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DECREASE OF THE RESIDUAL STRENGTH DURING CREEP

J. MADEJ (BIELSKO-BIALA)

In the article safety factors of the material under instantancous and rheological static
loadings have been described utilizing the idea of a damage parameter. Two safety factors
have been introduced: the instantaneous factor related to the load level {named stress
safety factor), and the time-dependent one, connected with the lifelime (named time
salety factor). Damage development process under rheological conditions canses decrease
of the rupture strength and implies an interrelation of these two safety factors. This
relation has been analyzed for uniaxial as well as biaxial stress conditions, by constrncting
curves of constant safety in the meaning of the factors mentioned.

NotraTion

7. service stress,
o* residual strength,
ai1,0 principal stress,
o. equivalent stress,
ai,0ie service effective stress,
3. dimensionless applied stress,
s* dimensionless residnal strength,
$1,82 dimensionless principal stresses,
sie dimensionless effective applied stress,
R ultimate strength,
t. operation time,
t* time to failure at constani level of applied stresses,
1. dimensionless operation time,
7% dimensionless time-to-rapture,
w continuity parameter,
W time safety factor,
W, stress safety factor.

1. INTRODUCTION

Determination of the dangerous state and the related notion of safety fac-
tor for a selected member of the given structure is, in general, an extremely
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complex problem depending on a number of service conditions. Knowledge
of the safety margin at various working conditions is of fundamental impor-
tance for predicting the lifetime of the structure. In particular, it concerns
the specific service conditions such as those existing during operation at
elevated temperature. Those conditions lead to damages in the internal
structure of the material and shorten the period of safe operation.

Generally, the safety of the structure is determined by evaluating the
quantities representing the “distance” from the state regarded as unsafe
(dangerous).

It should be noted, that the applied stress and the service conditions can
be considered on the grounds of the phenomena occurring at the level of a
malterial point, of a cross-section or of the whole structure under considera-
tion. In this paper the phenomena occurring at the material point level are
examined.

Appearance of decohesion in a portion of the considered structure has
been assumed as the dangerous state. It is characterized by the boundary
value of function w(o,t) which is a measure of degradation of internal struc-
ture of the material. This function, called the “continuity parameter”, has
been introduced by Kacuanov [4] as the ratio of the cross-sectional area of
damages of an elementary volume of the material to the total cross-sectional
area subject to loading.

For the damage determined in such a way, the particular values of w have
the following meaning:

w =10 corresponds to the undamaged material;

w =1 corresponds to the totally damaged material;

0 <w <1 characterizes the intermediate damage state. ‘

Therefore, from the point of view of physics, the parameter w is a relative
measure of the density of microdamages in the elementary cross-sectional
area of the element; from the point of view of mathematics, parameter w is
the surface density of discontinuity of the material at a given point, when
the volume of the element is tending to zero.

Description of local effects in the body by a single scalar function w(e,t)
“washes away” the local effect in the whole volume of the structure consid-
ered. It amounts to the assumption that damages are isotropic, and this is
the assumption used in Continunm Damage Mechanics.

Basing on the assumptions of the Continuum Damage Mechanics, an
attempt has been undertaken to answer the question how the change of
strength of the material is influenced by its history of loading. This strength
changes due to the development of the damages and, at any moment of the
operation period, it is characterized by the value of stress a*. Stress o*is, in
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fact, the residual strength which at the beginning of the service is equal to
the ultimate strength R reduced by the damage growth. As a consequence,
shortening of the lifetime of the material is observed.

2. SAFETY FACTORS

Let us introduce the factors characterizing the distance from the danger-
ous state, i.e. the state when w = 1 at a point of the body. These factors
will be called the safety factors. In the case of statical loadings of short
duration it is sufficient to use one of those factors as the ratio of the applied
stress to the fajlure stress (for example: ultimate strength R) which will be
called the stress safety factor,

Te
E »
where o, is the applied stress, and R is the ultimate strength.

However, for prolonged loadings it is necessary to introduce a time-de-
pendent factor as the ratio of the operation time at a fixed applied stress o, -
to the time when the dangerous state has been reached. This factor will be
~ called the time safety factor,

(2.1) W, =

te
i’
where t. is operation time, and {* is time to failure at constant ..

