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Some misstatements appearing in the final form of the failure criterion formulation, de-
rived from Burzyński’s hypothesis of material effort for anisotropic bodies, which haven’t been
noticed in the literature as yet, are pointed out and discussed. Alternative interpretations of
the results obtained by Burzyński are presented. Propositions of different formulation of the
failure criterion, basing on original ideas of Burzyński, are given.
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1. Introduction

Among many propositions of the hypotheses of material effort for isotropic
bodies, the one proposed by Burzyński in his doctoral dissertation (1928 [1]),
surprises by its clear energy-based interpretation, variety of classes of materi-
als it can be applied to and simplicity in formulation of the failure criterion,
which can be determined only in terms of limit stresses under simple loads: uni-
axial tension, compression and pure shear. Accounting for pressure sensitivity,
Burzyński developed former ideas of his teacher, M.T. Huber [2], and antici-
pated later propositions of Drucker and Prager [3]. From the late twenties
of the 20th century until now it remains one of the most general and practical
propositions stated. However, it seems to be still underestimated, almost forgot-
ten, especially abroad Poland. Extension of the given hypothesis accounting for
anisotropy is even less known despite the fact that it was something completely
new at that time – it could be compared only with some ideas introduced in
the same year by Mises [4]. Both papers were published a few decades before
other similar propositions by Hill (1948 [5]) or Hoffman (1967 [6]). Small
popularity of the anisotropic version of Burzyński’s condition is the reason for
which it was not discussed as yet. In the current paper, some misstatements
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in the formulation given by Burzyński, which were not noticed and discussed
in the literature, are pointed out. It is also the aim of the author to suggest
alternative interpretation of the results obtained by Burzyński and to propose
a formulation of the final limit condition, derived from Burzyński’s hypothesis
of material effort different from the original one.

2. Burzyński’s hypothesis of material effort

for anisotropic bodies

Burzyński considered an energy-based failure criterion, in which elastic en-
ergy density is expressed assuming linear dependence between the stress and
strain states:

(2.1)
Cσ = ε ⇒ Cijklσkl = εij ,

Sε = σ ⇒ Sijklεkl = σij ,

where C and S are fourth order symmetric compliance and stiffness tensor re-
spectively, σ is the stress tensor and ε is an infinitesimal strain tensor. Assump-
tion that Hooke’s law is still valid even just before reaching the limit state, indi-
cates that the limit state considered by Burzyński is in fact the limit of Hooke’s
law validity range – linear elasticity. All the limit stress quantities appearing in
this formulation should be considered as the proportionality limit.

2.1. Hypothesis statement

Burzyński proposed to consider as a measure of material effort, the combi-
nation of distortional strain energy density and a part of volume change energy
density, determined by function η, namely:

(2.2) Φf + η · Φv = K,

where K – limit value of energy density,

Φv =
1

2
Aσ ·Aε =

1

2

(
1

3
tr(σ)1

)
·
(
1

3
tr(ε)1

)
,

Φf =
1

2
Dσ ·Dε =

1

2

(
σ− 1

3
tr(σ)1

)
·
(
ε− 1

3
tr(ε)1

)
,

η = η(p, δ, ω) =

(
ω +

δ

3p

)
.

Aσ, Aε andDσ,Dε are spherical parts and deviators of stress and strain tensors
respectively, 1 is an isotropic second rank symmetric tensor (identity tensor),
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p denotes hydrostatic stress, and δ and ω are constant material parameters. The
form of the function η was assumed by Burzyński.
Decomposition of the strain energy density into distortional and volumetric

strain energy density is possible in general only for isotropic bodies or those
of cubic symmetry. However, Burzyński stated that: ‘Practically there are no
physical reasons for which strain energy could not be decomposed into sum of

two other energies, namely volumetric strain energy and distortional strain en-

ergy’ [1]. He considered a special class of materials of arbitrary symmetry, which
the considered decomposition is always possible or equivalently – speaking in
terms of tensor algebra – for which hydrostatic stress and dilatation are eigen-
states of compliance and stiffness tensor respectively [7]:

(2.3) C1 = Θ1 ⇒ Cijklδkl = Θδij ⇒ Cijkk = Θδij,

where Θ is the proportionality coefficient (eigenvalue of C). This assumption
leads to the following constraints on the components of compliance/stiffness
tensor:

(2.4)

(3 independent relations)





C1123 + C2223 + C3323 = 0,
C1131 + C2231 + C3331 = 0,
C1112 + C2212 + C3312 = 0,

(2 independent relations)





C1111 − C2222 = C2233 − C1133,
C2222 − C3333 = C3311 − C2211,
C3333 − C1111 = C1122 − C3322.

