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OPTIMAL DESIGN OF MISES TRUSS WITH RESPECT TO TIME
TO CREEP RUPTURE (*)

K. SZUWALSKI (KRAKOW)

The paper deals with problem of optimal choice of slope angle for bars of Mises truss
in creep conditions. Results of optimization with respect to britile creep rupture coincide
with elastic solution (45°), while for ductile creep rupture there is no optimum - the
longest life-time is obtained for initially horizontal bars. Introduction of limitation for
admissible strains makes it possible to find continuocus transition from brittle to ductile
rupture. The same possibility gives application of Kachonov’s mixed rupture theory.

1. INTRODUCTION

The problems of optimal design in creep conditions have a short history.
The first papers on this topic appeared in 1968 [12] and they are still scarce.
Classification of such problems was given by Zyczkowski [13], who pointed
out many new possible criteria of optimization. One of the most important
of them was connected with time to creep rupture.

There are several possible ways of formulation of such problems due to
different theories of creep rupture. Till now, almost all papers on optimal
design with respect to creep rupture time were based on KACHANOV'S theory
[4] of brittle rupture. Such an approach was applied e.g. by ZYCZKOWSKI
and Rysz [14] for cylindrical shells, Rysz [7], [8] for pipelines, GANCZARSKI
and SKrzYPEK [1], [2] for disks, ZyczKowsKI and SWISTERSK] [11], [15} for
beams, and so on.

The application of the theory of ductile rupture, proposed by Horr {3],
according to which time of rupture is reached when transversal dimensions
are reduced to zero, is more difficult. It is caused by the necessity of ap-
plication of the ﬁmte strain theory. Therefore, there are only few papers
using this theory [9], [10], dealing with problems of bars under nonuniform
tension.

{*) Presented at the 6th Polish-German Symposium “Mechanics of Inelastic Solids
and Structures”, Poznaz, Poland, September 1993,
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In the present paper we shall discuss the optimal choice of the initial
angle @ in the Mises truss, consisting of two identical bars, coupled by a
hinge, and in the same way connected with the base. The truss is loaded
by a vertical constant force P, causing uniform tension in both bars. The .
optimal solution in the elastic range is well known, and is equal to 45°. The
same value is optimal under the creep conditions for the Kachanov’s theory -
of brittle rupture. It results from the condition of minimization of the initial -
stress in bars. '

7YczKowsKi [12] stated that angle 45° for bars of Mises truss is optimal '
for various criteria of optimization, also in creep conditions, regardless of -
the constitutive law.

9. DUCTILE RUPTURE THEORY

In Fig.1, the solid lines show the current configuration of the truss for-
the given moment t, while the dashed lines present its initial configuration

fort = 0.
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Fic. 1. Mises truss before and after deformation.

For the given volume of bars V and distance b, we look for such initial
angle ¢, which leads to the longest life-time to ductile creep rupture. All
quantities connected with the initial configuration are denoted by capital
letters: L —length of bars, A — their cross-sectional area, @ - angle of slope,
R — reactive force. Corresponding parameters for the current configuration
are denoted by the same small letters.
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Material of the bars is characterized by NorTON’Ss creep law [6]:
(2.1) = ko™,

with material constants k and n, where ¢ stands for the velocity of logarith-
mic strains (dot over the symbol means its partial derivative with respect
to time)

. d N _ i
&2 e=z(ng)=1
while ¢ stands for the true stress:

P

2.3 = .
(2:3) 7 2a sin

Assuming incompressibility of the material
(2.4) 2AL = 2al = V = const ,

we can express the current cross-sectional area

vV vV

2.5 —_ . = pT¢

(2:5) “TaTat

and the current angle

(2.6) cosp = g— = —Ee"e =e “cosd,

in terms of the logarithmic strain g, and substituting them to Eq.(2.4), we
finally obtain

Pb o
(2.7) o= i .
Veos® /1 — e—22cos? @
Substitution of this formula into the Norton’s creep law (2.1), leads to the

differential equation with respect to the function £(¢), in which the variables
can be separated:

