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THE CHOICE OF FEEDBACK GAINS IN THE COMPUTER
MODEL-BASED CONTROL SYSTEMS OF THE DIRECT-DRIVE
MANIPULATOR '

Z. KOWALSKA (WARSZAWA)

The paper presents the results of simulations which were carried out in order to work
out the methods of selection of control parameters for two control systems: a) the rela-
tively simple control system with PD compensators of position errors and feedforward
compensation of gravitational forces, b) the inverse dynamic control system. For both
control systems two procedures of choice of the control parameters are presented: a) the
procedure based on the analysis of simplified models of plants and controllers, b) the
procedure consisting in numerical oplimization of an integral performance index.

1. INTRODUCTION

Industrial manipulation robots started to be widely installed in many
branches of industry at the beginning of the seventies.

Simultaneously with the progress in applications of industrial robots,
research works aimed at manipulation robots improvement (in particular,
at improvement and development of new drives and control systems) are
carried out in many centers around the world.

In the robot control area an important factor stimulating development of
new conirol methods and techniques is the very rapid, present-day progress
in microprocessor technology and programming. Microprocessors of great
computational power enable the application of model-based control in ma-
nipulation robots. In computer model-based control systems, input signals
(fed into the actuators) are calculated on-line (or possibly partly on-line,
partly off-line) on the basis of a dynamic model of a plant.

" In a majority of manipulators every link of a manipulator has an in-
dependent drive. Usually the drives are indirect, i.e. they consist of a
motor (e.g. DC-motor) and a reductor of a very small ratio (1/200+ 1/20).
The first direct-drive manipulator was built according to [2] in 1981. In
the direct drive, a link of a manipulator is mounted directly on the motor
shafli. Control of the direct-drive manipulator is difficult, but because of
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important advantages of such a solution it is a subject of investigations and
experiments.

A number of publications dealing with technical implementations of direct-
drive manipulators is relatively small. It is worth to mention here the article
{1] containing a detailed description of the six degrees of freedom manipula-
tor and its control system. On the other hand, some of theoretical aspects
of direct-drive manipulators control are considered even in textbooks on
robotics [2,4). Probably this state of the literature on robotics reflects the
actual state, i.e. technical difficulties connected with a practical implementa-
tion of direct-drive manipulators and justified conviction held by specialists
of great advantages of such a solution after avercoming these difficulties.

Control of an indirect-drive manipulator can be in a way easier, because
in transmissions of a ratio 1:¢, a load torque on a motor shaft is ¢ times
smaller than a torque on a load shaft (which is generally nonlinear relative
to generalized coordinates and velocities of a manipulator).

However, in indirect-drive manipulators structural resonances of a low
frequency occur. They result from the flexibility of gears and are difficult
(or almost impossible) to avoid. Structural resonances of a low [requency
canse that the realization of fast manipulator motions and the application of
high-gain feedback are impossible. Direct-drive manipulators are free from
this drawback, because their segments are much more stiff.

The obvious advantages of direct drives are high durability, reliability and
easiness of maintenance — due to the absence of mechanical transmissions.

Backlashes, friction, and deformations occur in mechanical transmissions,
they are difficult to avoid and also difficult for identification and modeling.
For this reason it is practically impossible to develop an accurate mathe-
matical model of an indirect-drive manipulator.

From this standpoint the situation is quite different in the case of a
direct-drive manipulator. A model of the direct-drive manipulator is usually
very complex, but it is relatively easy for identification. It is an important
advantage of such a solution because it enables a succesful application of
model-based control.

When designing any control system, one has to take into consideration
many various factors, and very often it is not possible until technical imple-
mentation is accomplished. For example, let us mention here such factors
as: sensitivity and noise of semnsors, the type and bounds of disturbances,
frequency range of disturbances, and different structural resonances, which
may occur but are difficult to foresee.

The factors mentioned above have not been taken into consideration in
this paper. The investigations of the control systems of manipulators were
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first of all oriented towards the properties and limitations of the control
systems resulting from the application of digital processing. In particular,
quantization of input signals and a time delay in the inverse dynamics control
systems, resulting from finite speed of model computations, are in question.
The quantization means here that input signals are constant in the intervals:
< t;, t; +T), where t; stands for the instant of sampling, and T stands for
the sampling period.

