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VARIATIONAL MODIFICATION OF ZEMOCKIN CONTACT
PROBLEMS SOLUTION METHOD

Z. MISTRIKOVA and V. SLOZKA (BRATISLAVA)

The present paper deals with some contact problems. In the wellknown Zemockin
method of solving the contact problem of two bodies (structure — elastic half-space), the
condition of perfect contact (mutual displacements of two bodies equal zero) is fulfilled
only in a chosen number of points. In a modification of the Zemotkin method presented by
the authors, the reciprocity of displacements of two bodies is minimized by a functional of
potential energy of deformation. Some numerical results concerning the problem of contact
of a plate and an elastic half-space based on this solution are included.

1. INTRODUCTION

In the well-known Zemo&kin collocation method, the contact of two bod-
ies (beam, plate, or a wall with a half-space} is fulfilled in a number of chosen
points. Equations expressing this contact have a simple physico-geometric
interpretation, though they create a symmetric system of equations only if
" the following conditions are fulfilled:

(1) The contact domain belonging to the half-space is divided into equal
sub-domains (as far as their shapes and sizes are concerned); the contact
stress in sub-domains is approximated by a constant value.

(2) The contact stress acting on the plate, beam or wall is replaced by
the singular forces that act in specific discrete points.

Solution by the collocation method gives no information about the values
of the relative displacements ‘of bodies outside the selected discrete points.
Only subsequently, from the results of numerical solution, we can deduce
whether it is necessary to refine the division of the contact domain. Gen-
erally, we can claim that the collocation method yields no local minimum
of the deformation potential energy under the division of contact domain
into a finite number of sub-domains. Thus, there must exist such a combi-
nation of the planar force impulses approximating the real reaction of the
subgrade which, at the same division into the sub-domains, yields better
energy balance results.
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Thus, we derive the equation system of contact from the conditions of
minimum of the expanded modified functional of potential energy of defor-
mation. As it will be seen later, the system will be symmetric even for a
non-symmetric division of domains, in which the planar loading impulses
act. The diagonal symmetry of the equation system follows from mutuality
of the virtual works of the system of planar impulse loads.

2, ASSUMPTIONS AND DERIVATION OF BASIC EQUATIONS

Let us consider the contact of two Bodies I and II wiih the surface areas
ST, S™. Then let the contact surface be divided into n sub-domains Sy (r=
1,2,...n). S =85, U85US8:...U8,U...US,. The coordinate Cartesian
system will be considered according to the Fig. 1. In each of the sub-domains

F1a. 1. Contact of two bodies with the contact surface S divided into sub-domains.

Sy we will consider the constant contact stress o7/, simply denoted by ¢/
(4 = =,y, 2); the displacement following from ¢f = 1 in the contact surface
S we denote by ui(z,y,0), where the superscript i (i = z,y,2) indicates
the corresponding coordinate of the displacement vector; hence it is the r-th
base function for the displacement vector in the contact surface §. After
the imaginary separation of Bodies I and II, the contact stress ¢ can be
included in the external forces acting on particular bodies. The potential
energy of internal forces can be expressed as the work of deformation due
to external forces, and it is equal to the sum of works of deformation done
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by external forces acting on Bodies I and II,

(2.1) w=w+wh,

Under the assumed coordinate system W1 and W it will be

1 n 1. n . i'
WI=§ > qrfquilut’(w,y,U)dwdy
SI‘ t=1

r=1

+ f/lﬁ“ Iui(m,y,z) dSy + Zq} j/ Lai(z,y,0)'F dzdy,
St i=1 St
(2.2) -

11E , n
Wh= =213 | [ @ (e, 00 dedy
5 =

r=1

—fjllﬁillui(a:,y,z)ds -y¢ _/f“u‘(m',y,o)nﬁ"dmdy,
St St

=1

where at the contact surfaces ST and S™, displacements Iuij (z,¥,0) and
Wy (,4,0) in the directions i are produced by load ¢].
Let the Body I (after the imaginary separation) have k' (resp. k') bonds

—_and assume k! + £ > 6.