During the service a development of damages of the material occurs,
which can be described by the function w(e,t). These damages cause a
change in the residual strength and, therefore, it is necessary to modify the
stress safety factor to the form

(2.2) W; =

(2.3) W, = —,

0—*
where o* — true value of the residual strength at time ..

The classical stress safety factor in the form (2.1) is used to describe such
processes in which the changes of material features and load in time can be
neglected, and thus it corresponds to the factor given by (2.3) when £, =0
and o* = R.

The stress history presented in Fig. 1a is accompanied by a correspond-
ing history of decrease of the residual strength and, consequently, by the
dependence of W, — W; on time, schematically shown in Fig. 1b.

Estimation of the true value of residual strength o* is connected with
estimation of the range of damages caused by additional loadings at any
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I'rg. 1. Stress history accompanied by the corresponding residual strength decrease
history (a) and dependence of W, — W, on time (b).

operation time #,. This is possible if proper damage growth law has heen
formulated. This law would describe both the rheological damage develop-
ment and the immediate damages independent of time.

To simplify our further considerations, let us assume a load which pro-
duces a state of steady stress and the creep of constant rate.

Let us also assume that a chosen program of the loading produces stress
o1 in the material,

If this stress will be kept at the same level during the whole operation
period, then rupture characterized by w = 1 (Program la in Fig.2) occurs
after the time # (see point C in Fig.2). If the applied stress o is equal
to the ultimate strength R, then the time to rupture is zero. On the other
hand, at any moment %.,; the applied stress can be increased to such a
level 6*(t.1,0,1) at which the rupture occurs (Program 1b) (see point A in
Fig.2). The value of 0*(t.1,0¢) is lower than R; its decrease is caused by
development of damages during operation of the material. Points A and
C belong to two usually different curves. Point €' belongs to the curve of
time-dependent strength $*(o.), point 4 — to the curve of residual strength
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F1a. 2. Program of the service stress o1 in the material.

0*(te1,0e1). The curve of residual strength does not depend on i, only, but
also on the whole loading history represented by the stress o.;.

Similar case is shown in Fig. 3 but here the true service stress g,y is higher
than the stress o.;. Consequently, point ¢ has been moved to the position
t*(0e2) on the time-dependent curve, and point A lies on another curve of
the residual strength o*(t., oea).

&
R

S{tez ;6;2) r

., t'(6,) .t

(-2

F1G. 3. Program of the service stress gep in the material.

For both applied stresses .y and g.y point ' lies at the point of in-
tersection of the two curves: the time-dependent strength and the residual
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strength. It means that the rupture under creep conditions at a constant
stress can be understood as a decrease of residual strength to the level of
this strength 5], [6].

Basing on definitions (2.2) and (2.3), Fig. 4 shows the changes of the time
safety factor W; as a function of the applied time i, for different values of
service stresses o, and o.. In Fig. 5 the changes of the stress safety factor
versus the stresses applied, for three selected operation times t.y, fea and
t. = 0, are presented.
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FIa. 4. Changes of time safety factor W; versus applied time 2. for different values of
service stresses.
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TG, 5. Changes of stress safety factor versus applied stresses at three selected operation
times.

The diagrams of W,{c.) and Wi(t.) shown in Figs.4 and 5 are super-
imposed sections of surfaces W, (o, t.) and Wi(o,,t.) on planes W, — o,
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and W, — t,, respectively. Further, we deal with determination of the curve
constituting the intersection of these two safety surfaces, according to the

condition
' We = Wy,

3. SAFETY AT UNIAXIAL STRESS
3.1. Material service conditions according to Kachanov’s theory

Let us assume the law of damage evolution in the form

dw a. "
| oy ()
(3.1) dt (1 —w/
where A and m are maferial constants, and oy is the equivalent stress
proposed in [3]:

(3.2) Oeq = aay + (1 — a)oy.

In Eq.{3.2) o1 means the positive principal stress, and o; - the effective
stress used by von Mises.

Parameter a lies within the range of < 0,1>, and its value depends on
type of material and on its behavior during the damage process at multiaxial
stress state.

At uniaxial stress geq = 01 which will be denoted below by o

From Eq.(3.1) we can calculate the time after which rupture under the
applied stress o, occurs. This time, calculated from the condition t*(o =
Ge; w = 1), is '

1

(33) t*(Uc) = W .

