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THE METHOD OF ELIMINATION OF VIBRATIONS AND FORCES
EXCITED BY UNBALANCED ROTARY MACHINES WITH
INACCESIBLE ROTOR

J)>.MICHALCZYXK and G. CIEPLOK (KRAKOW)

Possibilities of application of the method of synchronous elimination to the reduction of
vibrations and forces in unbalanced rotary machines with inaccessible axes were considered
in this paper. The conditions were formulated, which have to be satisfied by the system of
inertia vibrators to achieve a stable solution of zero motion of the system in a stationary
state. Theoretical considerations have been supported by numerical simulation of motion
of the system: rotary machine — off-axial synchronous eliminator, and by experiments,
The algorithm of optimization of the real system has been proposed.

1. INTRODUCTION

Static or dynamic unbalance of rotary machines is one of the most im-
portant industrial sources of vibrations and dynamic forces transferred to
the bed. From among all the possible methods of elimination of the results
of unbalance, such as the passive or active balancing of rotors, the pas-
sive, semi-active and active methods of vibroinsulation or application of the
dynamic eliminators of vibrations, the method of synchronous elimination
[1] should be distinguished as the method which is effective, of significant
adaptation possibilities, relatively simple and dependable in operation.

This method, introduced by FESCE and TEEARLE [7], involves placing on
the rotor axis the unbalanced elements, which can occupy any angular posi-
tion in relation to the rotor. In the case of static unbalance of an unknown
or variable value, it requires.two elements (for example balls in drums) to
be placed in the rotor axis, in the plane of rotation of the mass centre of the
rotor, or as close to this plane as possible. .

In the case of dynamic unbalance, the introduction of two assemblies of
correction elements in two planes perpendicular to the rotor axis is required.
Under definite conditions, among which the most important is the elastic
support of the rotor, a spontaneous displacement of the correction elements
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proceeds, leading to elimination of the rotor unbalance and of the vibrational
motion of its axis.

The basic difficulty in application of this method is often a lack of free
place for the axial location of the correction elements on the rotor. The
possibility of a synchronous elimination in the systems, in which the axes of
rotation of the correction elements do not coincide with the rotor axis, has
been shown in the paper {4].

2. THE OFF-AXIAL SYNCHRONOUS ELIMINATION. THE GENERAL CASE

The conditions for attaining the off-axial elimination of vibrations and
forces, in the form somewhat more general than in the cited paper, may
be formulated as follows. Let us consider the rotary machine, which is un-
balanced: A — statically, B — dynamically; the machine is founded in the
manner allowing the body to vibrate along at least one generalized coordi-
nate. Moreover, the constraints imposed on the motion of the system are
such that forced body vibrations appear, for the defined type of unbalance.
Next we shall mount onto the machine body the assembly of ineriial vi-
brators (statically unbalanced rotors), with their axes parallel to the rotor
axis and with individual drives, which have soft mechanical characteristics
and velocities equal to the rotor rotation velocity, Fig.1. Let the values of
unbalance of the particular vibrators and the coordinates of their pivoting
points (we define the pivoting point or centre as the intersection of the rota-
tion plane of the rotor mass centre and its rotation axis) meet the following
requirements for the case (A):

a) in the case of a known value of the rotor unbalance:

(2.1) > ximie; = moeo;

=1

n
> ximieizi = 0,

i=1
k1]
(2.2) 3 ximieiy; = 0,
1=1
n
Y ximieiz; = 0,
=1

where mge; — static moment of the i-th correction vibrator unbalance,
moep — static moment of the rotor unbalance, x;,¥;, 2; — coordinates of the
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~3

FIG. 1. Diagram of the off-axial synchronous elimination, f - body (bed),
2 - unbalanced rotor, 3 — support, 4 - correction vibrator.

i-th vibrator pivoting point, in the coordinate system centered at the rotor
pivoting point.

xi = %1 the optional constant of the i-th vibrator.

The number and location of the correction vibrators with respect to the
machine body may be chosen rather arbitrarily, depending on the accessible
place in the surroundings of the rotor, and on the condition that none of
the correction vibrators is founded at a point of the machine, which is not
forced to vibrate by the unbalance or which vibrates only in the direction
of its axis.

In the case of meeting the conditions (2.1) and (2.2); to (2.2)3, as well
as keeping the identical value of the angular velocity w of all rotors and
keeping the phase angles, assuring the collinearity of the inertia forces in the
stationary motion, we obtain the rotating system of parallel inertia forces
which senses depend on x; (xi = +1 in Fig.1), applied to the machine
body, which is equivalent to zero. This leads to elimination of the machine
vibrations and to the lack of dynamic loads, transferred o the bed.