These equations are called the Burzyński’s conditions. If components of com-
pliance or stiffness tensor of a given material satisfy the Burzyński’s conditions
(2.4), it is called the volumetrically isotropic material or simply the Burzyński’s
material. Total number of independent components of stiffness or compliance
tensor, in case of volumetric isotropy, is reduced from 21 to 16.

2.2. Limit conditions

In case of isotropy, after substituting:

(2.5)

1− 2µ

1 + µ
ω =

1− 2ν

1 + ν
,

1− 2µ

1 + µ
δ =

3(kc − kr)

1 + ν
,

12GK =
3kckr
1 + ν

, ν =
kckr
2k2s

− 1,

where G – Kirchhoff’s modulus, µ – Poisson’s ratio, kc, kr, ks – limit values of
stress at compression, tension and shearing tests, the general formulation of the
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Burzyński hypothesis (2.2) can be expressed in terms of limit quantities, which
are relatively easy to be measured:

(2.6) σ2
11 + σ2

22 + σ2
33 + 2

(
1− kckr

2k2s

)
(σ22σ33 + σ33σ11 + σ11σ22)

+

(
kckr
k2s

)
(σ2

23 + σ2
31 + σ2

12) + (kc − kr)(σ11 + σ22 + σ33)− kckr = 0.

As it was said before, Burzyński also made an attempt to account for aniso-
tropy in his hypothesis knowing that in fact, there are no ideally isotropic ma-
terials. He has considered a fully anisotropic material (except of its volumetric
isotropy), yet for simplification of the criterion formulation he reduced the num-
ber of independent parameters. He used the so-called ‘basic’ (or ‘fundamental’)
coordinate system, in which in expression of elastic energy density, the mixed
terms involving shearing and normal stresses (or equivalently, linear and dis-
tortional strains) vanish. After certain rotation – which is ’only mathematically
possible’ [1] for volumetrically isotropic bodies – of a given coordinate system to
the position, in which it can be considered as the ’basic’ one, even in case of very
low symmetries (total anisotropy, monoclinic symmetry, trigonal symmetry), the
expression of the elastic energy density has the mathematical form at least as
simple as in case of orthotropy. Such situation occurs when the Burzyński’s
conditions (2.4) are fulfilled and additionally, the following relations are true:

(2.7)

C2223σ23 − C1131σ31 = 0,

C3331σ31 − C2212σ12 = 0,

C1112σ12 − C3323σ23 = 0.

One can note that those conditions are fulfilled in case of a coordinate system
with axes which are parallel to the directions of principal stresses, in which off-
diagonal components of the stress tensor are always equal to 0. This is a very
specific case – in fact there exist other basic coordinate systems, independent of
the stress state. For example, in case of any material which is at least orthotropic
(orthotropic, tetragonal, cylindrical, cubic), a coordinate system built on the
axes of symmetry of such a material satisfies those conditions. In the basic
coordinate system, elastic energy density can be expressed as follows:

(2.8) Φ =
1

2
B(σ11 + σ22 + σ33)

2

︸ ︷︷ ︸
Φv

+
1

3

[
L(σ22−σ33)

2+M(σ33−σ11)
2+N(σ11−σ22)

2
]
+2Pσ2

23+2Qσ2
31+2Rσ2

12
︸ ︷︷ ︸

Φf

,
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where

(2.9)

B =
1

3
(Ckk11 + Ckk22 + Ckk33)

=
1

3
(C11kk + C22kk + C33kk), k = 1, 2, 3 (no summation),

L =
3

2
(B − C2233),

M =
3

2
(B − C3311),

N =
3

2
(B − C1122),

P =
1

4

(
C2323 + 2C2331

C2223

C1131

)
,

Q =
1

4

(
C3131 + 2C3112

C3331

C2212

)
,

R =
1

4

(
C1212 + 2C1223

C1112

C3323

)
,

B – bulk modulus, L, M , N , P , Q, R – generalized moduli of distortion.
Using the above formula in criterion (2.2) would give us the limit condition

depending on 8 parameters, what makes it rather complex in analysis. In order
to simplify it, Burzyński considered the strain energy density expressed only
in terms of principal stresses – yet, he based on the assumption that σ1 ≥
σ2 ≥ σ3 (or a set of inverted inequalities), what in simple load cases (uniaxial
tests, pure shears) always guarantees that σ2 = 0. In such a case, after further
substitutions:

(2.10)

1− 2ν̃

1 + ν̃
=

3BM

2LN
ω,

3(kc − kr)

1 + ν̃
=

3BM

2LN
δ,

3kckr
1 + ν̃

=
3KM

LN
, λ =

M2

2LN
,

M

L
=

M

N
= 2(1− λ), ϕ =

√
2(1 + λ)

3
,

ν̃ =
1

ϕ2

kckr
2k2s

− 1, δ̃ =
1 + ν̃

3
(1− 2λ),
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hypothesis (2.2) for anisotropic bodies can be written as a 4-parameter limit
criterion, i.e. as:

(2.11) σ2
1 +

(
(1− 2λ)kckr
2(λ+ 1)k2s

+ 1

)
σ2
2 + σ2

3 + (kc − kr)(σ1 + σ2 + σ3)

+ 2

(
1−kckr(2−λ)

2(λ+1)k2s

)[
σ2σ3+

(kckr−2k2s)(λ+1)

kckr(2−λ)−2(λ+1)k2s
σ3σ1+σ1σ2

]
−kckr=0.

Please note that while the limit condition proposed by Burzyński for isotropic
bodies [1] is a scalar function of the first invariant of stress tensor and the
second invariant of its deviator, function (2.11) can be no longer expressed in
terms of only those two quantities. Proposition (2.11) can be considered as
an extension of the limit condition for isotropic bodies, so that it accounted
for the influence of the third stress tensor invariant; in this case, Lode angle
dependence would be a result of distinct influence of the intermediate stress on
the material effort. The influence of the Lode angle which is proportional to the
third invariant of the stress deviator, can be easily observed on the plots of limit
surfaces (in the space of principal stresses) which are no longer axi-symmetric
surfaces.

2.3. Matrix form of the Burzyński limit condition for anisotropic bodies

The above limit condition (2.11) can be rewritten in such a matrix form:

(2.12)



σ1
σ2
σ3



T 


1 β γ
α β

sym 1





σ1
σ2
σ3


+



(kc − kr)
(kc − kr)
(kc − kr)



T 

σ1
σ2
σ3


− kckr = 0,

where

α = 1 +
(1− 2λ)kckr
2(λ+ 1)k2s

, β = 1− (2− λ)kckr
2(λ+ 1)k2s

, γ = 1− kckr
2k2s

.

Spectral decomposition of a linear matrix operator (which could be considered
as a kind of a limit state tensor in the space of principal stresses), gives us an
interesting result:

• One-dimensional subspace of hydrostatic stresses:
Eigenvalue: χ1 = 3− 3kckr

2k2s(λ+ 1)
, eigenstate: h1 =

1√
3
[1; 1; 1], |σ1| = p.

• One-dimensional subspace of pure shears:
Eigenvalue: χ2 =

kckr
2k2s
, eigenstate: h2 =

1√
2
[1; 0;−1], |σ2| = τmax.
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• One-dimensional subspace of deviators:
Eigenvalue: χ3 =

3kckr(1− λ)

2k2s(1 + λ)
, eigenstate: h3 =

1√
6
[1;−2; 1], |σ3| = τ45.

Contribution of certain stress states can be analyzed now. The first eigenstate
h1 corresponds to the hydrostatic stress. Since inequality σ1 ≥ σ2 ≥ σ3 is
assumed, one can see that the second eigenstate h2 corresponds to maximum
shear stress – please note that the contribution of this stress state to the total
measure of material effort is independent of the anisotropy coefficient λ. The
third eigenstate h3 is a composition of two non-orthogonal pure shears (we are
considering classical scalar product defined as A ·B = AijBij); however, it is not
a pure shear itself. Eigenstate h3 is orthogonal to the maximum shear state h2,
but none of its pure shear components is orthogonal to h2. Please note that the
inequalities σ1 ≥ σ2 ≥ σ3 refer to the stress state σ itself, not to the projections
of σ on chosen states, so it does not matter that those inequalities are not
fulfilled in case of h3. Decomposition of the general stress state in the basis of
eigenstates of the limit state operator, can be illustrated as shown in Fig. 1.

Fig. 1. Stress state decomposition in the basis of eigenstates of the limit state operator.