. n/2 Pb n
2. —-ne {1 _ —2e 2 P — & ( ) .
(2.8) e ( e~ % cos ) de =k Veosd dt

Integrating this equation at the initial condition
(2.9) e(0)=0,
and making use of the condition of ductile rupture in Hoff’s sense:

(2.10) £t -
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we finally come to the expression for the time of ductile creep rupture:

o 4]
' Vcos @ n/2
(2.11) #4 = ( ) f e (1 — €72 cos? di) de .
k Pb J

The value of the improper integral in this formula can be easily found
for even-numbered exponents n = 2 and n = 4. However, any attempts
of finding the optimal value of the angle & fail. There is no extremum of
function (2.11) with respect to &.

In fact, the best possible solution is horizontal position of bars (P =0)
in the initial configuration. The compressive stresses in bars, leading to the
possibility of loss of stability (snap-through problem), are here excluded.
Any angle @ different from zero is equivalent to the loss of time necessary
for reaching this position by truss with initially horizontal bars. The optimal
solution does not exist.

3. LIMITED ADMISSIBLE STRAINS

The lack of optimal solution in Hoff’s formulation was caused by the
definition of rupture, connected with infinitely large strains. The result will -
be quite different if the admissible strains are limited to certain finite value:

(3.1) £(ts) = €adm = 7 -

In the expression determining the time of ductile rupture (2.11), now we
have a proper integral with finite upper limit, equal to 9. Integration can
be done by the substitution:

(3.2) e~ = u.

At the beginning of the creep process, for ¢t = 0, we have u = 1, while at
the moment of rupture

(3.3) u(t=t)=e"T=w.
For example, taking for the exponent n in Norton’s law the value of 2,
we finally obtain

(3.4) te = wt — 1) cos? @ + 2(1 — w?) cos? @]

tUcP2 b? [(
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Comparing the first derivative of this function, with respect to &, to zero,
we can easily find the optimal value of the initial angle &:

1
(3.5) Popt = arc cosy f W 1

ensuring the longest possible life-time, for a given admissible logarithmic
strain 7. In the table, the values of optimal angles for various 1 are presented.

€adm 5150;:.1‘.

0.01 44.71°
0.02  44.42°
0.05 43.57°
0.1 42.14°
0.2 39.31°
0.5 31.23°
1.0 20.20°
2.0 7.71°
5.0 0.39°

In this way, the continuous transition has been obtained, from 45° for
very small £,qy (almost brittle rupture), to 0° for e, larger than 5 (Hofl’s
approach). For values of n different from 2, the solution can be found
numerically. The results are similar, and for larger exponents n, @, tends
to zero even faster,

4. MIXED RUPTURE THEORY

As the Hoff’s ductile rupture theory did not give the optimal solution,
now we shall investigate the possibility of such solution for the mixed rupture
theory, proposed by Kacnanov [5]. We shall apply his evolution equation:

-3

where ¢ is the ratio of the effective cross-sectional area tef to its initial
value A; B and m are material constants. In contrast to the brittle rupture
theory, o denotes here the true stress - related to the current cross-section
a (geometrical changes are taken into account).

When the parameter ¢ is reduced from its initial value 1 to zero, the
structure reaches its rupture time described by the formula

™
1
Y13 —_— —

(4.2) / o™ dl = m = const .

0
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The value of integral in this formula is expressed by the material con-
stants in Kachanov’s evolution law — B and m, and therefore, it is constant
and independent of the physical law.

For the true stress in Eq.(4.2), we can substitute (2.4), by means of
Egs. (2.5) and (2.6) expressed in terms of the current angle ¢:

2Pb
(43) a = m .