If kL < 6 (resp. k' < 6), then 6 — k! (resp. 6 — k') bonds must be added
to the Body L

In the civil engineering practice, the most frequent case of the contact
problem for the Body I (beam, frame, plate, slab strip, wall) is k' = 0,
and the Body II represents the half-space. Displacement of Body I at points
with coordinates (z,v,z) can be described by three functions f#'(z, y, 2),
it = z,¥, z, for which

I-..E:c I,ua: Iug
(2.3) Tgv 3 = Tyv 3 4 ¢ T b,
Iﬁz qu Iug

where It i = z,y, z are the displacements of point (z,y, z) of Body I at the
primary system, which results from of 6 — k! bonds. lu, are the displacements
of points, (z,y,2) of Body I treated as a solid and they are expressed as
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follows:

fI A

00

Iug

Tyg 100 0 =z -y} |, °

I, 4 Ugo
(2.4) vy =010 -2z 0 =z g >,
Tug 001 y -z 0],

Poo

LI(PSU;

where Tug,,Tul,, ..., IpZ, are the initial parameters in point (0,0,0). Simi-

larly, the displacement of points (z,¥,2) of Body II is expressed by the

equation :
{II-,E} _ {Hu} + {Huo}_

Let us extend the quadratic functional W (2.1) by the linear functional
L = L; + L, expressing the work of the external load '5 (resp. 'p) and of
the contact stress g, in the case of the Body I and II displacement considered
as a whole,

n

L = /f (:c,y,z) dS 4+ Eff Iua(z‘,'y,O)q;dmdy,
t=1

L= f,/ Tui(z,y,2)"7" dS - Z// Uyi(z,9,0)q dzdy.

S t=1"g,

(2:5)

Let us denote the extended functional Tr(qi', qg, .. .qi, ‘e q:,,) by W+ L.

The stationarity conditions (8x)/(8¢) = 0, (r = 1,2,...n), (i = 2,3, 2)
yield 3n conditional equations. Three of them (for z,y, 2, respectlvely) are
in the r-th sub-domain in the form:

(2.6) 3q, Zq’/j ul(z,y,0) d:cdy+2q1/flu’(a:,y,0) dzdy

=1
1 LA .. LI ..
-3 qu]/ Tuli(z,y,0) dzdy + ; @ //Hu;“"(m, y,0) dzdy
t=1 =
+/jlp'lu‘(1: y,0)dzdy — /jll_' I ‘(:r:,y,[)) dxdy

-|-ff i(z,y,0) dedy — f-/H ub(2,y,0) dedy = 0.
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Since by the principle of mutuality of virtual works
(2.7) ' qﬁ// ul dedy =G j/ u:j dzdy,
S; S
we can transform Eq.(2.6) by expressing ﬁ'} =g =1in the following form:
n a . an
@8 d [[ [w(e0,0~ " (2,0,0)] dody
t=1 5,
+ ] / [(ui(=, v,0) = Tui(z, y,0)] dzdy
Sr
= — jf b7 Iui(a:, y,0)dzdy + ]f g yi(z,y,0) dzdy.
Sy Sy

From 3n stationarity conditions, 3n equations of the type (2.8) for un-
known contact stresses ¢} (j = x,9,2), (! = 1,2,3,...n) follow. Let us
consider the case when the Bodies I and II, after the fictitious separation,
are not sufficiently reduced in the degrees of freedom. Then, for 12— (kL4 £1T)
unknown parameters of Bodies I and II we define 12 —~ (k! + k'T) equilibrium
conditions, while 6 > 12 — (k! + £1) > 0. In the equilibrinm conditions we
consider the zero reactions in additional bonds. For the case when the Body
Il is a half-space and Body I is the spatial structure having, after the ficti-
tious separation, 6 degrees of freedom, we can write the last six equations:

3n+1) i[]qfdxdy?m,

i=1 St

3n + 2) Zf/qfd:rdy:—@w
t=1 S,

3n+ 3) Zﬂ:fqudwdw—@,

t=1 St

In+4) E/quyda:dy:—ﬂx,

=1 5,

(2.9)

n
3n +5) Z/quxdmdy:—ﬂy,
t=1 St

3n + 6) zn://(qu—qu)dmdyz—ﬂz.