The conditions mentioned, together with the assumptions made earlier,
concerning the drive of correction vibrators, assure the appearance of the
desired type of motion of the system. The physical realization of this motion
requires its stability. The factor stabilizing the desired system of phase
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angles may be, for example, the appropriate mode of control of the correction '
motors. A more convenient solution seems to be, however, the application -
of the phenomenon of autosynchronization of mechanical vibrators [2]. This
phenomenon, discovered and described for pendulum clocks by Huyghens,
is based on generating additional rotation moments, caused by vibrations of
vibrator axes in the direction perpendicular to these axes. These motions
synchronize the run of vibrators.

Confining our considerations to the systems with eccentrical inertia vi-
brators, operating outside the resonance region, we use the integral criterion
of stability of synchronous motions [2]:

T T
(2.3) D(ahag,....,an):%— [/(E-—V)dt—j(Ew— w)dt] = min.
0 Q

According to this criterion, the system of phase angles
o1=¢1—¢o, @=¢2—%0, -»  n=0¢a—¢0

is stable around the values aig, @20, . - Gno, if the function D, defined by
the relationship (2.3), takes a local minimum. ' :
Here .
$o, P1s+ - -, n denote the angles of rotation of particular vibrators with |

respect to their initial locations,

T= o period of forced vibrations,

E - ktiunetic energy of the machine body, with rotor masses concentrated
in the point of rotation, :

V - potential energy of the machine body support system,

E,,V, - kinetic and potential energy of constraints between the vibra-
tors, respectively. - -_

Confining our considerations to the systems supported “softly” (that
means, to the systems, in which the ratio of w to the nearest frequency
of free vibrations is several times higher than unity), we may neglect V in
the relationship (2.3), as being < E. On the other hand, assuming that the
constraints between vibrators are inertialess and rigid (or not introducing
these constraints at all), we may neglect Ey, Vy in the relation (2.3).

Then the condition (2.3) takes the form

T
1
(2.4) D(al,ag,...,aﬂ)= T/Edt=mill.
. 0
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Let us note now that, because of the fact that kinetic energy is never
negative, existence of the isolated point in the space (aq, @2, ...a,), in which
E =0, is equivalent to the existence of a minimum of the function (2.3).
If the system is in the desired location, in which the rotor inertia forces
make the system equivalent o zero and the vibration of the body vanishes,
ie. E = 0, then any increase of the i-th phase angle, da;, is equivalent
to the addition of force dF; to the system of forces in equilibrium, Fig. 2.
This violates the equilibrium of the system and leads to nonnegative value
of the kinetic erergy of the system. This proves that there exists an isolated
solution (@10 = @20 = ... = ang), for which function D reaches a minimum,
which further proves stability of the desired synchronous solution.

|

on

/

F1G. 2. Diagram of forces.

b) we may easily generalize the above considerations to the case of un-
balance of the value which is either unknown or variable. It is sufficient to
replace each of the correction vibrators by a system of two vibrators of a
common axis and equal static moments of unbalance, (1/2)m;e;. Depend-
ing on the angle of mutual deviation of mass +;, this system allows us to
obtain any value of the unbalance me = m;e;/0.5(1 + cosv;) belonging to
the range [0, m;e;].

If the product mgep denotes the maximal expected value of the main
rotor unbalance in condition (2.1), then (because of proportionality between
the necessary values of the unbalance of correction vibrators and the values
of the unbalance of the main rotor) for each value of the rotor unbalance,
belonging to the range [0, moeq], there exists an appropriate value of angle 7;
for each vibrator, which makes it possible to attain the state of equilibrium
and also 73 = 12 = ... Yp-

Thus, if there ex1sts a solution for the problem of the off-axial syn-
chronous elimination for each value of the rotor unbalance, from the given
range, then this solution is stable, according to the reasoning similar to the
previous one.
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Let us consider now the problem of elimination for the case (B) — dynamic
unbalance of a rotor. When the value of this unbalance is understood as the
maximal value of the moment of rotor deviation with respect to the axis
z and one of the axes y or z is denoted by D, then this unbalance may
be replaced by two opposite static unbalances, of the values me, appearing
in the points of the rotor, defined by the arbitrarily chosen coordinates x;
and z3. :

Then:

(2.5) me =

D
'E' ]
where d = z1 — 2.