3. Critical review of the Burzyński criterion

In spite of its generality and clear physical interpretation in the sense of
elastic energy, accompanied by mathematical simplicity, one has to note that
Burzyński’s limit criterion for anisotropic solids is not stated correctly in all of
its aspects. General idea of an energy-based criterion with additional function
defining contribution of volumetric strain in material effort, is of greatest im-
portance and it emerges to be a simple and effective way to account for i.e. the
strength-differential effect in other energy-based hypotheses (see R.B. Pęch-
erski et al. [8], J. Ostrowska–Maciejewska et al. [9]). However, there are
few misstatements that were not pointed out and discussed in the literature; the
main issues which have to be discussed are:

• Principal stress formulation.
• Lack of invariance of the parameters of the criterion.
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• Basic coordinate system.
• Anisotropy coefficient λ.
• Isotropy of strength properties.
• Non-unique relation between elastic and strength parameters.

3.1. Principal stress formulation

Burzyński’s criterion simplicity is in fact mainly due to its formulation in
terms of principal stresses. Practical application of the limit condition (2.11)
given by Burzyński (e.g. in numerical computations) enforces the use of the
principal stresses directions coordinate system. One should notice that if the
parameters of the criterion are to be constant (as it seems to be assumed by
Burzyński), one has to assume that (due to anisotropy of the material and espe-
cially due to arbitrary orientation of the principal stresses) the whole formulation
of the criterion should be invariant with respect to rotations and reflections; it
would be isotropic then, what would be an obvious inconsistency. Otherwise,
the value of those parameters must change depending on the chosen coordinate
system – it is so in case of Burzyński’s condition, however this problem was even
not mentioned in [1]. It will be discussed in details in the next subsection.
Coordinate system built upon principal stresses directions is not holonomic

– local coordinate system at a given point cannot be obtained through differ-
entiation of a position vector along certain curves in the space at that point
(especially when inequalities σ1 > σ2 > σ3 have to be fulfilled), since the stress
state distribution changes both in time and space and it may contain singulari-
ties or discontinuities.
Stress state determination requires exactly six parameters – six stress state

components in any coordinate system or equivalently three stress tensor invari-
ants or principal stresses, and three quantities describing the orientation of the
principal stresses directions in the given coordinate system, i.e. three Euler an-
gles or components of the versors indicating directions of principal stresses (nine
components with six constraints – three orthogonality conditions and three nor-
malization conditions). Referring only to three parameters, the principal values
of the stress tensor does not give us full information about the stress state, which
is especially important in case of anisotropic bodies. Simple example should
make the problem clear – it is rather obvious that a certain stress state (set of
eigenvalues) with its maximal component parallel to the wood fibers, cause much
lower material effort than the same set of stresses applied in such a way that
the maximal one is perpendicular to the fibers. In case of anisotropic materials,
the values of the principal stresses alone are not a sufficient information for the
description of the material effort, unless directions of the stresses are fixed. This
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is also the reason for which any plot of the limit surface for anisotropic bodies in
the space of principal stresses, refer in general only to a single, fixed orientation
or principal stresses.

3.2. Lack of invariance of stiffness moduli

Stiffness parameters of an anisotropic body (used in criterion) depend strictly
on the orientation of a sample referring to the given coordinate system, thus pa-
rameters of the criterion must change their values as a result of rotation of the
coordinate system, since the directions of principal stresses (which are in fact
arbitrary oriented) change – unless these parameters are invariants. It seems
that Burzyński might tacitly assume that the parameters of his criterion are
constant, which in his energy-based formulation could be possible only if they
were invariants. Bulk modulus B as a quantity proportional to a Kelvin modu-
lus of any volumetrically isotropic material is indeed an invariant. Yet all other
stiffness moduli used in the criterion, namely L, M , N , which are defined (see
relations (2.9)) as a difference between an invariant and a single component of C
(which is not invariant due to anisotropy of C), will in general change their val-
ues as the orientation of the coordinate system changes – thus even the name of
‘generalized moduli of distortion’ is in fact not strictly correct. Because of lack
of invariance of those parameters, whole formulation of the criterion given by
Burzyński depends strongly on the choice of coordinate system, which always has
to be the principal stresses directions coordinate system. Change of orientation
of principal stresses may even cause not only quantitative but also qualitative
modification of a yield surface at the given point – i.e. ellipsoidal (brittle ma-
terials, closed surface) into paraboloidal (hydrostatic pressure as a safe stress
state).
The only solution which seems possible is to consider only the special class