=1 St
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The pattern of 2 symmetric system of Egs. (2.8) and (2.9) is similar to a

system used in the well-known Zemotkin collocation method (the symme-

try follows from the theorem of reciprocity of virtual works). The classical

Zemoickin method replaces the contact stress acting along the sub-domain

5. by a force X, [N] acting at the centre of this sub-domain (z¢,, ¢o.,0) on

the surface of the Body I, as well as by an uniform stress ¢, [ dS = X, on
5

the surface of the Body II (halfspace). This system of equations is symmetric
(the symmetry follows from the theorem of reciprocity of the displacements)
only on the assumption of validity of the cases (1), (2) set up above. The
coefficients of equations are determined as follows:

bre = "6 (Zor, Yo, 0) + f g Tui(z,y,0) dS
5,
= Iu;(a:Of, Yor, 0) + Hu;(x(]r; Yor, 0) Awrdyer .

In the collocation method, the points of the contact are usually chosen at the
centre of sub-domain. A system of equations obtained by approximating the
stress acting at sub-domains S, is non-symmetric and there is no possibility
to make it symmetric, According to the mean value integral theorem, one
obtains

(2.10) f / qul(2, y, 0) dedy = qui(ze, ve, 0) Az, Ay, .
s,

Note that the coordinates of the point (z¢, 3¢,0) are not identical with the
coordinates of the chosen point of the contact.

3. EXAMPLE OF APPLICATION

In the following example we will consider the contact of the rectangu-
lar plate of dimensions I, I, kg with a half-space. At the same time we
do not consider the shear stress acting on the contact surface ¢%, ¢¢¥. The
plate (Body I) will be characterized by physical constant E; [Pa], (the plate
elasticity modulus) vy, (Poisson’s constants of plate material). The halfs-
pace (Body II) is characterized by constant E, [Pa], (subgrade modulus
of elasticity) and u,, (Poisson’s constant of subgrade material). The verti-
cal displacement 'w?%(z,,0) = w§(z,y,0} due to the unit contact stress
¢ as well as Wu*(z,y,0) = w(z,y,0) due to the external load 'p* are de-
termined by FEM. The sub-domains Sy, (r = 1,2,...n) are of rectangular
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cr

oL

vy

Fi1G. 2. Division of the rectangular plate into ny X nz rectangular sub-domains.

shape (Fig.2) r = 1,2,...n. Let us approximate the plate deflection by the
bicubic polynomial

3.1 wz,y,0)= (1,z,y,2% 2y, %, 2%, 2%y, 2%, 3, 22y, 2y®M{c} .

dw? Ow?
dal t d 775 1
The nodal parameters ¢ w}, oz By

ner, while the plate is temporarily supported, what ensures its static and
kinematic determinacy. The plate contribution to the #-th term of the r-th.
equation of the type (2.8) will then be

(3.2) /j wi(z,y,0) dzdy
Sr

\‘\‘,_,

are found in the well-known man-

2 ? 2 k] 3 ki 4 ? 3 ? 4 k]