Now we can form the respective assembly of compensating vibrators,
meeting the requirements (2.1), (2.2), for each of these unbalances. In the
case of an unknown or variable value of the unbalance, the number of vibra- |
tors should be doubled, similarly to the case of static unbalance.

In the case of a combined static and dynamic unbalance, the dynamic
unbalance should be replaced by two opposite parallel static unbalances, in ¢
the points zy and z;, while the static unbalance should be replaced by two -
static unbalances, consistently parallel, in the same points 21 and z,. When
the static unbalance is equal me, and appears in the point z3, and moreover
Ty < %3 < Zq, then the respective values of the equivalent unbalances, lying
in the same plane as m,e,, passing through the axis z, are equal to:

. Ty — T3

(2.6) mie; = Ms€s
T2 — T1
I3 — I

(27) Moty = MgEs
T2 — I

Finally, in each of the planes perpendicular to the z-axis and intersecting :
it at the points 1 and @4, there are two masses, statically unbalanced in the
general case, mutually inclined by the angle § and 180 — 4, Fig.3. Summing
them up we obtain the resulting value of the static unbalance in each plane:

(2.8) M1 €1 = \/('armz)2 + (mye1)? + 2me - mae; - cos(8),

(2.9) Maw2€wz = \ﬂme)2 + (mgeq)? — 2me - maeq - cos(8).

We compensate these unbalances similarly as before.
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F4 1

I'1G. 3. Summation of statical
moments of unbalance.

3. PARTICULAR CASES OF THE OFF-AXIAL SYNCHRONOUS ELIMINATION

3.1. Fized value unbalance

77 ~
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Fi1G. 4. Diagram of the simple system of off-axial synchronous elimination for the case
of unbalance of a known value.

Let us consider the simplest system of the off-axial synchronous elimination,
applicable when the unbalance is static, of a fixed value and location with
respect to the rotor, or when it is slowly changing its angular orientation
with respect to the rotor shaft, Fig. 4. Condition (2 1) leads then to the

relationship
(3.1) mier + maez = moeo,

while conditions (2.2) impose the location of all pivoting points of the rotors
along one line and fulfillment of the relationship

(3.2) mie1Ly — maea Ly = 0,
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where L1, Lo denote the distance from the main rotor axis to the axis of the
first and second correction vibrator, respectively. Writing the values of the
centrifugal forces for the particular rotors, for the stationary motion of the
angular velocity w, in the form:

(3.3) Fy = moegw?, F = §F, F =65,
where

L2 Ll
3.4 W= =T .
(3.4) 4=73LnL YTLThL

The equations describing the stationary motion of the system may be
written in the following form:

{(3.5) M3 + kyz = Fo[cos(wt) + & cos(wt + aq) + €2 cos(wt + az)],

(3.6) My + kyy = Fy [sin(wt) + & sin(wt + o) + £ sin(wi + az2)],

(3.7) J B +kpB = Fo[—wocos(wt) + posin(wt) — L1 cos(wt + ay)
&1y sin(wt 4+ @) — Evp cos(wt + az) + Expa sin(wi + az)].

Here:
M, J — the mass and the central moment of inertia of the machine, with

the rotor masses related to their pivoting points,

z,y — the coordinates of the centre of mass C of the machine, in the
absolute coordinate system Ozy,

i, v; — coordinates of the rotor axis of rotation, in the central, mobile
coordinate system Cpv, attached to the machine (the systems Ozy and Cpv
coincide in the state of static equilibrium},

a4, &y — phase angles for the correction rotors.

Stationary solution of the equation has the form:

Fylcos(wt) + & cos(wt + a1) + & cos(wt + 052)]

(3.8) z(t) = T Mo?
(3.9) y(t) = Folsin(wt) + & sin{wt -; ay) + &y sin{wt + a2)] ,
_ Fy[—wq cos(wt) + posin{wt) — 101 cos(wt + o)
(3.10) 8@) = iy — Jo?
&1 p1 sin(wt + ) — E3vg cos(W + ap)lapt sm(w)]
kg — Juw?