Let us introduce the reference time 1;

1
R —
R™ A(m + 1)R™’

where R is the ultimate strength for 1, = 0.
Now, relation (3.3) can be written as

*R‘m
(o) = im .
[
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Introducing the dimensionless stress in the form

a
(34) 5 = E N
we obtain
* t*
(3.5) *(s.) = ﬁ-

Let us now introduce the dimensionless time related to the time t},

1
(3.6) T = it
13

Thus, the dimensionless time to rupture is

™ = E::
th
Using Eq.(3.5) we obtain
. 1
(3 7) T = ;r-nﬂ .

- Assummg the symbols according to (3.4) and (3.6), the safety factors
) from Eqs (2 2) and (2.3) are

' T,

38 = £
(3.5) W=,
Se

. V, = —.
(3.9 W, =

Using (3.7), the time-safety factor W; can be written as
(310) Wi = Tesg"

Now, let us increase the load to get the stress.s* which produces rup-
ture at a fixed applied time 7.. Since according to the idea suggested by
Kachanov, increase of the load does not imply damages, thus the curve of
residual strength overlaps that of the time-dependent strength. Thus, s*
can be evaluated from the condition

(3.11) Te($*) = T(s").
Introducing (3.7) to the right-hand side of (3.11), we obtain
1

g*Mm

Te =
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or

s = Te—l/m .

According to (3.9), the stress safety factor W, is

W, = Se/r_l"m

or
(3.12) W = 1.s™.
Comparison of (3.12) and (3.10) yields
W =W,.

Since both safety factors are not greater than unity, for m > 1 we have
W, < W,. Tt follows from the above that, if we apply the theory of accumu-
lation of damages proposed by Kachanov, i.e. if only rheological damages
are taken into account, then the material safety is always controlled by the
applied strength but not by the operation time. On the other hand, the op-
eration time determines the safety under creep conditions. Thercfore, it is
necessary to modify Eq.(3.1) in order to take into account the real decrease
of the residual strength. '

3.2. Modified theory of damages

Let us assume the Law of Cumulation of Damages in the form proposed
by CHRZANOWSKI and MADES in [2]:

dw o Geql )mo flgeql ( Teg2 )m
(3.13) dt _Ao(l—w dt +4 1 —w ’

where Ag, A, mo, m are material constants, Geq and ge.qz are equivalent
stresses presented by Eq.{3.2). The stresses oeqr and Oeqe differ from each
other by the factor @ which can be different in both terms of Eq. (3.13).
The Law of Cumulation of Damages assumed above accounts for the
interaction of instantaneous processes linked with the increase of the load,
- as well as with the rheclogical damages developing under steady load during
the operation. g
At uniaxial stress when ooq1 = Teq2 = 0, Eq. (3.13) assumes the form:

dw o Y™ do o \™
. —— = Ag | = — .
(3.14) = 4o ( ) A ( )

1l —w 1l —w
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Introducing dimensionless variables according to (3.4) and (3.6) and the

notation )

Ao = Freri

equation (3.14) can be written as

dw s \"™ ds 1 s \7
(319 w7 () Fram i)

In order to determine the curve of time-dependent strength 7*(s.) and
the curve of residual strength s*(7, s.). Equation (3.15) will be integrated
for the following stages of the loading program shown in Figs.2 and 3:

DNds>0and0<s<s, forr=0,

2)s=s for0<7<Ts,

3 ds>0and 5, <s<s* forr=r.

For the first stage (instantaneous load), damages are described by the
ﬁrst term of Eq (3.15) only. Aftel integrating the equation

RN : dw 8 o
S (3 16). e ds (1 w)

: thha the mlt;al condltlon w(s = 0), we obtain

o

Ql'gw(se,T:O)z 1“( _ m9+1)Wj+3ﬂ_

In the llmltmg case when s, = 1 (i.e. ¢ = R) we obtain w; = 1.
At ‘the second stage, because of ds = 0, Eq. (3.15) is reduced to the form:

& =wr1(a)
dr m+1\l-w/

After integration with the initial condition w(r = 0) = w;, we obtain

. gl T
df 1
Wy = w(se,T = ‘re) =1- [(]_ - 32110-1-1) moFl TBSE‘] )

