

1,

1

l Yes
No

IW(xiy) <87 |

T =ar
a — coefficient reducing the step length =

Yes

Check, for x*1?, if the remaining constraints are active,
ie. if for each j =4y cprserrrin s g;(x**Y <07

{ Yes

No

xk = x_.l«=+1

and pass to the Step 4.

b 4

Select T according to the Step 7 until the condition
in the Step B is satisfied. Next pass to the Step 3.

Remove the M-th constraint from the set
of active constraints, perform the Step 4
and pass to the Step 7.
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