A mathematical model of a mampu]a,tor consisting of » rigid links has a
following form {2]:

(1.1) M)+ V(q,q)+G(q) + F(q,9) =P

where
q n X 1 vector of relative displacements of a,d_]a,cent links in joints,

M(q) » x n mass matrix,
V(q,q) n x 1 vector of centrifugal and Coriolis tcrms
G(q) n x 1 vector of gravity terms,
F(q,q) n x 1 vector of friction terms,
P n X 1 vector of forces (torques) at joints.

It is characteristic for a majority of manipulators that Egs.(1.1) de-
scribing manipulator motion are strongly nonlinear and strongly coupled.
One of the most important trends in a robot control field is searching for
model-based control which compensates partly or entirely for the nonlinear-
ities and couplings in Eqs. (1.1) [2,4].

2. CONTROL SYNTHESIS ON THE BASIS OF SIMPLIFIED MODELS
2.1. Control with compensalion for gravitational forces

In the simplest version of model-based control, gravity terms of Eq. (1.1)
are compensated for, and components of input signals compensating gravi-
tational forces are calculated off-line (Fig.1).

In this case input signals are

(2.1) P = Kye + K,é + G(q?),

where q? — vector of programmed coordinates of a manipulator, e — vector
of errors, i.e. vector of differences between the programmed coordinates and
actual coordinates, K, K, — matrices of constant factors.
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Fic. 1. The control system with compensation of gravitational forces.

In the formula (2.1) and further on, the sign ~is put above a symbol of
a vector or a matrix to distinguish matrices and vectors which refer to a
mathematical model from that referring to a real plant.

Even in the case of the simplest manipulators of three or four degrees of
freedom, the dynamics of a manipulator is so complex that it is impossible to
say anything unquestionable on the dynamical properties of the closed-loop
system solely on the basis of the motion equation and the control law.

The system seems to be able to realize effectively the programmed motion
provided that inertial forces are small enough compared with the gravita-
tional forces, i.e. in the case when the programmed motion is slow.

Surely, compensation for gravitational forces is advisable, but only un-
der the condition that masses of the manipulator links and locations of their
gravity centers are well identified and the errors e are small, because the
component G(q?) of the input signal P compensates, in fact, for the gravi-
tational forces at the desired position of a manipulator, and not at its actual
position.

The drawbacks mentioned above do not exclude the possible applica-
tions of such a control system. Omne can not exclude that dynamical and
steady-state properties of the control system will be satisfactory, provided
the values of elements of the matrices K, K, are chosen properly.

The difficulty of choice of the control parameters K,, K, is that dynam-
ical properties of a manipulator (simplifying — its inertia and its response to
external and driving forces) can be entirely different for different positions
g and velocities q.

The report [3] presents the results of simulations which were carried
out for the manipulator of three degrees of freedom (with three revolute
joints) and for the manipulator of four degrees of freedom (the 1st joint of
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which was revolute, the 2nd and the 3rd were prismatic, and the 4th was
revolute). The investigations revealed that it is possible to achieve good
control quality (i.e. small steady-state errors, small tracking errors, good
disturbances rejections) when one chooses the control parameters K,, K,
following the reasoning described below.

In most cases it is very important to achieve the desired final position
of the manipulator with desired accuracy at the desired time; when the
manipulator is moving from the initial to the final position, the deviations
of an actual trajectory from the programmed trajectory can be much greater.

Since the selection of control parameters on the basis of a complete,
nomnlinear and very complex model of a manipulator is impossible, one has
to make use of a maximally simplified model.

Let us ignore in the model (1.1} all inertia forces except the forces m;; g;
(i = 1,...,n), where m;; denotes values of diagonal elements of the inertia
matrix M at the final position of a manipulator. If the motion of a manip-
ulator is stable and really converges to the desired final position and zero
values of the velocites q, then ignoring these inertia forces which are equal
zero for zero values of the velocities q is at least partly justified.

Furthermore, let us ignore in the model the gravitational forces, which are
partly compensated for by the control system, and let us assume a diagonal
form of the matrices Kp, K,.

Under the assumptions given above a motion of the 7-th link of a mani-
pulator around its final position is described by the equation:

(2.2) m;;é; + k‘i.ég + k;;e,' = 0.

In Eq.(2.2) the coefficients k;;, ki denote the diagonal elements of the
matrices I(p, K,.
If the coefficients &5, ki are assumed according to the formulae

(2.3) k:, = 2myw, k;‘, = myw? )

then all equations describing the motion of manipulator links have the same
form as the equation of a critically damped harmonic oscillator:

(2.4) € + 2we; + wle; = 0.

