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CYCLIC LOADING OF A NOTCHED ELEMENT
WITH A TECHNOLOGICAL SURFACE LAYER

S. KUCHARSKI (WARSZAWA)

A method for determining the stresses in a notched element with a technological
surface layer (TSL) subjected to low-cycle loading is presented. The considerations are
based on the kinematic-isotropic model of strain hardening and the theory of plastic flow.
The hysteresis loops obtained for a specimen with and without a surface layer, under the
same loading conditions are compared with each other. The same is done for the working
and residual stresses for a specimen with a surface layer.

1. INTRODUCTION

The surface layer of a machine element is, in view of its importance for
the strength and the life of the latter, the subject of experimental studies of
increasing intensity. At the same time theoretical models of elements with a
TSL are devised and tested with a view to obtain a means for determining
the equivalent stress distribution for the entire element, the influence of the
presence of the TSL being taken into consideration and, in particular, for the
surface layer itself. Elements with a TSL subjected to elastic-plastic strain
are usually modelled by methods of finite elements, as was done for instance
in papers [1, 2 and 3], devoted to problems of contact loads acting on an
element with a surface layer, such as the problem of state of stress produced
by various rigid indenters. The surface layer was modelled in those works by
taking finite elements of the same type as those used for the core, but of finer
dimensions. The residual stresses and the roughness of the surface layer were
not taken into account. It was assumed to be homogeneous, its elastic-plastic
properties being different, however, from those of the core. Only monotonic
loads were considered on the basis of the theory of plastic flow assuming
isotropic strain hardening. However, experimental investigation shows that
the TSL is very important in the case of cyclic loading. A solution to the
problem of cyclic (compression-tension) loading has been presented in 4]
for a cylinder with a TSL. It has been obtained by applying the theory of
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plastic flow and the isotropic model of strain hardening, the surface layer
being modelled as a thin membrane in a plane state of stress,

The algorithm which will be presented below and has been devised for
determining the state of stress in an element with a TSL, subjected to cyclic
loading, is based of the method of finite elements. The theory of plastic
flow will be used assuming small elastic-plastic strain and a mixed type
(kinematic and isotropic) model of strain hardening. The program for the
finite element procedure is confined to plane and axially symmetric problems
and a type of loading as that used for fatigue tests (tension and torsion),
without considering contact loads. The model of the layer will be assumed in
the form of a thin membrane, similarly to [4, 5] ard [6], the initial stresses
being taken into consideration. Finally, an example of application of the -
program for determining the state of stress in a specimen with a notch and
a TSL will be presented.

2. THE CONSTITUTIVE MODEL

The model assumed is based on the theory of plastic flow taking into
account kinematic and isotropic strain hardening [7, 8]. The moduli of kine-
matic and isotropic strain hardening are not constant, but depend on the
plastic strain (or, in a multi-axial state of stress, on the length of the tra-
Jjectory in the space of plastic strain). The yield condition is assumed in the
form

(2'1) F(O‘, a, Ep) = f(O‘ - ﬂ!) - Y(EP) =0,

where o — stress tensor, a — stress tensor determining the translation of
the centre of the yield surface (the coordinate of the centre of the elastic
region in uniaxial state of siress), Z, — length of the trajectory in the space
of plastic strain, Y (g,) — measure of expansion of yield surface when gp = 0.

The evolutions of the variables of state @ and Y (the yield point) will be
taken into consideration as functions of the evolution parameter #”. Those
functions are treated as input data of the algorithm and are given in a tabu-
lated form. They can be obtained from a test of uniaxial cyclic compression
and tension. In the case of cyclic load they are usually represented as a hys-
teresis loop of stress and a hysteresis loop of the parameter a, cf. Fig. 1 [9].
In such a representation, the parameter 2" (which is marked on the abscissa
axis) may assume negative values because it is equal to the plastic strain for
compression or tension and, according to the above definition of EP, it is a
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Fi1G. 1. Cyclic curves of total and kinematic strain-hardening.

sum of the absolute values of 7" obtained for alternating compression and
tension of the specimen.

