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INTERACTIVE ELASTIC BUCKLING OF THIN-WALLED
OPEN ORTHOTROPIC BEAM-COLUMNS

M. KROLAK and Z. KOLAKOWSKI (LODZ)

The present paper is a continuation of paper [8]. It deals with an analysis of global
and local stabilities and with the investigation of the initial post-buckling equilibrium
paths of elastic thin-walled open orthotropic beam-columns. The channel beam-columns,
simply supported at the ends, are subject to axial compression, eccentric compression or
pure bending. The analytical method of analysis was presented in paper [8]. Numerical
calculations are restricted to the nonlinear first order approximation [2, 4]. The principal
goal of numerical analysis is to investigate the effect of the wall orthotropy factor upon
the critical state (upon the critical stress values and the global and local buckling modes),
and upon the initial behaviour in the post-buckling state.

NoTaTiONS

The notation used in the present paper is the same as in paper [8]. The most important
symbols are as follows:
b; width of the s-th wall of column,
Ei, Eyi Young's moduli of i-th wall along the z and y axes, respectively,
G; modulus of non-dilatational strain of i-th wall,
k; thickness of the i-th wall of Lthe column,
! length of the column,
m number of axial half-waves of n-th mode,

M('f‘) M s

o My’ M, i bending moment resultanis for the i-th wall referring

to the n-th buckling mode,
n  number of mode,
N p(n)

n)
Nii yihgi 24V

in-plane stress resultants for the i-th wall referring
to the n-th mode in the first approximation,

o,

Bi = Ezi/Eyi

Vayi, Vyxi

én
, &,
ot =0,10°fEn

oy

buckling displacement components of middle surface of the i-th
wall referring to the n-th buckling mode,

orthotropy factor of the i-th wall,

Poisson’s raiio of the i-th wall; the first index indicates
transverse direction and the second shows the direction of load,
amplitude of n-th buckling mode,

imperfection amplitude corresponding to &a,

dimensionless critical stress of the n-th mode,

limit dimensionless stress for imperfect column (load carrying
capacity).
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1. INTRODUCTION

When dealing with open beam-columns we encounter many different
modes of global (flexural, torsional, torsional-flexural and lateral) and local
bucklings. It is also known that in such structures the above buckling modes
interact with each other, creating a so-called coupled buckling. The prob-
lems of the coupled buckling of thin-walled open isotropic beam-columuns
were discussed in [1, 5-7, 9-14].

The subject of the present paper is the stability of thin-walled beam-
columns built of an orthotropic material and their behaviour in the initial
elastic post-buckling state. The analysis of a full strain tensor for thin walls
{8] and of a plane model of structure enabled us to determine various buckling
modes and the related critical load values.

2. THEORETICAL AND NUMERICAL SOLUTION

The solution of the problem under discussion was presented in [8]. The
same article describes capabilities of a computer program prepared. This
program can be easily applied in a computer-aided system, CAD/CAM.

Since the analysed cross-sections of beam-columns have a single axis of
symmetry, in the present paper, unlike in paper [8] only a two-mode ap-
proach is considered. :

3. ANALYTICAL RESULTS

Detailed numerical calculations are carried ocut for thin-walled channel
beam-column (Fig. 1) subject to uniform compression and to pure bending
in the plane of the web.

Geometrical dimensions of columns under discussion are assumed {o be
the same as in papers [1, 5-7]:

I =390 [mm), b; = 25 [mm), by = 50 [mm], hi = hy = 1 [mm).

All walls are assumed to be made of the same orthotropic material, the
principal axes of orthotropy being parallel to the wall edges.

Values of material constants for column walls (13 different cases) are
taken from paper [3]. These constants are listed in Table 1.

The main purpose of numerical calculations is to analyse how the wall
orthotropy factor, § = §; = E,;/E, = E;/FE,, influences the global and
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e

F1G. 1. Open cross-section considered.

Table 1. Elastic constants for various cases of composite beam-columns.