Critical damping ensures the fastest non-oscillatory reduction of the tracking
error e;(t) to zero. Any oscillations occurring when a robot is in motion are
undesirable, because oscillations can excite vibrations of various mechanical
sub-systems. For this reason the relationship between the coeflicients k;, ki
determined by the formula (2.3) was accepted.
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In such a way the number of control parameters that have to be chosen
is reduced to the single parameter w. The parameter w is relatively easy to
determine by simulating the motion of the manipulator for various external
disturbances, for non-zero initial values of ¢;(0), &;(0), and for differences be-
tween the model parameters and plant parameters. To evaluate the control
quality one can make use of a synthetic performance index. For instance,
the performance index can take the form:

1 kmax n

Y Yo le(iA) S A),

j=0 i=1

(2.5) 1=

kmax

where A — the sampling period, Emax — the number of sampling periods,
kmax = T/A where T denotes duration of the programmed motion, 5; -
weighting coeflicients.

The simulations [3] revealed that in many cases this method of selection
of control parameters is effective and good control guality may be achieved.

This method is not infallible, of course. For instance, in the case of strong
dependence of the diagonal elements m;; on the configuration q, dynamical
properties of a manipulator change significantly when the manipulator mo-
tion continues, no matter how slow the motion is. In particular, for such
a method of selection of feedback gains, the overall closed-loop system will
be strongly overdamped for some configurations and strongly underdamped
for other configurations. In such cases, it is worth to consider, whether it
would be better to chose the parameters on the basis of average values of
the diagonal elements m;; than on the basis of their final values.

2.2, Inverse dynamics conirol

In the case of the inverse dynamics control, a rational choice of feedback
gains is much simpler. In accordance with the scheme in Fig.2, the control
law has the form

(2.6) P = M(aq)(§" + Kpe + K.8) + P(q,9) + G(a) + F(q,q)

Contrary to the control system of Fig. 1, calculations of elements of the
matrix M and the vectors ¥, G, F have to be done on-line. '

It is worth to mention here that the control according to the scheme in
Fig.2 is called also in many publications the computed torques control.

The following observations arise from the analysis of the motion equations
(1.1) and the control law (2.6). The input signals (2.6) are intended to
compensate for all time-dependent inertia forces and moments, and all time-
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dependent, deterministic, possible to predict external forces and torques —
reduced to axes of joints.

Furthermore, it is worth to notice that the components of the input
signals which depend on e and e are equal, respectively, to M(q)K,e and
M(q)Kye. It can be stated that the block in Fig.2 described by M(q)
adjusts the feedback gains so that for greater inertia the gains are greater,

q
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F1G. 2. The inverse dynamics control system.
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When it is possible to identify the parameters of a manipulator with good
accuracy, one can assume that

(2.7) M=M, V=V, &=G, . .F=F,

and then, after substituting Eq.(2.6) into the right-hand side of Eq.(l.l)
and after making use of Eq.(2.7), Eq. (1.1) takes the form

(2.8) 8+ Ko+ Kye=0.

For the diagonal matrices K,, K, the equations describing the mo-
tion of a manipulator with the control system of Fig.2 are linear and not
cross-coupled. The form of Eq.(2.8) is very advantageous with respect to
dynamical properties of the overall closed-loop system and also with respect
to the synthesis of control. In this case synthesis of control means an ap-
propriate choice of values of elements of the matrices K, K.

However, it is necessary to say that the equations describing the mo-
tion of a manipulator with the control system of Fig.2 cease to be linear
and become cross-coupled, if unknown external disturbances, constant or
time-dependent, act on a manipulator,
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Let us denote the vector of external forces and torques acting at the
joints by P#. If the assumption (2.7) is satisfied and the vector P* is not
zero, the motion equations of the closed-loop system have the form

(2.9) ¢+ Koé+ Kye = M~ (q)P?,

Eq.(2.9) are nonlinear and cross-coupled.

¥ P? = 0, but parameters of the model differ from parameters of the
manipulator, the motion equations are also nonlinear and cross-coupled and
have the following form:

(210) &+ Koo+ Kpe= M1 [(M-M)g+(V-V)+(G-G)
+HF-F)].