The total strain-hardening is a sum of kinematic and isotropic strain-
hardening. The curves expressing those guantities under a monotonic load
are represented (at the beginning of the hysteresis loop) in Fig. 2.
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F1a. 2. Curves of isotropic and kinematic strain-hardening for monotonic tension.

From experiments which were conducted for steel [9] it follows that in
the case of a cyclic load, the curve of isotropic strain hardening descends
in a monotonic manner and becomes stable after no more than a few load
cycles, the total strain-hardening being decided upon by only the kinemadtic
strain-hardening (the curve of the variable a, Fig. 1).

Making use of the yield condition (2.1), the compatibility condition can
be thus expressed by

af(o — a)

(2.2) S do - H*dA =0,
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where H* is the total modulus of strain hardening, that is the sum of the
kinematic and isotropic strain-hardening modulus, H* and H, respectively,

(2.3) H* = H*+ H.
Equation (2.2) may be rewritten in the form

&f(oc— a) f(c—e) , dY
A TR e
Assuming that Z¥ = A, we have

8f(a'—a).da_d_Y_

(24)

(2.5) H*dA = . X dA.
We shall now use the Zigler equation describing the evolution of variable o
(2.6) da = du(o — a),
where p is a function of A, On denoting
du
(2.7) d—x =€,
¢ being a constant or function of A, we have
(2.8) da = cdMo - a).

Taking into account the relations (2.6) to (2.8) we obtain from (2.4)
(2.9) W-da + (ca—ﬂ%:—al-(a —a) - HI) dA = 0.

By confronting (2.2), (2.4) and (2.9), we find

(2.10) H™ = ca—f(;—a_‘-'l-(a — a),
I 1G)
(2.11) H = T

From (2.9), (2.10) and (2.11) it is seen that the modulus of kinematic strain
hardening is decisive for the velocity of displacement of the yield surface
and the modulus of isotropic strain hardening — for the variation rate of the
radius of that surface.

If H, is treated as a prescribed quantity, the quantity ¢ can be eliminated
from Eqs. (2.7) and (2.10), and dg can be expressed by the formula
di — H>dA

TG

_T_C.'_).(a_a)'

d

(2.12)
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The remaining equations used with our algoritm will be expressed in an
incremental form convenient for use with a program based on the method
of finite elements. It is assumed that the total strain is a sum of plastic and
elastic strain, that is

(2.13) de = de® + de”.

From Hooke’s law we have

(2.14) do = D-de®,
where D is the elasticity matrix and from the flow law
- 8f(c - a)
. de? = dA\———,
(2.15) f3 %

we obtain the fundamental incremental equation of calculation procedure

(2.16) do = D(de ~ de?) = (de dx g"; )
Making use of (2.16) and (2.4) we can find dA:
d?.de
2,17 d =
(217) o 0fT(c-0)
+ —-d
da
where

-

(2.18) dT = M.D

do

By analysing Eqs. (2.2) to (2.18) we conclude that, knowing the functions
HI(X), (HI(zP)) and H*(A), (H%(g?)), we can determine by incremental
means all the unknown quantities involved.

3. IMPLEMENTATION OF THE MODEL IN A FEM-SYSTEM

In programs based on the method of finite elements (FEM), the algorithm
of the procedure of integrating the equations of pla.stlmty can be described
in the following simplified form:

¢ The establishment of the load increment (the load being applied by
consecutive steps), further referred to as increments.

¢ The determination of the increment of the strain tensor as a result of
an increment of the prescribed load.
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e The determination of the elastic increment of the stress tensor Ao =
DAe connected with the increment of strain.

o The reduction of the stresses place them to the current yield surface.
This step take place if, after addition of the previously calculated incre-
ment Acg, the values of the stress components are such that the point in
the space of the stresss is situated outside the surface. The current yield
surface is determined taking into consideration its extension dY(g,) and its
displacement do resulting from the last increase in stress. To determine the
increments of the quantities (o,¢) connected with the return to the yield
surface several iterations are performed, the number of which depends on
the required accuracy. '

The above algorithm is repeated for each increment of the load. The pro-
cedure assumed is similar to that of [10] and is completed by some terms
resulting from two types of strain hardening. Below we shall quote the par-

ticular equations which have been used with the above algorithm. It should

be borne in mind that the quantity controlling the entire process is the
increment of the Joad.