Spec. no. 8 =E:/E, Voy Vyz G[E.
1 0.0728 0.02184 0.3 0.4065
2 0.1315 0.03945 0.3 0.4091
3 0.3031 0.09093 0.3 0.4002
4 0.5064 0.15192 0.3 0.3937
5 0.7041 0.21123 0.3 0.4009
6 0.8358 0.25074 0.3 0.3882
T 1.0000 0.3 0.3 0.3846
8 1.1964 0.3 0.25074 0.3245
9 1.4202 0.3 0.21123 0.2823

10 1.9747 0.3 0.15192 0.1994
11 3.2992 0.3 0.09093 0.1213
12 7.6045 0.3 0.03945 0.0538
13 13.7362 0.3 0.02184 0.0296

local critical stress values, buckling modes and load carrying capacity as
determined in the first order approximation. ,

Figure 2 presents the lowest values of critical stress o}, in cases of glob
and local buckling of the channel column subject to axial compression and
bending in the plané of the web, plotted as a function of a wall orthotropy
factor, A. Index n assumes the following values: 1 —for the first or the second
global buckling mode, 2 - for the lowest local buckling mode.

The presented relations show that the values of global dimensionless criti-
cal stresses in case of global buckling, o7 = o1 103/ E, of a column under
axial compression (curve 1) at § <1, are practically independent of factor g
or, to be more precise, are only slightly dependent on the value of modulus
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FiG. 2. Dimensionless stress o,, versus the orthotropy factor 8. Curves: 1 — global
buckling for the uniformly compressed column, 2 - lateral buckling for the

beam-column in bending, & — local buckling for the compressed column,
4 — local buckling for the beam-column in bending.

E, in circumferential direction. It is so because the dimensionless critical
stresses, as measured along the vertical axis, of = oy 103/ E,, are a function
of modulus E; along the axis of the column. For higher 3 values (4 > 1), the
global critical stress value of the column under axial compression decreases;
at # = 13.736 it is nearly five times less than for the column made of
an isotropic material (§ = 1). It should be kept in mind, however, that
dimensional critical stresses vary proportionally to the value of modulus F,
since 0, = 0.0010}, F,. The numerical analysis carried out shows that the
variation of coefficient 3 changes not only the global critical stress values
of the channel under axial compression but also the buckling modes. The
analysis of the influence of 3 factor upon the critical stress values and global
buckling modes is possible due to the fact that the plate model (and not the
beam-bar model) of the column is used in the considerations.

Figures 3 present two global and local buckling modes of the orthotropic
channel (wall orthotropy factor 8 = 0.0728, 1.0 and 13.736, respectively).
The first global mode concerns the lowest global load value, and the second
one — the greater global load. :

As can be seen in Figs. 3, in the channel with 8 = 0.0728 and 8 = 1.0



a)

m=if

b)

Fic. 3. Two global and local buckling modes for the compressed column correspondlng
tora~ f=0.0728b-g=10;c-f=13736.

[595]
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the first global buckling mode is the torsional-flexural buckling, while the sec-
ond one has a flexural character. In case of the column with 8 = 13.736, the
second global buckling mode represents a flexural buckling, where the weaker
part of the column (regarding stability) is its web (web buckling causes a
rotation of flanges), whereas the first mode refers to a torsional-flexural
buckling, the weaker parts which regard the stability being the flanges. All
global buckling modes have one buckling half-wave (sinusoidal half-wave) at
column length. All local buckling modes, regardless of the value of g factor,
are similar to the second global buckling mode with # = 13.736 (Fig. 3¢).
They differ in the number of half-waves along the column.

a)

Fia. 4. Global (a) and local (b) buckling modes for the beam-column in bending
at different g = 0.0728; 1.0; 13.736.

The following illustration presents global (Fig.4a) and local (Fig.4b)
buckling modes of the channel subject to pure bending in the web plane
(so-called lateral buckling), the wall orthotropy factor being 8 = 0.0708,
1.0 and 13.736. In case of a column with § = 13.736, longitudinal edges
of adjacent walls undergo slight displacements in the global buckling mode
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(Fig. 4a) which is characteristic for the local buckling modes (Fig. 4b). All
local modes of the bending channel have nearly identical buckling modes (as
in the case of a compressed channel) which differ only in their numbers of
half-waves, m.