of stress states of fixed orientation of principal stresses directions. Yet such
constraint is still not sufficient – even in case of coordinate system adapted
to the directions of principal stresses and even if the orientation of stresses is
fixed (due to e.g. specific use of the element made of the considered material
or due to specific way of loading), the coordinate system should be chosen in
such way that inequalities σ1 > σ2 > σ3 will be satisfied. If the values of prin-
cipal stresses change so that the discussed inequalities in the given coordinate
system are no longer true, the coordinate system must be rotated by 90 de-
grees – in general such rotation is not an element of the symmetry group of
arbitrarily chosen anisotropic material, even when volumetrical isotropy is as-
sumed. Burzyński has written clearly that ‘current and continued mathematical
argument is in present conditions valid only with the assumption of inequality

σ1 > σ2 > σ3, [1] – it can be easily shown that (using Burzyński’s assump-
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tions) the criterion is not fulfilled in case of uniaxial limit state when one takes:
(σ1 = 0; σ2 = kr; σ3 = 0). This was the way which (with assumption of equal-

ities
M

L
=

M

N
= 2(1 − λ) which will be discussed below) allowed Burzyński

to formulate the condition in such a way that it is indeed fulfilled in case of
the limit uniaxial state, what (without those assumptions) is generally not true.
Thus the coordinate system (and consistently parameters of the criterion which
define the type of a yield surface) change as both orientation or value of principal
stresses change.
Rejecting the necessity of fulfilling the system of inequalities σ1 > σ2 > σ3 (or

the inverse one) leads to conclusion that the limit stress in the direction of σ2 is
different than in the directions of two other principal stresses – Eq. (2.11) could
be interpreted as a limit condition for the material with anisotropic strength
properties for a set of stress states, with fixed principal stresses directions (i.e.
parallel to the material symmetry axes). Assuming that kri and kci denote tensile
and compression strength along the i-th axis respectively (i = 1, 2, 3), one can
find that neglecting inequalities σ1 > σ2 > σ3, the limit condition (2.11) gives us:

(3.1)

kr1 = kr3 = kr, kc1 = kc3 = kc, ks2 = ±ks,

kc/r2 =
−k2s(λ+ 1)(kc − kr)

2(λ+ 1)k2s + (1− 2λ)kckr

± ks
√

(λ2 + 2λ+ 1)(kc + kr)2k2s − 2(2λ2 + λ− 1)k2ck
2
r

2(λ+ 1)k2s + (1− 2λ)kckr
,

ks1 = ks3 = ±
√

2(λ+ 1)

5− 4λ
ks,

what would be suitable for cylindrical or tetragonal symmetry – similar limit
criterion for cylindrical symmetry formulated in terms of principal stresses, as-
suming that their directions are fixed, was analyzed by Theocaris [10]. The
above purely mathematical considerations require the expressions under root to
be positive. From the expression for ks1 = ks3 we obtain λ ∈ (−1; 1.25) – this is
an interval of possible values of λ for which the above considerations have sense.
Furthermore, we require that the term under the root in the formula expressing
kc/r2 is positive, what leads to the following inequality:

(3.2)
(λ2 + 2λ+ 1)

(2λ2 + λ− 1)
>

2k2ck
2
r

(kc + kr)2k2s
.

Physical interpretation of the obtained solutions requires also that the values of
tensile and compression strength along x2 must have different signs, kc2 ·kr2 < 0.
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Here is a slight inconsistency in the notation in this case, since Burzyński has
always considered both kc and kr to be positive. However, it does not influence
the solution – using well-known Viète’s formulas for the product of the roots of
the polynomial, we obtain:

(3.3)
(2λ− 1)

(λ+ 1)
<

2k2s
kckr

.

However, it has to be emphasized that in the general case, distinguishing
of the intermediate stress in Burzyński’s formulation must not be mistaken
with distinguishing of a certain direction in the material (i.e. as in transver-
sal isotropy), as sometimes it is understood. If a symmetry of the material is
described in a given coordinate system (e1, e2, e3) and directions of the prin-
cipal stresses are determined by a set of versors (e′1, e

′
2, e

′
3) which in general

do not correspond with the given coordinate system, then special meaning of
intermediate stress is the distinction of e′2 ⊗ e′2 (or at most e′2) having nothing
to do with independent of the stress state (thus constant at all points) direction
in physical space given by e2.