050 O e 5 W R
6 ? 6 ? 4 7 8 H] 8 >{C}T,

_ <crdr,[cf1’df ol [@rd [l el [el'd

where
¢"=¢,—cj. and d’ =d, - d]

are the lengths of the r-th part in the direction z, y, respectively, and {C}f =
[$]~'{6}. [5]~! is the coordinate matrix with dimensions 12 x 12.
The vertical displacement of the point of half-space

w?(ms Y, 0) = H"’fz (ms Y, 0)

produced by load ¢;* = [ perpendicular to the half-space plane, acting on
the rectangular surface a®.b, (a® = af—al), (b* = b4 —b%) (Fig. 3), is obtained



534 Z. MISTRIKOVA and V. SLOZKA

(a},b') (H‘z. bix)
50
(a),by) (% b%)

(Cll.sd]r) (cgydlr)

Vy (&, &) (cdy)

F1a. 3. Dimensions of rectangular domains r and # appearing in (3.3) and (3.4).

e.g. by means of the program MATHEMATICA and is presented in the form

(3.3) wi(z,y,0)= HTP ]f \/(m_§)2+(y n)2

2 2

2
ZE[('U bt)lﬂ(—”f'—a +\/(m—at)2+(y bt)z)( 1)+

P j=11=1

+(z —af)In (y -0+ \/(y — b2+ (z — a})z) (—1)i+j] .

After repeated integration of Eq. (3.3} we obtain the half-space contribution
to the #-th term of the r-th equation of the type (2.8). We perform this
integration by means of the program MATHEMATIKA, and write it in the
closed form as follows:

(3.4) // wh(z,y,0)dzdy
Sy

_ ( SRS {20 - @) 4 (af + )]

k=11=1 3=1i=1

-\/(b‘ — )+ (af — e } (~1)HRH

+5 ZZZZ{[ 2(af — ¢ + (bf + df)?]

k—'l I=1 7=14=1

._\/(a,c — c§)2 + (bf _ d:;)z } (_1)i+j+k+l
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, |
o3 [l - en)oh — &y

i=li=

(Wl
ag

(3.4) ' 19
22

[cont.]

.._
I
-

«In (c}' —af + \/(;,t —d5)? + (af — f)? )] (—1)FHiHkH

12 2
M
k=11!=1j=1

- (d: — b+ \/(ai — ) + (b - d!;")2 )] (_1)!+J+k+l> .

(n+1), (r+2) and (143} term of the r-th equation represents the expression

ff [qu)(:z:,y,O) I j'(::: zZ, 0)] dzdy
Sy

kv-dx%—cf

Mm
F'MN

of the type (2.8).
For the given example we have

L& (z,y,0) = (s, 2,0) = Tuf(z,y,0) = Tul(z, z,0) = Tui(z, y,0) = 0.

The value of u3(z,y,0) = Mg, + oZy — 1p¥,z depends on the method of
~supporting the plate. The last three terms of the r-th equation (using the

notation of equation (3.2)) will be
d'l‘ ' r
/f Yu(z, 2,0) dody = Mugoc™d" + Yo" d" (di + ?) G (Ci + %) '
\_,_',S"'
From 6 equations of the type (2.9) we get 3 equations for the example
considered

n+1) quctd‘ =-Q.,

n+ 2) qu tti"t(a!‘t d): M,

t=1

¢t —
n+3) gqfctdt (ctl + 5) =-M,.
According to the presented solution, the computer program has been pre-
pared by the authors of this article. The results were compared with the
well-known analytic solution of Gorbunov - Posadov, which is also mentioned
in works [1, 2]. Novotny and Hanuska solved the contact problem of the plate
and the elastic homogeneous half-space by the collocation Zemoékin method.
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They divided the plate into the FEM triangular elements and used the 5th
degree polynomial. The contact stress in the triangular domain was approxi-
mated by the “pyramid”-like linearly variable function with the peak in the
triangle mode.

Graphical illustration of the results (contact stress, deflection, bending
moment) of a plate of dimensions I; = 2m, [, = 2m, hy = 0.2m, and
with material constants Ey = 2.65-107 kPa, vy = 0.1667, E, = 49-10%kPa,
vg = 0.4 is presented in Fig. 4a, 4b, 4c.