In the particular case when wy = 1, we have

m41

(3.17) | = (1 - .s’e“”“) matl

m
Se

This is the equation of the curve of time-dependent strength r¥(s). Fi-
nally at the third stage, after integrating Eq. (3.16) and taking into account
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the damages cumulated during the first and second stage (i.e. with the ini-
tial condition for w = wy), we obtain a formula for failure stresses s* in the
form

mg+1

i
mi ulad s it N mg+1
*® _ ol mo-!-ll _ m mil mo+1 ’
3.18 8§ = 1—s To& + s .
e e [:4

This equation describes the curve of residual strength s*(7., s.) for the
given initial load s.. Now, we will use expressions (3.17) and (3.18) to
calculate the values of safety factors (3.8) and (3.9) as functions of strength
and the time applied.

__m+41
(3.19) Wi = spr (1— spott) moF

m-+1 :1;.’_]1 TmEr
(320) T/Va = 8 [(1 —_ 3210+1) mg+l Tesznjl + 8’21'0+1 .

Knowledge of the safety factors enables us to estimate the material safety
at any point of the body, for each value of loading and at any moment of the
operation. It allows us also to determine both the possible increase of the
load up to the residual strength and the possible life-time at a fixed stress.
Therefore, the safety factors make it possible to estimate the life-time of the
structure and the possibility of increasing its load.

For the particular case when m = myp, expressions (3.17) and (3.18) have
a simpler form,

1
™ = @ (1 —‘32’1-‘-1) ;

8 = (1- 7'3.5";“”)'v'*+r1 .

Basing on the above expressions, diagrams of functions 7*(s.) and s*(7.)
can be drawn. These diagrams are shown in Fig. 6.

In Fig.7 diagrams of the function s*(s.) for different operation times 7.
- are shown.
In the case of mg = m, Eqgs.(3.19) and (3.20) are reduced to the form

(3.21) W, = st (1 s74) 7
(3.22) W, = 8, (1 — T,8™) 757 .

Let us consider the case when the state of safety in time and stress version
are equal, i.e. W, = W,.
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FiG. 6. Diagrams of functions 7"(se) and s*(re).

i3 1 |

!
o 02 o4 06 08 0 s,

F1a. 7. Diagrams of the function s*(s.) for different times used.
Comparing expressions (3.21) and (3.22) we obtain

1
m—1 M\~ 5T — m41
Sl (1 — 18T ) WA = 1 - s,

The curves s.(7.) satisfying the condition of equality of safety factors
Wi = W, have been shown in Fig.8 for different values of material constant
m. The curves of time-dependent strength 7*(s.) are drawn in light lines.
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F1G. 8. The curves s.(r) satislying the condition of equality of safety factors W, = W,
for different valnes of material constant m.
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I'1a. 9. Curves so{7.) for various ratios of stress and time safety factors.
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Knowing the curves of constant safety we can estimate the relation be-
tween the stress-dependent and time-dependent safety factors for any ap-
plied stress, at any moment of operation. The points lying above the curve
of constant safety, but below the curve of time-dependent strength (also sat-
isfying condition W; = W, }, represent such cases for which the stress safety
factor is greater than the time safety factor. In practice it means that, at a
fixed moment of operation, shorter service periods correspond to the stress
values lying above the curve of constant safety. Also, at fixed values of ap-
plied stress it is easier to increase the load for the applied periods placed
to the left of the curve of constant safety than for the periods lying to the
right of that curve.

In Fig. 9 some curves s.(7.} have been shown for various ratios of stress
and time safety factors.

As it follows from the above considerations, once the curve of constant
safety is known, we can establish which of the two parameters: applied stress
or time of its application, affects the material safety more, i.e. which of them
determines the further operation. /'

4. SAFETY AT CREEP UNDER MULTIAXIAL STRESS

For multiaxial stress the Law of Cumulation of Damages (3.13) has been
assumed in the form

dw o, \™0 doy ( a1 )m
4. — = — A .
(41) dt AO(l—w) @ T\TCo
It is equivalent to the assumption « = 0 in Eq.(3.2) for Oeqr and o =1
for geqe.