From Eq.(4.3) it follows that true stress is minimal for ¢ = 45°. To
determine its change in time we must apply the physical law, here adopted
in form of Norton’s law (2.1). From Eq.(2.6) we can find

,  bsing,
" cos?yp

(4.4)

and putting it into Eq.(2.3), we obtain

(4.5) ¢ =1g(p)e-
Finally, the Norton’s law takes form:
dy (QPb)“ 1 1
4. it AP Y (it .
(4.6) dt k 14 sin™ 2p tg e

This equation can be solved only numerically, and therefore we shall
introduce dimensionless quantities, denoted further by an overbar.

Stresses will be related to the stress in bars of the truss with the angle
p = 45°:

2Pbh
4. -2
( 7) (2] Vv 1
hence
(4.8) 7=l o

oo sin2p

Time will be compared with the time of ductile rupture {3] of the bar
extended by the initial stress oo: :

Lt . 2Pb\"
(4.9) t= o = nkojt = nk (—V—) t.
Now we can rewrite the Norton’s law (4.6) in the dimensionless form:
dp_ 1 |

4.10 L
(4.10) dt  ntgesin®™2p
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Dimensionless time of the mixed rupture (4.2) will be now described by
the equation

. #m) fim
7
(4.11) fa-mdf= f L —Y
J J s 2¢

On the right-hand side we have a constant parameter @, equal to the
ratio of the brittle and ductile rupture times, for bars of the truss with the

angle ¢ = 45°,
()
i nkol
. 9 _ —*L = -.—_0__ .

The value of this parameter depends on the kind of bar material (constants
B, k, m and n), and the force P, volume of the material V, and distance b.
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FiG. 2. Opiimal initial angles @5 and angles . at the moment of mixed rupture.
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In order to find the optimal solution, the equation (4.11) was mtegrated
numerically and the upper limit, for which the value @ is reached, was sought
for. Calculations were carried out for various initial angles ¢ and, among’,
them, the one leading to the longest life-time (the greatest upper limit) were
chosen. i

As the free parameters in calculations, besides O, the following ones were .
used: in Norton’s law — n, and in Kachanov’s law — m. The results for three-
pairs of exponents taken as an example: m = 3 and n = 4 m = 3.5 and '
n =5 m =4 and n = 6, are presented in I'ig. 2, as functions of parametes
@. The lower curves present values of optimal lllltlal angles $op. For @ =0
corresponding to brittle rupture, this angle is equal 45°. As parameter &
increases, Pope tends to zero (horizontal bars), as in case of ductile rupture.
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FIG. 3. Dimensionless times of mixed rupture for optimal trusses.
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The upper curves in this diagram show the values of ¢,, at which the mixed
rupture occurs. These curves are almost symmetrical to curves of DPopt-

Dimensionless times of mixed rupture, for the same three pairs of ex-
ponents, are presented in Fig.3. For @ smaller than 2, the results do not
differ, and the influence of values of the exponents m and n is distinct for
larger ©.

The gain, in comparison to the time of mixed rupture of the truss with
the initial angle & = 45°, is shown in Fig.4. It increases quickly w1th the
growth of @.
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F1G. 4. Gain of time to rupture in comparison with truss of initial angle 45°.
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5. FINAL REMARKS

The example of Mises truss shows that problems of optimal design with
respect to ductile creep rupture not always have a solution. Such a solution
exists for the brittle rupture theory and coincides with the one in the elastic
range. '

To avoid this complication, a limitation of admissible strains may be .
introduced. In this way all solutions: from brittle rupture (for very small
admissible strains), to ductile rupture (for sufficiently large strains) may be
obtained.

Problem may be also formulated by introduction of adimissible vertical
displacement of the hinge joining the truss bars fadm:

(5.1) fa;m cos® +sind = Ve —cos? P,

The strain corresponding to given fygm may be found

2
(5.2) £ = L [(1 + f“dm) cos? @ + = ot 0 + sin®
: 2 b2 b
and final remarks are obviously the same.
Interesting results are found by application of the mixed rupture theory.
In this way the continuous transition from brittle to ductile rupture theory
may be obtained, too.
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