The authors of [1] solved the contact problem of the plate assuming
various divisions and introducing the presumed boundary values of stress
2(1,1), deflection w(1,1) and bending moments m,(1,1). The solutions ap-
proach the presumed values under two various assumptions concerning the
approximations.

0.0 1.0 2.0

III'II'III|IIIIlllll..i|I[lrrlilllII]lll’l.

y=1.0

-1.20

Liaadaeraitiig

regular division 20x20
——————— irregular division 20x20

2.0 1 H
3 H
] .
3 N
- L]
~3.09 E
3 g
1 [
-4.00 5 E
3 '
- H
3 H
~5.20 3 i
- 3
3 —A——a— analylic solution §
3 of Gorbunov - Posadov H
-6.022 3 g
3 [

p (kNIﬁz — » —+ — regular division 10x10

[F1G. 4a]
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-0.05

0.05
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y

F1G. 4. Comparison of variation of stresses, deflections, and moments m. in the analytic
solution of Gorbunov—Posadov and in the present solution, under various divisions
“-of the contact domain.

Assuming the linear dependence on n — 1, the boundary results for
{p(1,1),w(1,1),mz(1,1)} are {—0.5815kNm"2 0.03155m, 0.0899kNm.m""}.
Assuming linear dependence of the error on n, the presumed “more accurate
results” for {p(1,1),w(1,1), my(1,1)} should be {—0.5807 kNm~ 0.03143 m,
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0.0914 kNm.m™'}. From the analytic solution of Gorbunov - Posadov, in the
centre of the plate the values are {p(1,1),w(1,1),m;(1,1)} ={—0.630 kNm~2,
0.0327m, 0.061kNm.m~!}. Our solution with three regular divisions of
the plate into » X » = 10 X 10 elements (represented by dotted lines)
yields in the centre of the plate the results {p(1,1),w(1,1),m(1,1)} =
{—0.60073kNm™2, 0.03176m, 0.07819kNm.m '}; under the regular divi-
sion of the plate into n x n = 20 x 20 elements (represented by the solid line)
we obtain {p(1,1),w(1,1),mz(1,1)} = {~0.5975 kNm™~?, 0.03159 m, 0.08391
kNm.m~1}. With a non-regular division into n x» = 20 x 20 intervals {0.01,
0.02, 0.03, 0.04, 0.1,0.1,0.1,0.2, 0.2, 0.2, 0.2, 0.2, 0.2,0.1, 0.1, 0.1, 0.04, 0.03,
002, 0.01}, the values are {p(1,1),w(1,1),mz(1,1)} = {-0.5956 kNm~?,
0.03142m, 0.0870 kNm.m™1}.

Comparing the results one can see that the values obtained under the
non-regular division 20 x 20 are the closest to the “sharpened” limiting
values in [1]. This validates the objections made in [1] concerning the values
of bending moments obtained in [4].

In addition to the verification presented, let us present the comparison
with the exact solution for a plate subject to non-uniform temperature dis-
tribution AT = Ty — T}, where Ty is temperature at 2 = A/2 and T}, at
z = —h/f2. Taking the Kirchhoff- Navier assumptions concerning the plate
solution into account, the deflection in the centre of the rectangular plate

supported at the corners and loaded by linear temperature distribution AT
oy AT ( 2412

(ignoring the dead weight) is w?(0,0) = o ]