By substituting into condition (2.3) the respective relationships for the
displacements z(t), y(1), A(t) and the relations resulting from those dis-
placements for the velocities we obtain, in the system without constraints
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between the vibrators,
(3.11) .D(Ofl,a2)
arfw

1 ) ] -2
= .2-“.’1; f 5 {M(a:2 + )+ T B —(kga? + kyy® + kﬁﬂz)} dt

g 1 1
=2 <(k “Mw? T E, - sz) | (€162 cos(az) + 1) cos(aa)

+atasin(an) sina) + €y cos(aa) + 31+ € + €3]

+ (E;:ltfw_?) {[flfz(ﬂl#z +u3) cos(ag) — &1&vp(pr — pr2) sin(axp)
+é1(vg + Hl#z)] cos(en) + [£162v0(p2 — ji11) cos(az)

+&r&a(papz + vd) sin(az) + Eyvo(po — Hl)] sin(ay)

+&2(popz + v3) cos(az) — &avo(pz — po) sin(B)

3 08+ o)+ €03+ D+ 03+ ) ).

The contour diagram for the function D(ay, @2) is shown in Fig.5 ob-
tained for the following values of the parameters:

M = 222 kg, J = 435kgm®,  mgep = 1kgm,

po = 0.25m, Hi = 3m, Mo = —2.0m,

k; = 5000 N/m, ky = 20000 N/m, kg = 4500 Nm /rad,
v =v1=v3=1m, w = 150rad/s, my = my = lkg,

e1 = ez = 0.05m.

It shows the existence of two minima of the function D. One of them
appears for the phase angles a; = a3 = 7 and corresponds to the desired
solution, at which full elimination of vibrations occurs; the other minimum
corresponds to the partial elimination of vibrations, due to reduction of the
rotational vibrations.

The possibility of appearance of two stable states, of which only one
corresponds to the desired type of solution (full elimination of vibrations
and forces), has been indicated in the paper [4], where - similar system
(although rotationally supported) was considered. Both solutions coincide
when the system is in translatory motion.

In order to avoid “indeterminacy” of the stable state depending on the
initial conditions, i.e. in order to obtain the desirable type of solution, we
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=

I'1G. 5. Plot of the function D{as,a2); PSS — power selsyn system constraints.

can use the power selsyn system (PSS), so that the correction masses are
uniform parallel (@; & a3). This case is represented in Fig. 5 by a solid line
PSS, which passes through only one “valley” of the D function.

In order to verify the theoretical considerations and to investigate the
course of transient processes, the influence of friction and real characteristics
of drive and PSS, simulation studies and experiments were carried out.

The diagram of the laboratory stand used for experimental verification
of the system of off-axial synchronous elimination for the case of unbalance
of a known value is shown in Fig. 6.

For the values of parameters of the experimental system:

M = 90kg, J = 15.0kgm?,  mgeg = 0.03kgm,

to = —0.13 m, p1 = 0.49m, 2 = —0.45m,

k; = 20000 N /m, ky, = 90000 N/m, ks = 44000 Nm/rad,
vo=uv=t2=0m, w= 150rad/s, my = mg = 1kg,

e; = 0.01m, eg = 0.02m, '

the ratio of reduction of vibration up to 28 times (0.28mm/0.01mm) has
been obtained, see Fig. 7 where 1 — plot of the vertical vibrations of the mass
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FiaG. 6. Diagram of the laboratory stand, ASO - drive of unbalanced rotor,
ASB1, AS2 - correction motors, PSS — pawer selsyn system, f/fo — frequency converter.

center y(t) of the machine body without correction system, 2 — the same in
the case when a correction system was used.

y‘ ]0" T T T T
fml

0 a05 (7} 4] amns Q.I?O . tisl a5

FIG. 7. The time variation of the vertical coordinate of ithe centre of mass of the
machine body during steady state process. 1 — without correction system, 2 — with
correction system.
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3.2, Unbalance of variable value -

Let us consider now the more advanced system, aimed at elimination of
the results of unbalance, of an unknown or slowly variable value and the an-
gular position, shown in Fig.8. It consists of two double-mass vibrators [5],
of the type shown in Fig. 9, of the drives joined by a power selsyn system.
The electric constraint and the feedback between the motions of masses,
introduced by the epicyclic gear of vibrators, assure the coincidental paral-
lelism of the axes of symmetry for the angles of mutual deviations of masses
for both vibrators.

L

m,e,

U

fin
K

by

FiG. 8. Diagram of the off-axial synchronous elimination with the coupled two-mass
correction vibrators.

Let us denote:

# = wi — rotational angle of the main rotor unbalanced mass, calculated
with respect to the coordinate system Ozy,

o — the angle between the axis of symmetry for the mutual deviation of
vibrator masses and the direction of main rotor unbalance,

ay 2 — angles of mutual deviation of the vibrators with respect to the axes
of symmetry (due to the vibrator construction — equal and opposite).