In the case of polycrystalline materials subject to uniaxial stress, change
of load causes changes of both the time-to-rupture and its nature. For small
loads with long time-to-rupture, the microcracks within the material run
along the grain boundaries. .

For high loads with shorter time-to-rupture, the damages within the ma-
terial occur owing to the slip on the planes crossing the graius or blocks
of crystals. This affects the behavior of the material according to various
criteria at the three-dimensional state of stresses. Development process of
the intercrystalline damages is mainly affected by the value of the highest
principal stress. Therefore, the Clebsch—Rankine theory is the most snitable
safety theory in this case. Process of intercrystalline damages is mainly de-
termined by the kind of slip which is similar to that observed during plastic
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flow. Therefore, the von Mises theory is generally used as the stress con-
dition and safety theory. Behavior of the material according to one of the
theories mentioned corresponds to the limit values of parameter o. Actual
behavior of the material is the result of simultaneous appearance of both
kinds of damage. For many materials important for their technical applica-
tions, change of types of damage depending on the value of the load applied
can be observed. This change causes transformation of isochronous damage
curves deseribed in [1] using the Law of Damage Kinetics in the form (4.1).

Similarly to the case of uniaxial stress, the following dimensionless vari-
ables have been introduced: '

5 =% - dimensionless maximum principal stress (s > s2),

s; = % — dimensionless intensity of stresses.

For fixed values of s;, expression s3(sy) describes an ellipse.

Figure 10 shows the stresses s3 and s; for fixed values of s; equal to
0.2 ... 1.0

‘ Sip = 10

F1G. 10. Stresses s1, 42 for fixed s;.

Furthermore, we will assume 7 and 7* as dimensionless equivalents of
times ¢ and ¢*, and s} — as a dimensionless equivalent of the stress o}.
With these notations Eq.(4.1) can be written as

dw 5 \™0 dsy 1 s1 \™
(4.2) d_'r_(1~_¢;) dr+m+l<l—w) ’

and the safety factors given by Eq.(2.1)-(2.2) will be

Te

(4.3) W = g at fixed s;,
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(4.4) W, = l} at fixed .
i

In order to find functions 7*(sie, $2.) and s(s1e, 82.,7,) and, conse-
quently, functions W, (s1e, 82¢, Te) and Wi(s1e, 926, 7e ), Eq. (4.2) is integrated
for the consecutive stages of loading program:

1}ds; > 0and 0 < s; < 83, for 7 =0,

2) 8; =8, for0< <7,

3) ds; > 0 and s8;, < 5; < 8¢ for 7 =7,.

During the first stage, the damages are described by the first term of
Eq.(4.2) only. So, by integrating the equation:

dw__( 8 )m“
ds; \l—-w

under the initial condition w(s; = 0), we have

1
Wy = w(SstT = 0) =1 (1 — Sl:g-o+l) g1 i

For the limiting case when s; = 1 we obtain wy = 1.
During the second stage, since ds; = 0, we integrate Eq. (4.2) reduced to

the form
dr m+1\1l-w ’

under the initial condition w(7 = 0) = wy,; and obtain

. m +1 _*_“,:1 -I-]1 m.1+3
Wy = w(‘sle)T = Te) = 1 — [(1 — SI.BU ) 0 - TeSﬂ

In the case when wy = 1, we have

* 1 mp-+1 mm_-l-_-l-ll
e L (1 ) B

“le
Thus, the time-to-rupture 7* depends on both s; and the higher one of the
principal stresses s;. As a result, we obtain a surface of time-dependent
strength instead of the curve. This surface is shown in Fig.11 for fixed

stresses s; and sy forming the same ellipse s;. = const.

. ds .
If sy increases from s; to a point A at which ﬁ = oo (see Fig.10), then
1
T* decreases from oo at s3 = —8;e, reaching its minimum at point A. Further

increase of sy causes time-fo-rupture increase up to the value of 7*(s; = s5).
From Fig. 11 it is seen that time-to-rupture is shorter for higher s;,.