3.3. Basic coordinate system

Another inconsistency which has to be discussed is the existence of the basic
coordinate system given by a set of equalities (2.7). Its physical interpretation
is not quite clear. It is obvious that the coordinate system of principal stresses
directions (as well as the one of principal directions of the strain state which in
case of anisotropy is not always coaxial with stress state – furthermore, Rych-
lewski has shown that there exists no such an anisotropic linear elastic material
which preserves the coaxiality of stress and strain tensors [11]) is such basic
coordinate system – yet it depends on the stress or strain state and thus it is
different at each point, what makes it rather impractical in use. Also in case
of orthotropy and any other higher symmetry, such basic coordinate system
actually exists – axes of such system are parallel to the axes of symmetry of
the considered material. Both such systems can be set using simple rotation in
physical space, so it is not ‘only mathematically possible’.
However, it is not quite clear if the basic coordinate system really exists in

case of lower symmetries (total anisotropy, monoclinic symmetry, trigonal sym-
metry) independently of the form of stress state – or, speaking in other way,
whether there exists such orientation of a coordinate system in physical space,
being characteristic for the material (not only for the stress state as in case
of principal stresses), which makes it the basic one. There are ‘mathematically
possible’ rotations in six-dimensional space of symmetric second-order tensors
which do not refer to any rotation in physical space, thus there might be no such
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a real rotation which would satisfy conditions (2.7) for any values of the stress
state components. If so, then referring to the compliance tensor components
in the relations (2.7) is unnecessary, since the basic coordinate system would
be only a stress state-dependent. Actually, even defining such specific coordi-
nate system with the relations (2.7) would be senseless since one always has to
take a local coordinate system built upon directions of the principal stresses.
Furthermore, if there exists no such a rotation in physical space which would
give us the basic coordinate system, then the coordinate system transforma-
tion given by (2.7) changes the physical meaning of the components of both the
compliance and stress tensor – e.g. components of the stress tensor (appearing
in energy density formulation) may emerge to be of an abstract nature - they
could not be interpreted as normal or shear stresses. The simplification of the
elastic energy density formulation presented by Burzyński might emerge not as
general as it first seemed to be and it should be constrained either to the systems
of principal stresses direction or one should consider only orthotropy or higher
symmetry.
Finding the solution of the problem of existence of the basic coordinate

system is equivalent to answering the question if there exists such a basis in
physical space in which any compliance tensor C of a volumetrically isotropic
material takes the following form:

(3.4) C ∼=




C1111 C1122 C1133 0 0 0

C2222 C2233 0 0 0

C3333 0 0 0

C2323 C2331 C2312

sym C3131 C3112

C1212




.

For this very general analysis it is enough to notice that the number of inde-
pendent components of the compliance tensor of arbitrary symmetry is further
decreased from 16 to 10 (please note that the Burzyński’s conditions (2.4) still
have to be fulfilled) – this indicates that there exist volumetrically isotropic
compliance tensors for which there is no such orientation in the physical space,
which makes the coordinate system the basic one.

3.4. Anisotropy coefficient λ

As it was shown above in Eq. (2.11), the anisotropy of elastic properties
of the considered material was represented by a single parameter λ. It was

defined as λ =
M2

2LN
. It was also assumed by Burzyński that

M

L
=

M

N
=
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2(1 − λ), which is an additional constraint for possible values of parameter λ.
It is a consequence of a specific form of the criterion formulation – it can be
shown that only if these equalities are true, the criterion is fulfilled in limit
uniaxial stress states. Burzyński did not discuss these constraints and stated
only that ‘it seems reasonable to expect that the interval within which λ varies

is quite modest, and so that it ranges e.g. from 0 to 1’ [1]. Putting x =
M

L
=

M

N

we obtain λ =
M2

2LN
=

1

2
x2 and finally, substituting both relations in

M

L
=

M

N
= 2(1− λ), we obtain the following equation:

(3.5) x2 + x− 2 = 0.

There are two roots of the above equation x1 = −2 and x2 = 1. The first one
has to be rejected because x was defined as a fraction of two ‘stiffness moduli’,
which are assumed to be positive. Thus the only result is x = 1 which gives

us λ =
1

2
, the value of λ for which the criterion is identical as the criterion for

isotropic bodies.
It has to be mentioned that before giving the simplified form of the proposed

limit condition (2.11), Burzyński wrote: “[parameters M/N ,M/L,M2/LN ] are
not treated [now] as representations of the ratio of elasticity constants, but as
coefficients particularly connected with the experimental essence of material ef-

fort” [1]. It is not clear how to interpret these words – assuming that in this short
sentence Burzyński rejected all previous assumptions on λ (see relations (2.10)),
makes all further derivations deprived of theoretical foundation and physical,

energy-based interpretation as long as λ 6= 1

2
. One should remember also that

the limit criterion introduced by Burzyński, depends on 4 independent param-
eters and simple strength tests give us only three values of which the criterion
parameters are dependent. Some parameters (e.g anisotropy coefficient λ) must
also take into consideration any information about the elastic structure of the
material, so they cannot be “connected” o n l y “with the experimental essence
of material effort” – unless there exists a one-to-one correlation between elastic
and strength properties of the considered body. This problem is discussed in
Subsec. 3.6.