The known functions H7(g7) and H®(?) are assumed to be piecewise
linear, the boundary points between the segments being denoted 7, 25, .. .,
e, &L +1- Owing to this assumption, any experimental curve can be easily
approximated, the strain-hardening moduli are constant over consecutive
intervals of €° and, for instance, the moduli of total strain-hardening, H*,
can be determined directly from uniaxial yield test according to the formula

Y, —-%Y
(3.1) H =32,
€r41 — Ek

where Y} are the values of the stress on the ¢ — ¢ curve, and Z} — the rele-
vant values of plastic strain. Making use of the formulae derived above, the
consecutive steps of the above algorithm for integration of the equations of
plasticity can be easily described as follows (we assume that the procedure
starts from certain fixed values o*, a*, 7%, which have already been calcu-
lated by the same algorithm, and we are concerned with the next increment
of the load). We determine

1. The elastic increment of stress
(3.2) Aec = DAg,
and the assumed new value of the stress tensor

(3.3) o" =" + Ac..
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2. The new arguments for the yield condition

og = 0% —a"
(3.4) ’

o, =0 —a".

3. The interval £}, &, +1 to which our 7 belongs and the corresponding
H® and H I as well as such k that

By <E" <E, -
4. The actual yield point
(3.5) Ve = Y(E") = Y + H{E™ - 7).

5. Now we substitute this into the yield point condition
Fo = f(O'g) —Yu,

(36) P = f(a))-Y™

6. We check whether plastic flow occured in this step, that is if /77 > 0. If
not, the present increment is evaluated from the elastic characteristic, that
is ¢ = o™, Then we pass to the next increment (that is to the beginning of
the algorithm).

7. f F} > 0, we check whether the material was, in the previous step
{previous increment}), in a state of plastic flow, that if the relation /5 = 0
was true, If Fy < 0, the material passes in the present step from the elastic
‘state to the plastic state. We calculate the fraction by which the actual
/increment of the stress exceeds the actual surface of flow. This fraction will
be denoted by R,

Fy

="1'?1_—1‘10 (lf F():O, RZI)

(3.7) R

RAe is that part of the stress tensor increment which must be reduced to
the yield surface. To this aim RAc is divided into » parts (the number n
depending on the required accuracy), and the value of one part is determined
from the formula

(3.8) Ao= %Rdae.

The current value of og is corrected, in agreement with (3.9), to get it located
on the yield surface (that is o; is assumed as a new ¢y)

(3.9) : g, =09+ (1—- R)Ac,.
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Next the fraction RAo, is reduced in n steps, by performing n times the
operations of:

0
a) determining (3_£) 5 HE, H/ for the current o; and 27,
1

b) calculating the vector d (from (2.18))

a=p.2

do’
c) calculating A); (from (2.17))

d) calculating the correct increment of the stress
Ac; = Ac — AAd,

e) calculating the corrected values of the quantities connected with the
kinematic strain-hardening

T
i-da; — HIAN
A#i — do ,
aft
do '
Aa; = Apiop,

o = o; + Aoy,
Ao; = Aoy — Ay,
f) correcting the values of the stress and the plastic strain
giy1 = 0; + Aoy,
g?+1 = g'f + 4.
Finally, the computed values of the stresses are verified for location on
the yield surface, that is the relation

|f(0isn) = Y(E ) £ 07,

is verified for being true, o, denoting the assumed value of the admissible
error. If this inequality is satisfied, the values of 0,4, and «;;, must be
corrected. 7

The algorithm just presented was used for writing a program based on
the method of finite elements, which has already been devised earlier by the
present author, especially for problems of stresses in structures with a TSL
[5, 6, 11].
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4. ANALYSIS OF A NOTCHED CYLINDRICAL ELEMENT WITH A TSL,
SUBJECTED TO A CYCLIC LOAD

The program just mentioned was used to analyse the influence of the
surface layer on the strength of the material of a specimen with a circular

notch Fig. 3, subjected to a cyclic load.
V
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FiG. 3. A cylindrical specimen with a circular notch.