Although Eqs. (2.8) describe the behaviour of the overall closed-loop system
with inverse dynamics control only in the ideal case, when disturbances do
not occur and the model is entirely conformable to the plant, these equations
can be taken initially as the basis for the choice of elements of the matrices
K,, K,. It follows from Eqs. (2.8) that it is advisable to assume a diagonal
form of the matrices, because in such a case the i-th equation of the system
(2.8) becomes the second order equation of one variable e;, i.e. the equations
of the system (2.8) afe not cross-coupled. If disturbances do not act on the
mechanism of the manipulator then the tracking error ¢;(¢) depends only on
the initial values €;(0), £(0) and on the diagonal elements in the i-th rows
* of the matrices K, K,,, and it does not depend on the trajectory.

Under the assumption of a diagonal form of the matrices X, K,, and

when the.diagonal elements ki, ki are,

k;;:wz, B = 2w for i=1,..,mn,
the motion equation of every link takes the form of the equation of a critically
damped harmonic oscillator.

The rate of convergence of the tracking error ¢;(t) to zero depends on
the pulsatance w. Assumption of a large value of w ensures fast convergence
of the tracking errors e;(t) towards zero, but one has to keep in mind that
increasing the pulsatance w results in larger driving forces and torques.

The inverse dynamics control does not ensure the zero steady-state error
in the case when a constant external disturbance acts on the manipulator,
or when parameters of the manipulator (in particular, masses of manipula-
tor’s links) differ from the parameters of the model. Let us assume that the
manipulator achieves its final configuration qf at whiche = 0, and & = 0.
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In accordance with Eq. (2.9), external disturbances acting on the manipula-
tor (which one can reduce to forces and moments P? acting at manipulator
joints) cause steady-state errors determined by the formula:

Kye = M~Y(q/)P>.

Similarly, if masses of the manipulator links differ from those accepted in
the model, then the steady-state errors can be calculated by the formula:

Kye = M'(a!) [G(af) - G(a’)] .

In the report [3], the results of simulations for two simple manipulators
were presented. The 1st manipulator had three degrees of freedom (with
three revolute joints), and the 2nd manipulator had four degrees of freedom
(the 1st joint was revolute, the 2nd and the 3rd were prismatic, and the 4th
was revolute). It was found on the basis of these investigations that it is pos-
sible to achieve a good control quality (i.e. small steady-state errors, small
tracking errors, good disturbances rejection) using the following procedure
of the choice of the parameters k;;, k.

At first, the smallest value of the pulsatance w has to be determined,
for which the steady-state errors are less than the permissible errors. The
steady-state errors may be calculated by the formulae given above for the
estimated constant external disturbances at the final position q, or for the
assumed maximum differences between the masses of manipulator links and
those of the model links.

Next, one can gradually increase w (that results in reduction of the track-
ing errors) checking simultaneously, whether the driving forces do not exceed
the permissible values, and whether they do not increase excessively in re-
lation to their nominal values. _

It was found, for both the manipulators investigated, that for the sam-
pling frequency 100 Hz and higher it is possible to apply high feedback gains
(e.g. w = 15) without the risk that the system will cease to be stable due
to quantization of the input signals.

The procedures of choice of the control parameters described above can
provide satisfactory results, but the results are not optimal in any sense (no
matter what criterion of optimality is in question), because they are based
on simplified models of a plant and control system.

Even though the condition (2.7) and the condition P*-= 0 are satisfied,
Eq.(2.8) does not describe exactly the behaviour of the inverse dynamics
control system because it does not include the following factors. First, the
period of time needed to calculate the model, i.e. to calculate the ma-
. trix M and the vectors \7, é’, F, is not infinitesimal. Tt equals, in the best
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case, one sampling period 7' and therefore some time-delay exists in the
system. Second, in digital systems input signals (in the present case driving
forces and torques) are constant in the period < t;, t; + T) between two
samples. Discrete version of the control law (2.6) depends on the method
of technical implementation of a particular digital system. For instance, it
can take the form: '

211)  P(nA+1)=M(nA-4)|dp(nd) + Kve(nA-A)+ Kpé(nd~ A)]
+P (A - A) + G(nA — A) + F(nA - 4)

for n€ N and 7 €<0,A).

Time-delay in the inverse dynamics control system and quantization of
input signals can considerably affect the dynamics of the system. The dis-
crete control system may be unstable, although the system of the same
structure but time-continuous has a resonable stability margins. Such a
case may happen when the feedback gains and the sampling period are too
high. '

3. OPTIMIZATION OF CONTROL PARAMETERS

Taking into account the drawbacks and limitations of the described se-
lection procedures of control parameters, attempts were made to find better
procedures. It was verificd for the manipulator of three degrees of freedom,
shown in Fig.3, what results follow from the optimization of diagonal ele-
ments of the matrices K,, K,. At first, the performance index (2.5) was
taken as the optimization criterion, and simultancously it was assumed that

ee(0)=0, &(0)=0;

o all parameters of the model implemented into the control system are
equal to the respective parameters of the plant (manipulator);

o the weighting coeflicients S; are time-independent and equal to 360 /2%,
what actually means that the errors e; expressed in radians are converted
into degrees. .