3.5. Isotropy of strength properties

Finally one should also notice that in the whole paper by Burzyński [1]
there is no such thing mentioned as anisotropy of strength properties. Limit
stresses kc, kr and ks are assumed to be independent of the direction of loading.
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This makes the criterion to some extent useless since it assumes that each (ten-
sile, compression, shearing) limit stress is the same in any direction, despite the
anisotropy of elastic properties of the body.

3.6. Non-unique relation between elastic and strength parameters

Widely known failure criteria formulated by Hill [5] and Hoffman [6]
are influenced by their parameters in a linear way. In any such criterion un-
der certain conditions, those parameters can be uniquely expressed in terms of
limit stresses. Yield surface can be determined basing only on simple strength
tests: uniaxial tension and compression and pure shears in three perpendicu-
lar directions. However, the parameters of both mentioned criteria were not
interpreted in a strictly physical way. In the contrary to them, most of pa-
rameters of Burzyński’s criterion (except ω, δ and K) have precise physical
meaning and their values can be either directly measured or, at least, esti-
mated through performance of a series of tests and analysis of the obtained
elastic constants. They influence the criterion in a linear way, so there might
exist one-to-one correlation between them and limit values of stresses. If such
relation existed, those parameters could be determined in two ways – by di-
rect measurements of the elastic properties of the body or in a series of simple
strength tests. This would indicate that elastic properties of the material deter-
mine uniquely its strength properties. Authenticity of such statement should be
verified experimentally, however it seems that there might exist two materials
of different internal structure, which exhibit macroscopically the same elastic
properties but different strength properties (e.g. due to different mechanisms of
yielding).
Let us return to the basic form of the failure condition, rejecting later substi-

tutions made by Burzyński. For further simplification, let us assume the we are
not considering the cases of symmetries lower than ortothropy, so there exists
a fixed coordinate system, independent of the stress state, in which at every
point the elastic energy density can be expressed in the form given by Eq. (2.8).
Simply substituting (2.8) into (2.2), we obtain:

(3.6)
1

2
Bω(σ11 + σ22 + σ33)

2 +
1

2
Bδ(σ11 + σ22 + σ33)

+
1

3

[
L(σ22 − σ33)

2 +M(σ33 − σ11)
2 +N(σ11 − σ22)

2
]

+ 2Pσ2
23 + 2Qσ2

31 + 2Rσ2
12 −K = 0,

where Bω = Bω, Bδ = Bδ. One can note that if the condition (3.6) is fulfilled
for certain values of its parameters, it is also fulfilled if all of them are mul-
tiplied by the same constant – this indicates that the relation between those
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parameters and limit stresses obtained from strength tests cannot be unique.
Let us divide (3.6) by K so that we obtain the limit conditions depending on
five parameters:

(3.7)
1

2
B̃ω(σ11 + σ22 + σ33)

2 +
1

2
B̃δ(σ11 + σ22 + σ33)

+
1

3

[
L̃(σ22 − σ33)

2 + M̃(σ33 − σ11)
2 + Ñ(σ11 − σ22)

2
]

+ 2P̃ σ2
23 + 2Q̃σ2

31 + 2R̃σ2
12 = −1,

where the parameters with tilde denote the corresponding parameters from (3.6)
divided by K.
Assuming pure shear tests, one can easily find

P̃ =
1

2k2s1
, Q̃ =

1

2k2s2
, R̃ =

1

2k2s3
.