Two specimens have been considered for the sake of comparison, that is
a homogeneous specimen and a specimen with a TSL, both specimens being
subjected to identical tensile load p = F75 MPa. The finite element meshes
are illustrated in Fig. 4, showing (in view of the problem being symmetric)
only a quarter of the specimen (shaded in Fig.3).

The surface layer is modelled: by membrane elements as described in [6].
Those elements are connected with the remaining elements at nodes which
are situated on the surface and are marked, in Fig. 4, with a heavy line. To
make the comparison accurate, an identical geometrical model is used for the
homogeneous specimen and that with a TSL, which means that the material
at the surface is modelled in both cases by membrane elements, the material
properties of each of the two membrane being, in the nonhomogenous case,
different. The value of the load p is selected to cause partial yielding of the
cross-section of the homogeneous specimen to a depth of some 2mm from
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FiG. 4. The FEM.

the surface, at the bottom of the notch. It was assumed that the surface layer
of the second specimen has the properties of a burnished layer, that is an
elevated yield point o, = 800 MPa and self-stresses o, = 0, = —700 MPa.
The thickness of the layer is 0.2 mm. The distribution of the self-stresses @, in
the initial state (before beginning the loading process) in the section passing
through the bottom of the notch, determined from the equilibrium equations,
is shown in Fig. 5. The diagram is confined to region on the right-hand side
of the symmetry axis.
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F1G. 5. The initial stresses ¢; in an element with a TSL.
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The application of the model described above requires the use of the
curves of kinematic and isotropic strain hardening as obtained from the test
of unijaxial cyclic load performed for determining the values of the moduli
H® and H'® in consecutive intervals of 7 (Eq. (3.1)). The results of the tests
are most often presented in the form of a stress hysteresis loop, that is the
cyclic curve of total strain hardening (H*) and the hysteresis loop of the
parametr «, that is the cyclic curve of kinematic strain hardening (H?).
The curve of isotropic strain hardening is obtained by subtracting from the
coordinate of the total strain-hardening curve, the corresponding ordinates
of that of kinematic strain hardening. The curves which were used for the
analysis are presented in Figs. 6 and 7. They are close to those obtained from
experiments [9], Fig. 1. Compared with the experimental curves, they show
a small modification consisting chiefly in a variation in inclination angle of
the curve of isotropic strain hardening so that it represents a constant value
for smaller Z° than in the reality. This does not influence the aim of the
analysis but makes possible a reduction of the necessary time.
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- F16. 6, The characteristics assumed for monotonic tension 7 curve of kinematic strain .
hardening, o curve of isotropic strain hardening, O curve of total strain hardening.

As a result of computation, we obtain for consecutive increments of load
the values of all the components of the stress tensor, as functions of g7,
at every Gauss point, therefore we are able to determine their hysteresis
loops. Presentation of the results in the form of a hysteresis loop of effective
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Fia. 7. The assumed cyclic curves of strain hardening; v/ total, o kinematic.

stress seems to be most useful, however, for making it possible to compare
the multiaxial state of stress in the notch (in which we are interested) with -
the uniaxial state occurring during tension tests, which are performed for
determining the characteristics of the material. Such a présentation of the
results requires special processing, which is somewhat inconvenient, it being
required to change the signs of the reduced stress and 27, but enables us to
state easily whether the process has become stable, that is whether the loops
are closed. As regards the cause of destruction of a specimen, the hysteresis
loops for the points A and B, which are located near the bottom of the
notch (Fig.8), are the most interesting. In the case of a nonhomogeneous
specimen the point B is located within the region of the layer.
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Fic. 8, The points for which the hysteresis loops of effective stress are determined
(part A of Fig. 3).
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Figure 9 shows the hysteresis loops at the point A for a specimen with
and without the layer. Comparison between the hysteresis loops at the point
B with and wihout a surface layer is illustrated in Fig. 10.
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F1G. 9. The hysteresis loops at the point A; v7 for the specimen with a layer,
o for the specimen without a layer.
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F1a. 10. The hysteresis loops at the point B; 57 for the specimen with a layer,
. o for the specimen wihout a layer.