The other notations remain unchanged. The equations of motion may
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FiG. 9. Diagram of a coupled two-mass correction vibrator, 1 - shaft, 2 - yoke,
3, 4, & — epicyclic gear, 6, 7 - correction masses.

then be written as follows [6]:

(3.12) Mzi+kaa=F {cos(wt) + [FIJ(;:I) + Fzg,l?)] cos(wt + oz)} ,
(3.13) My+ky=F {sin(wt) + rFIJ(;l) + Fzg:fz)] sin{wt + a)} ,
Fa(asz)

F

[
—pio sin{wt) + |y FlE;l) + pa szgz)] sin(wt 4 oz)} R

(3.14) Jj +kgf = F {—vo cos(wt) + [FlJ(;l) + ] cos(wt + )

where
vo=v=vy =M, fo = Lg, 1 = Ly + Lo, pz = (Lo — Ly),
Fla (o
IJ(F ) £(an), _1J(F_2_)_ =€(az),  F = mpegu?,
Fy = 2m;e;w? cos(w;), i=1,2.
Denoting

(3.15) mi€(ar) + p2b(az) = Weu(on, as),
(3.16) flar) + &(a2) = We(ay, az),

- we may write the stationary solution for these equations, in the form:

(3.17) z(t) = i%—:}{;i [cos(wi) + We(ay, az) cos(wt + a)],
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3.18) ()= H—FTE?' [sin(wt) + We(au, a2) sin(wt + )]

(3.19) B = —-—~F~—7 [—wp cos(wt) — voWe(a1, ag) cos(wt + o)
kﬁ —Jw
o sin(wit) + Wey(an, ag) sin(wt 4 a)] .
For the analyzed case, the function D may be written in the form

2% fw
w 1 . ; .2
(3.20) D=4- f 3 [M(E* 45+ — (koo + by + kaf?)) dt.
0 .

Substituting the respective values for the displacement and velocity, after
integration and reduction, we finally obtain

(321)  D(a0q,a5) = Ziiz- { [1 + 2W(aur, az) cos(a) + WE(au, a3)]

1 1 1 L
X [k.z: Y + ky — Mt + Ty = Jw2] + [200u0W§(a1,a2) sm(a)

. ; 1 '
+Wey(on, az) - 2(pto cos(a) — vosin(a)) + WE (a1, 2) + ,ug] m}

The conditions necessary and sufficient for the function (3.20) to have an
extremum lead [G] to the relationship: '

(3.22) o = tnm, n=0123...,
(3.23) Wf(al,ag) =1,
(3.24) Wea(as, a2) = o,
1 1 pE + v
(3.25) M + s Mo + g = Ju? cos(a) > 0.

Condition (3.22) includes the desired solution & = (1 + 2n), which
corresponds to the synchronous elimination. Conditions (3.23) and (3.24)
" impose the necessity of assuming the sufficiently high values of unbalance of
the correction vibrators unbalance at such spatial position with respect to
the rotor that there exist angles ajo nd agp satisfying the above conditions.
In particular, if Ly > 0, Lz > 0, it is sufficient to assume, for each ratio of
lengths L1, Lg, the following value of unbalance of the vibrators:

(326) m;e; = %mgeg, ] = 1, 2 y
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where m;e; denotes the static moment of unbalance of each of the masses
for the i-th double-mass vibrator.

From the form of inequality (3.25) it follows that:

1. When the angle o corresponds to the desired type of synchronization
a = +7(1+2n), i.e. the opposite direction of the resultant forces of the cor-
rection rotors with respect to the main rotor, then the condition of stability
of this solution is the negative sign of the expression in square brackets.

2. When the angle a assumes the value o = +2n7, corresponding to the
enhancement of vibrations, then the condition for stability of this state is
the positive sign of the expression in square brackets.

In particular, stability of the desired solution of the synchronous elimi-
nation may be obtained:

a) in the case when all frequencies of free vibrations of the system are
lower than the rotation frequency of the main rotor,

b) in case of a system without possible motions along one or two gener-
alized coordinates, when the frequencies of free vibrations along the other
coordinates are lower than the rotation frequency of the main rotor.