The masses and mass moments of inertia with respect to the central
principal axes are given in Table 1. Important geometrical dimensions are
given in Fig. 3.

The results of optimization and simulation of the manipulator motion
for two programmed trajectories are given in the paper. In the case of the
1st trajectory, the programmed motion begins from the intial configuration
presented in Fig.4, and the duration T of the programmed motion is 1,0s
or 0.5s.
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F1G. 3. The scheme of the manipulator.

Table 1. The parameters of the manipulator.

tnass moments of inertia
No of link {mass kgm?
kg | L. | Iy I
1 - - - 1.0
2 10 1.0 0 1.0
3 10 1.0 0 1.0

During the time T, the first manipulator link rotates together with the
entire mechanism anticlockwise by 90 degrees, the 2nd and the 3rd link move
in such a way that the free end of the 3rd link remains on the 0zy plane of
the fixed coordinate frame Qzyz, and at the final position the longitudinal
axes of the 2nd and the 3rd link coincide with the axis 0y. The motion is
programmed in such a way that in the time interval from 0 to 0.5 T all links
of the manipulator move with constant accelerations and in the time period
0.5T + 1.0T they are slowed down. In the second phase of the motion the
accelerations of links have the same values as in the first phase, but with
opposite signs.

In the case of the trajectory No 2, the programmed motion consists also
of two phases, i.e. of accelerating and slowing down of the manipulator
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z

FIG. 4. The initial and the final confignration of the manipulator for the first trajectory.

links with constant accelerations in the equal time periods {rom 0 to 0.5T
and from 0.5T to 1.0T. At the initial position (Fig.5) longitudinal axes of
the 2nd and the 3rd link coincide with the axis Oy of the fixed coordinate
frame Ozyz. The free end of the 31d link has the coordinates (0,2 ,0). The
mechanism of manipulator rotates anticlockwise by 90 degrees. The motions
of the 2nd and the 3rd links are synchronized so that the free end of the 3rd
member lies on the plane 0zy, and at the final position it has the coordinates
(0,0,0).

The smallest values of the performance index (2.5) obtained by means
of numerical minimization for the 1st trajectory, for the duration of motion
T = 1s, and for the sampling period A = 0,01s are equal to:

1. 0.086 — for the control system of Fig.1,

2. 0.046 — for the control system of Fig.2.

The minimal values of the performance index I are very small. One
can interprete the value of this index as the average value of a sum of the
tracking errors e; (i = 1,2,3), expressed in degrees.

However, one has to keep in mind that the minimal values of the per-
formance index were calculated for the case when all the conditions given
above were satisfied. That is for the case, when quantization of the input
signals (and time- delay in the inverse dynamics control system) are the only
disturbances.
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F1a. 5. The initial and the final configuration of the manipulator for the second
trajectory,

Apart from the small tracking errors, every control system should ensure
low sensitivity to disturbances, random or deterministic. It was investigated,
how the initial values €;(0) different from zero influence value of the perfor-
mance index I calculated for the control pa,ra.meters,k;;, ki, which optimize
the index I in the case, when e(0) = 0, &(0) = 0.
~ The results of investigations on the influence of the initial values e;(0)
on a value of the performance index [ are given in Table 2. The time 7
expressed in -seconds, given-in the first column of Table 2, is a measure of
. initial disturbances of the velocjties, which are determined by the formula:

(3.1) &(0) =~ (Ohey,  i=1,2,3,

The initial disturbances with signs opposite to the programmed velocities
in the first phase of the motion can be interpreted as the result of impulses
of torques (of the Dirac delta-function type) applied at time ¢ = 0 at the
manipulator joints and directed against the motion of the manipulator links.