Figure 5 shows the change in the number of half-waves, m, being formed
during local buckling along the axially compressed channel, plotted as a
function of 4.

m
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Fig. 5. The number of hall-waves m versus the orthotropy factor 4. o — compressed
channel, x — channel subject to bending.

Figure 5 indicates that for the column with 8 = 0.0728 the number
of half-waves, m, is almost twice as great as that for a column built of
an isotropic material (# = 1.0). For § > 3.0 the number of half-waves is
practically independent of the value of 3.

Figure 6 shows plots of the bending moments, Hg) = MS )b? /Dy, for
the first (Fig. 6a) and the second (Fig. 6b) global buckling modes of axially
compressed channel, the orthotropy factors of column material being 8 =
0.0728, 1.0 and 13.736. Plots illustrating the first global buckling mode show
Jl_/fg) decrease. It

=1
M,

that, with increasing [, the values of bending moments

means that, at a constant value of modulus E,, moments ) decrease
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F1G. 6. Bending moments H;I.-) for the first (a) and the second global buckling mode
of the compressed column.
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together with a reduction of modulus E,. Diagrams of moments ﬂ_( ) shown
in Fig. 6 confirm that during the compression of the column with 8 =13.736,
the first global buckling mode results from the buckling of flanges, while the
second one is a consequence of buckling of the web.

Plot of normal forces, W{Z) N (2)61 /K1, for the first local buckling
mode of the compressed column are presented in Fig. 7. Diagrams show a

rapid decrease of the absolute value of force N ; 7 with i increasing 8. For fixed

values of modulus E; this means a very qmck increase in the absolute value

of force W( ) accompanying an increase in modulus £,,.

2410 p=13736
\ \
\ o
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Pp-00728 \
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FI1G. 7. Plot of in-plane stress resultant I_Vg‘;) for local buckling mode of the compressed
column.

The continuity conditions in column corners [8] imply that N, *(n) Q;fi)l

and Q*(n) = ;f:{ (Fig. 7); this suggests a strong influence of Kirchhoff’s
forces, Qyi , upon the critical stress values and the buckling modes.
Curves presented in Fig.8 illustrate the ratio of limiting stress, ¢¥, to
the minimum critical local stress, o3, as a function of the factor B for the
assumed initial imperfections [£;] = 1.0 and [&;| = 0.2 ([8]): In case of
axial compression of a column, the considerations included the interaction
of the first or the second global buckling modes with the basic local buckling
mode. In the channel subject to axial compression, the interaction between
the global flexural buckling mode and the local one yields lower values of
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FiG. 8. Load carrying capacity o} /o3 carried by orthotropy factor g. Curves: 1 — the
compressed column, 2 — the beam-column in bending.

the limiting load, ¢ /o3}, than those following from the interaction between
the torsional-flexural mode and the same local buckling mode.

In the range of variability of # discussed in this paper the value of limiting
load, o} /c%, in case of an interaction between a global torsional-flexural
buckling mode and a local mode, is not less than 0.9. Therefore a more
dangerous interaction is the one between the global flexural buckling mode
and the local one.

Diagrams presented in Fig. 8 indicate that the channel structure built of
low-f material (8 < 5) are more sensitive to initial imperfections; the highest
imperfection sensitivity is exhibited by the channel subject to bending in the
web plane for very low values of 8 (§ < 0.5).

4. CONCLUSIONS

The solution obtained and the computer program prepared enabled us to
carry out a detailed analysis of the behaviour of thin-walled orthotropic open
beam-columns in the critical and initial elastic post-buckling state; consider-
ations included different kinds of load — from axial compression through
eccentric compression to pure bending. The computer program prepared
allows to carry out a parametric analysis of stability in case of orthotropic
thin-walled columns of different cross-sections, including the columns with
longitudinal stiffeners.
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Numerical calculations prove that in case of orthotropic structures under
compression, the global modes obtained in the assumed plate model (Fig. 3)
may significantly differ from the results obtained using the earlier beam-bar
model.

Calculations referring to interactions of the most dangerous buckling
modes of orthotropic thin-walled columns are often very similar to those
obtained by analysing isotropic structures [5, 10].

The present analysis has to be completed by including the second ap-
proximation in order to investigate the post-buckling behaviour in the case
when the first order interaction is weak.
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