4. PROBLEMS OF OPTIMIZATION AND ADAPTATION OF THE SYSTEM TO
THE VARIABLE ANGULAR VELOCITY OF THE MAIN ROTOR

The natural angular velocities of the main rotor and the correction motors
are usually different. Thus, the vibrational torques [1] must counterbalance
the resistances appearing in the system when all the forced velocities age the
same. The greater are the differences of mechanical characteristics of the
driving motors and the steeper are these characteristics, the greater will be
the resistances and the phase angle deviations, and the poorer will be the
vibration abatement of the system. So, in order to minimize the vibration,
we have to match the mechanical characteristics of correction motors to their
movement resistances in order to obtain equal rotary velocities of the main
rotor and the correction motors. Similar situation occurs when velocity of
the main rotor is variable. In order to equalize the velocities of the main
and correction rotors, the system of thyristor controller of supply voltage
for correction motors can be used. Optimization and adaptation to the
variable value of velocity of the main rotor can be carried out by means of
the algorithm shown in Fig. 10. The amplitude A of vibration of the machine
body was used as the measure of quality of choice of the supply voltage Ueqr.
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4.1. Simulation studies

Numerical simulation of the behaviour of the system shown in Figs. 8,
9, 10, based on its suitably extended mathematical model (4.1) has been
carried out.

d
(4.1 [Al5{a} = {M],
where:
{q} = col(u,,,yy,wﬁ,wl,wg,w3,w4),

{M} = COi(Mls MZ; M3: th MS; Mﬁ: M’?)y
My = mew] cos{ip1) + mew} cos(ip2) + mew? cos((ps) + mew3 cos(pq)
d%pg dipo\ 2
+mgeg [——dt—2 sin{eg) + (—d?) cos(wo)| — ke — byvy,
M, = mew] sin(yp1) + mew? sin(py) + mew? sin(is) + mew? sin(p,)

d? dpo\? .
+moeg [_ d:;“ cos{ipg) + (—;—;—0) sm((po)} — kyy — byuy,

. d2
M; = <_moeo{['vg sin(po) + Ho COS(‘PO)] d::O

+ [vo cos(po) ~ pio sin(ep)] (%‘PO) 2}

—me {wlz {vo cos(ipo) — p11 sin(gpo)]
+wj [vo cos(02) — 1 sin(p2)] + wE [vg cos(ip3) ~ pra sin (o))

+wj [vo cos(ip1) — p2 Siﬂ(%)]} = bwg - kﬁ>,

‘ 1 1 1 1
M, = EMA - Z(bﬂ -+ wa)w.l — Z(bo —_ wa)wg + 'ébgn’.&)ﬁ,

1 1 1 1
My = EMA — -4-(})0 + 2bw)WQ — Z(b{} - 2bm)wl + ‘é‘bowﬂ)

1 1 1 1
Mﬁ = :?"MB - Z(bﬂ + 2b!‘U)L“"3 - Z(bo - 2bw)W4 + 5()0&{6,

1

1 1 !
2MB _ ;I(bg + wa)w4 - '4‘(b0 - 2bw)w3 + Ebﬂwﬁ
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The variation of the rotational velocity of the main rotor was given in the
form

(42) w = wy[l — exp(—t/T)].

The torqe of the correction motors was assumed according to the Kloss
formula

(4.3) M, =2M, (o — w, 5 )ws — )] / [(@s — wa)? + (w, - w,s)
where M, is a function of the voltage Ucy:
(3.30) My = My 3u(Ucor/220)°.

The simulation studies were performed using the parameters:

m = 1[kg], J = 0.002 [kgm?), k; = 5000 [N/m],
Ly = 2.75[m], e = 0.05[m], Jo = 0.05 [kgm?],
ky = 20000 [N/m], Lg = 0.25 [m], mo = 20 [kg],
Jy = 20 [kgm?], kg = 4500 [N /m), Ly = 2.25[m),
ms = 50 [kg], bp = 0.002[Nms/rad], H = 1[m],
M, 2o = 5[Nm], by, = 0.005[Nms/rad], wo = 150{rad/s],
w, = 5011, Jw = 0.009 [kgm?], T = 0.25][s)],
w, = 0frad/s].
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F1G. 11. Variation of the horizontal coordinate z(t) of the correction system with the
supply voltage control system (simulation).
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The simulation studies confirmed the expectations of possibility of syn-
chronous elimination of the system. In the case analyzed, the vibrations along
all three coordinates z,y, § were reduced by an average of 1.35mm /1.55um
o875 times for z,y (Fig.11), and by 2.1 1073 rad /0.8 104 rad2625 times
for rotations.

Variation of the voltage Ucor(f) and phase relations between the rotors
are shown in Fig. 12 and Fig. 13.
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Fig. 12. The time variation of the supply voltage.
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FiG. 13. Phase relations between rotors.
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