The values of the performance index were calculated for two cases:

1. The case, when driving forces can be arbitrarily large.

2. The case, when driving torques can not be larger than the assumed
limiting values. The maximum nominal values of driving torques (necess-
ary to realize the programmed motion by the system without feedback)
multiplied by 2 were accepted as the limiting values. '
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Table 2. The values of the performance index (2.5) for disturbances of initial
velocities determined by the formula (3.1), for the feedback gains established
by optimization with respect to the criterion (2.5).

r |control system of Fig, 1|control system of Fig. 2
inputs inputs inputs inputs
5 |unlimited | limited |unlimited | limited
0 0.086 0.046
G.01 0.089 0.073
0.021 0.095 0.12
0.03| 0.107 0.16
0.04{ 0.106 0.772 0.21
0,05 0.113 0.628 (.255
0.06] 0.122 2.04 0.301 1.60
0.07) 0.129 3.32 0.384 1.95
0.08] 0.138 3.96 6.396 1.0
0.09] 0.149 4.92 0.443 1.67
0.1¢{ 0.156 5.57 0.491 2.01

On the basis of Table 2 one can come to the following conclusions. The
inverse dynamics control system is more sensitive to the initial disturbances
than the control system with PD) compensators and feedforward compensa-
tion for gravitational forces (Fig. 1) in the 1st case, when the values of driving
torques are unbounded. In the numerical experiments, large maximum val-
ues of driving torques were assumed, nevertheless in the case of the control
system of Fig.1 these maximum values were exceeded, even for the initial
values &;(0) equal to only three hundredths of the maximum nominal veloc-
ities ¢;(T/2). It was found that for initial disturbances &;(0) = 0.1(¢¥ )max
driving torques in the control system of Fig. 1 are a dozen times greater than
the nominal driving torques in the time-continuous, open system (i.e. the
system without feedback). In practice, it is impossible to accept so large
driving torques, because of actuator sizes and energy consumption limita-
tions.

When the control parameters are optimized with respect to the criterion
(2.5), high values of the gains k;;, ki are obtained because the driving torques
necessary to realize the optimal control are not taken into account in the
criterion (2.5).

The feedback gains calculated in such a way may be too high, when it ap-
pears that external disturbances are more hazardous than the disturbances
resulting from quantization of input signals.
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It was supposed that including the input signals into the optimization
criterion can increase the tracking errors but will also decrease the sensitivity
of the control system to external disturbances.

For both control systems, the control parameters were optimized with
respect to the following criterion:

kmax

E E|€:(JA)|S (i4)

max =0 i=1

(32) I=L+L=

Emax n

Z > In(GANR( B),

kmax 3=0 i=1

where p; — the difference between an actual value of the torque P; and
its nominal value in an open system without feedback, R; — the weighting
coefficients.

The weighting coefficients R; were chosen so that the influence of p; equal
to 10% of the maximum nominal torque P; on the criterion I should be the
same as the influence of the tracking error e; equal to one degree.

It was tested how the control systems with parameters assumed in such
a way behave when there exist disturbances of initial velocities determined
by the formula (3.1). The results of calculations are given in Table 3.
Table 3. The values of the performance index (2.5) for disturbances of initial

velocities determined by the formula (3.1), for the feedback gains established
by optimization with respect to the eriterion (3.1).

system of Fig. 1[system of Fig, 2

(] 0.274 0.072
0.01 0.276 0.083
0.02 0.278 0.093
0.03 0.278 0.109
0.04 0.280 0.122
0.63 0.283 0.135
0.06 (.285 0.148
0.07 0.281 0.144
0.08 0.292 0.177
0.09 0.296 0.195
.1 0.303 0.215

For the control parameters chosen by optimizing the criterion (3.2), the
driving torques do not exceed their limiting values in any of the cases con-
sidered. The tracking errors are relatively small in both control systems,
they are from 1.5 to 4 times smaller in the inverse dynamics control system.
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The numerous numerical experiments, which were carried out, show
clearly that the inverse dynamics control system has better dynamical prop-
erties in comparison with the control system of Fig.1. The examples of
optimization with respect to the criterion (3.2) for four different cases of
manipulator motion are given in Table 4.

Table 4. The minimal values of the performance index (3.2).

control system of Fig. I [control system of Fig. 2
1|5 I I|h I
7 isltsf‘aif°;°3f’01s 1.07{0.27| 080 [0.30|0.07]  0.23
T ralectory e | 26 (064|196 [118j083] 0466
T ok maiectory o] 44 jo18] 36 . |u6 Joss| 103 :
e o | 33 [09s| 23 os2007) 045

The procedure for the choice of control parameters based on minimization
of the performace index in the form (3.2) appeared to be efficient — better
than the procedure based on the analysis of simplified models — although
the weighting coeflicients R; were chosen by intuition.
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