DECREASE OF THE RESIDUAL STRENGTH DURING CREEP 219

During the third stage, after integrating of Eq.(4.2) and taking into
account the damages initiated during the stages 1 and 2 (i.e. for initial
condition w = wy), we obtain the expression for the failure stress s} in the
form: '

1
mo+l —
» ﬂl;l_% M1 mot
* Mo mo 7 mo -1
8 = (1 ~ e ) ~ TeSte + Sie

This equation describes the change of residual strength s¥ vs. time for a
given fixed effective applied stress s;. at extreme value of principal stress sqe.

F ]

7

m:mO:Z

60 -
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Fig. 11, Surface of time-dependent strength for fixed stresses s1 and s, forming the
same ellipse s;. = const,

Figure 12a shows curves of residual strength for various combinations
of stresses s; and s, which correspond to the points in the Fig. 10 lying
on the ellipse s;; = 0.4 within the first quadrant of the coordinate system.
Similarly, Fig. 12b shows the curves of residual strength for points lying on
the same ellipse within the fourth quadrant of that system. Figs.12c and d
correspond to the effective a,ppjied stress 8;. = 0.6. Similar curves of residual
strength can be created for other values of s;.

Figure 13 presents changes of stress and time safety factors determined
by means of Eqs. (4.3) and (4.4), for a fixed level of the loads s; versus the
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F1G. 12. Curves of residual strength for various combinations of stresses 1 and s
corresponding to s;. = 0.4 and s;. = 0.6,
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Fia. 13. Changes of stress and time safety factors for fixed level of the loads s; versus
operation time Te.
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operation time 7e.

Intersection points of the curves W,{7.) and Wy(r.) for different ratios
s1/82 and at fixed s;. determine such combinations of the stresses s; and
s, when W, = W,. For various combinations of s; and sy these points
lie on the same line. When s;. increases, this line moves towards the line
Wo’ = I’Vt =1.

Beginning with W, = W, # 1, the time safety factor is higher than the
stress-dependent one, i.e. the safety in the time version is lower than that
in stress version.

Iigure 14 shows the values of applied stresses s;. for which the factors of
time- and stress-dependent strength are equal. The diagrams W; = W, (s;)
have been drawn for various but fixed values m = my.

W=

10

m=2 m=4
08

T

m=6

04

0z

i 1
0 02 04 06 08 10 sn

F1a. 14. Diagrams W; = W, (s;.) for various values of m = my.

As it follows from Fig. 14, the influence of the material constants on the
applied stresses for which Wy = W, is insignificant at very low and at very
high applied stresses. For stresses s;. from within the range 0.2 ... 0.8,
growth of the material constant causes, that the same safety states are
reached at higher applied stress s;..

Figure 15 shows the same correlations at a fixed matena,l constant m and
variable myg.

From the diagrams in Fig, 15 it is seen that growth of the material con-
stant my reduces the applied stress s; at which the same safety state in
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Fia. 15, Diagrams W, = W, (s;.) for fixed material constant m and variable mo.

time and stress version is reached. Moreover, changes of material constant
mg are significant only for a narrow range of the stresses applied.

Praciically, if the safety factors are known, we are able to predict the
life-time of the material according to its way of loading. Let us assume that
stresses at a point of the body are, for example, s; = 0.154, s, = 0.3,
what corresponds to point B of the ellipse s;; = 0.4 in Fig.10. For the
time 7, = 32.5, the stress safety factor is W, = 0.65. It means that 65%
of the stress (which is residual strength for the time considered), have been
reached. This stress is s¥ = 0.62. So, if at the considered time the stresses
are changed in such a way that their combination corresponds to the point
of ellipse s = 0.62, then this time is the time to rupture. At 7, = 32.5
the time safety factor is W; = 0.82. I{ means that, at a fixed initial level of
stress, the time elapsed afterwards constitutes 18% of the whole time used
(see Fig. 13b).

5. SUMMARY

From the considerations presented above it follows that introduction of
two different safety factors enables us to estimate the degree of material
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exertion at a point during creep. This allows us to predict the period of safe
operation according to the value of the stress applied and its duration.

The Law of Cumulation of Damages in the form of (3.13) can be success-
fully used to describe the damaged material safety, both in the time meaning
and the strength meaning. It allows us to estimate the decrease of residual
strength during operation of the material depending on the load history.

The presented analysis of material safety has been carried out at the level
of a material point. In the next step, such analysis should be generalized
to any engineering structure for which the level of loading and its time of
action are the main independent variables.
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