Let us assume that strength properties of the considered body are anisotropic
and also that in every direction it exhibits the strength-differential effect. In
such case, condition (3.6) has to be fulfilled in six uniaxial states which gives
us following overdetermined system of six equations for five parameters of the
criterion (contrary to the notation used by Burzyński we assume kr > 0, kc < 0):

(3.8)
1

3




0 k2r1 k2r1
3

2
kr1

3

2
k2r1

k2r2 0 k2r2
3

2
kr2

3

2
k2r2

k2r3 k2r3 0
3

2
kr3

3

2
k2r3

0 k2c1 k2c1
3

2
kc1

3

2
k2c1

k2c2 0 k2c2
3

2
kc2

3

2
k2c2

k2c3 k2c3 0
3

2
kc3

3

2
k2c3







L̃

M̃

Ñ

B̃δ

B̃ω




=




1

1

1

1

1

1




.

One can observe that the fifth column of the matrix of coefficients, the one
corresponding to the B̃ω parameter (quadratic pressure influence), can be ex-
pressed as a linear combination of the first three columns corresponding to shear
moduli L̃, M̃ , Ñ – both of two possible 5 × 5 minors must be then equal to 0
what indicates that the rank of the matrix of coefficients is equal at most to 4.
The rank of the augmented matrix is equal to 5, thus it is an inconsistent system
of equations and no solution can be found.
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4. Proposition of different formulation of the limit criterion

It seems to the author that the final form of the limit condition should
depend on Burzyński’s stiffness moduli in their unchanged form (their values
can be well estimated) and only the parameters K, δ, ω should be determined
in a numerical way so that the obtained limit surface fitted the experimental
data well. This would give us only three independent parameters which could be
used to fit the model to nine independent strength tests. Despite the fact that
K, δ, ω are independent of the elastic constants, it is clear that elastic properties
would influence the measure of material effort very strongly. Good correlation
between the determined model and the experimental results would verify the
correctness of Burzyński’s hypothesis, in particular the form of the influence
function assumed by him. Having determined the limit condition for a sufficiently
large set of materials of similar class, may enable finding empirical formulas for
the unknown parameters, e.g. K = K(B,L,M,N, . . . , kr1, kr2, . . . , ks3). In the
further analysis, the found formulas for different classes of materials could be
compared.
Yet, assuming that parameters K, ω, δ are known as well as the elastic

moduli B, L, M , N , P , Q, R, limit stresses can be easily found from the system
of Eq. (3.8).

(4.1)

kc/r1 =
−3B̃δ ±

√
16(Ñ + M̃) + 24B̃ω + 9B̃2

δ

4(Ñ + M̃) + 6B̃ω

,

kc/r2 =
−3B̃δ ±

√
16(Ñ + L̃) + 24B̃ω + 9B̃2

δ

4(Ñ + L̃) + 6B̃ω

,

kc/r3 =
−3B̃δ ±

√
16(M̃ + L̃) + 24B̃ω + 9B̃2

δ

4(M̃ + L̃) + 6B̃ω

,

ks1 =

√
K

2P
,

ks2 =

√
K

2Q
,

ks3 =

√
K

2R
.
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The set of acceptable values of parameters K, ω, δ is determined by the
following system of inequalities, which are required for the existence of two real
solutions kci, kri of different signs:

(4.2)

16(N +M) + 24Bω + 9(Bδ)2 > 0,

16(N + L) + 24Bω + 9(Bδ)2 > 0,

16(L+M) + 24Bω + 9(Bδ)2 > 0,

N +M +
3

2
Bω > 0,

N + L+
3

2
Bω > 0,

L+M +
3

2
Bω > 0.

First three inequalities guarantee positiveness of the expressions under the
roots what leads to kci, kri ∈ R and kci 6= kri and last three inequalities are
derived using Viète’s formulas from the condition kci · kri < 0 (i = 1, 2, 3).
Please note that further constraints for the range of acceptable values of the
parameters K, ω, δ can be assumed – e.g. condition of convexity of the limit
surface.

5. Summary

It has been shown that failure condition formulation given by Burzyński
based on his hypothesis of material effort is not stated correctly in various as-
pects. However, his original proposition of a hypothesis is of greatest scientific
value. It is only the final condition that has to be reformulated. As a conclud-
ing remark, it is worth noting that hypothesis of Burzyński distinguishes itself
among other similar propositions with certain advantages – it is stated in terms
of quantities of clear physical meaning and it enables using large variety of limit
surfaces for the description of the limit states for different classes of materials.
Great effort made by Burzyński to express the limit condition using possibly
small number of parameters, was to make the hypothesis easily applicable in
computation; unfortunately it led him to a series of misstatements. However,
those inconsistencies do not diminish great importance of the general idea of
Burzyński – measure of material effort considered as a combination of indepen-
dent energy densities, which contribution is determined by a proper stress state
– dependent function.
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