In the following examples the bonds between plate and halfspace are
considered as unilateral with respect to pressure. For the plate with di-
mensions I; = I, = 7.5m, by = 0.30m and with the coefficient of ther-
mal expansion o; = 1.2:1078°C~1, for 3 various values of AT = {-40°C,
—15°C, 15°C}, the exact value of deflection in the centre of the plate is
w(0,0) = {—22.50-10~*m, —8.437-10~%m, 8.437-10~>m}. In our solution
we consider the plate with the same geometric and thermal characteristics.
The material properties of the plate are £y = 2.1-10" kPa, v = 0.24. For
a better comparison of the subgrade effect we will consider three various
elasticity moduli of E, = {4.2:103kPa, 4.2-10*kPa, 4.2-10°kPa}, v, = 0.4.
The division of the rectangular domain of contact into n x n = 22 x 22 ele-
ments is considered as non-regular. The lenghts of rectangular sub-domains
are {0.1; 0.2; 0.3; 0.35; 14 x 0.4; 0.35; 0.3; 0.2; 0.1 m}.

Ignoring the dead weight of the plate, the deflection values in the centre
of the plate at AT = {-40°C, —15°C} are {-21.90.10"3m; —8.2543.
1073m}. At AT = 15°C, deflections in the plate corners are w(3.75;3.75) =
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-9.0209

-0.015
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Q.02 Y
: 3.75 7.5

8.0e5

—~—o6— At=15k
—~——  At=40TC

TFi€. 5. The plate deflection (ignoring the dead weight) in marked sections nnder several
specified temperature variations.

—8.2093-10~3 m. The difference of deflections in the centre of the plate and
in the corners, according to the exact and approximate solution, are 2.2%
and 2.69%, respectively (Fig. 5). The lower value of plate deflection in plate
corners at AT = 15°C, compared with the deflection in the centre of the
plate at AT = -15°C, is caused by different sizes of plate elements, as
related to the size of contact surface in the centre of the plate and in the
plate corners. ‘

The influence of the dead weight and of various elasticity subgrade mod-
uli E, = {4.2-10%;4.2-10%; 4.2-10°}, in case of loading by temperature differ-
ences AT ={-40°C, —15°C, 15°C}, upon the values of contact stresses and
deflections in two characteristic sections (symmetry axis and plate edge) is
shown in Fig.6a, b and Fig.7a, b, ¢, d, e, f.
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F1G. 6. Contact stress and the plate deflection in marked sections produced by dead
weight, at three various elasticity moduli ratios Eq/E,.
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4. CONCLUSION

A system of equations derived by the classical Zemockin collocation
method is, in general, not symmetric and there is no possibility to change it
to a symmetric system. A variational modification of the Zemoékin method
presented by the present authors is derived by means of the theorem of
minimum of potential energy of deformation. Unlike the classical Zemoékin
method, the system used here is symmetric for any division (shape and size)
of the contact domain. This fact leads to a more effective algorithm of solv-
ing the system of equations. Using this solution, the autors have prepared a
computer program. The numerical results obtained by means of this program
are compared with some other results found in the literature [1, 2, 3, 6].

REFERENCES

1. B. NovoTNY and A. HANUSKA, Rectangular plate on elastic foundatcon [in Slovak],
Stav. Cas., 35, 5, 358375, Veda, Bratislava 1987,

2. V. KoiLAR and I. NEMEC, Analysis of a new model of structural subgrades [in Czech),
ACADEMIA, CSAV, 3, Praha 1986.

3. C. PEYRONNE, Etude theorique du comportement d’une dalle de béton, Bull. Liason
Lab. Ponts et Chaussées, 77, 5-6, 1975.

4. M.I. GorBunov-Posapov, T.A. MALIKOVA and V.I. SOLOMIN, Analysis of struc-
tures on elastic foundation [in Russian], Strojizdat, Moskva 1984,

5. B.N. ZEMOSKIN and A.P. SINICIN, Practical methods of analysis of beams and
plales resting on elastic foundalions [in Russian], Gosstrojizdat, Moskva 1962.

6. Y.T. CHou, Subgrade contact pressure under rigid pavements, J. Transport. Engng.
ASCE, 109, 3, 363-379, 1983.

UNIVERSITY OF TECHNOLOGY, BRATISLAVA, SLOVAKIA.

Received January 30, 1995.