Another interesting problem is that of evolution of the state of residual
stress. It should be borne in mind that the residual stress after a cycle
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constitutes the initial self-stress for the next cycle. Moreover, for an assumed
value of the load (which produces partial plasticity), residual stresses occur
in the case of a homogeneous specimen and a specimen with a TSL as
well. After the hysteresis loop has become stable, the distribution of the
residual stress depends in both cases on whether the load cycle ends with
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Fic. 11. Residual stress o, in the homogeneous specimen o load cycle ending with —p,
7 load cycle with +p.
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F1a. 12. Residual stress o, in the specimen with a TSL V technological (initial) stress,
o aler a load cycle ending with —p.
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+p or —p. Relevant diagrams are represented in Fig. 11 for the homogeneous
specimen and in Figs. 12 and 13 for the specimen with a TSL. Diagrams of
technological initial stresses are shown for comparison, on the same figures,

for the specimen with a TSL.
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F1G. 13. Residual stress o in the specimen with a TSL O technological (initial} stress,
7 afer a cycle ending with +p.

5. INFERENCES

The surface layer has a considerable influence on the behaviour of the
material at the bottom of a notch of a specimen subjected to a cyclic load.
Initial stresses introduced by technological means into the TSL makes the
state of residual stress after the load cycle has ended, different from the
state in the homogeneous specimen. This modification does not concern
the surface layer alone, but also the material in the region located below
the layer. Moreover, the initial stress is considerably modified already after
no more than a few load cycles (cf. Figs.12 and 13). By confronting the
hysteresis loops for a specimen with and wihout a layer at the point A,
Fig.9, it is seen that they are characterized by roughly the same stress
amplitude and the same limiting values of the stresses (for compression and
tension, respectively), but the area of the hysteresis loop is much greater in
the case of a specimen without surface layer.

As regards the hysteresis loop at the point B, Fig. 10, its form is, in the
case of presence of a TSL, degenerate. There occur high stresses, but in view
of the existence of the self-stresses the material at that point is plastified
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only in the case of compression, but the area of the hysteresis loop is zero.
In the case of a homogeneous specimen the values of the stress are lower,
but the area of the loop is different from zero.

The area of the hysteresis loop is a measure of the energy dissipated
per one load cycle and influencing in turn the fatigue life of the specimen.
Comparison between the hysteresis loops for a specimen with and whithout
a surface layer enables us to explain the experimental fact that the existence
of that layer influences little the strength of the specimen in the case of a
monotonic loading, its influence being considerable for the fatigue sirength,
however. In the case of a monotonic load, for which the strength depends on
the value of the stress, the results of computation show that the difference
between a homogeneous specimen and a specimen with a TSL is practically
confined to that layer, which is a simple consequence of the yield point
having been raised. In the case of a cyclic load, the strength is decided upon
by the areas of the hysteresis lopps which are, for a homogeneous specimen,
greater for both the surface layer (point B, Fig. 8) and the region below the
surface layer (point A, Fig.8). Thus, in the case of a monotonic loading, the
influence of the surface layer is limited in principle to its region, but in the
case of a cyclic load its influence range is extended to the material in direct
neighbourhood of the surface layer.

During the experimental investigation it was also observed that the de-
struction of an element with a TSL begins sometimes under the layer. The
results of computation explain this observation, because in our case the hys-
teresis loop of the material under the layer has a much larger area than in
the layer.

By analysing the hysteresis loops obtained for a specimen with a TSL
(Figs.9 and 10) it is seen that in the core, under the layer, we are concerned
with cyclic stressing of the material. There occur in that region hystere-
sis loops of non-zero area, the form of which results from the isotropic and
kinematic strain hardening. As regards the surface layer, the loops are asym-
metric, their area is zero and there occurs a phenomenon of shakedown. To
find optimum parameters for the TSL by using the above program it is nec-
essary to complete the latter with some fatigue criteria, in agreement with
the types of stressing of the material mentioned above. This will be the
subject of further attempts.
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