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APPLICATION OF PARTIAL MODELS FOR VIBRATION
ANALYSIS OF COMBINED DISCRETE-CONTINUOUS SYSTEMS

T.L. STANCZYK (KIELCE)

A method of analysis of complex dynamic systems by means of partial models is
characterized in brief. Some advantages of that method as a means for analysis of combined
discrete-continuous systems are pointed out. An iteration procedure for analysing such
a system is presented, as well as an example of application of the method discussed for
analysing a certain discrete-continnous system by its separation into partial models, for
which vibration equations are formulated. The resulis of computation are presented. They
constitute a good illustration of the convergence properties of the iteration procedure
used.

1. INTRODUCTION

A problem which is often encountered in the domain of machine dynamics
is that of reducing the vibration of machines or other devices incorporating
structural elements of large surfaces such as housings, screens, covers etc.
The mechanism of generation of vibrations is, in such cases, as follows: an
(internal or external) excitation source acting on the body or any subassem-
bly of the machine generates also vibrations of other structural elements or
assemblies. These vibrations are transferred to the housing, which may be-
come a source of radiation of sonic energy, sometimes of high intensity, both
in the audible or subsonic ranges [2]. Those vibrations can be abated by
simple engineering methods such as a change in the form or rigidity of the
housing or in the excitation parameters, application of vibration isolating
pads etc. Tn more complicated cases it is necesary to analyse the dynamic
properties of the machine. This requires the construction of a model of the
machine as a vibrating system, identification of the parameters of that model
and the excitations acting on it, and the numerical analysis of its properties.
The models which are devised in such cases are of the discrete-continuous
type, in which elements of the body and subassemblies of the machine are
treated as rigid bodies interconnected by vicso-elastic elements (elastic el-
ements with damping) and the housing is modelled by a plate, a system
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of plates or a complex shell siructure, resting on elastic supports or rigidly
connected with the solids.

This double character of the elements of machine models is the principal
reason for using for vibration analysis the method of partial models.

2. THE METHOD FOR ANALYSING COMPLEX DYNAMIC SYSTEMS BY
MEANS OF PARTIAL MODELS

The method to be described is based on the theory, developed by MAN-
DELSHTAM {[5], of weak couplings between partial systems. In a general
manner, the method to be submitted can be characterized as follows:

o The complete model is divided into partial (simpler) models on the
basis of an analysis of couplings between partial models (all the couplings
should be either “weak” or “unidirectionally weak”;

o Analysis of the complete model by means of partial models should
be conducted by an iteration method, such that the couplings which are
considered to be weak are treated as perturbations in consecutive iterations.

This method has been described in paper [6] presenting two principal
ways of separating the complete model into partial models and the rele-
vant algorithms of the iteration method. It may have some limitations,
for instance, if the natural frequencies of partial models are equal, and the
damping in the system is very weak. The limitations of the method are
manifested by the iteration procedures being not convergent.

The problem of convergence of iteration procedures has been analysed
in [7] (taking into consideration, among other problems, that of influence of
damping on the convergence of procedures). In [8] it has been shown that
the convergence conditions are weaker than those of Mandelshtam, therefore
they are easier to be satisfied.

The use of the method discussed enables us to avoid the inconveniences
which may occur with increasing complexity of models, such as some diffi-
culties of numerical nature in the analysis, interpretation of the results or
some troubles with identification of the increasing number of parameters of
the model.

As regards the applications to the analysis of combined discrete-continu-
ous systems, other advantages of the method proposed become evident. The
first of them is the possibility of using models of various types and different
methods of analysis used for different partial models. Discrete partial mod-
els are described by sets of ordinary differential equations and can be solved
in a manner typical for such systems. Continuous partial models, used for
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housing or screen structures are described by one of the existing difference
methods, the method of finite elements or other methods used for the group
of models considered.

Such an approach enables us also to apply various integration steps in
numerical procedures for solving particular partial models, what reduces the
time consumption.

The second advantage of the method is a result of application of a funda-
mental principle of construction of machines and other devices, that is the
principle of symmetry. Moreover, it is known that symmetric structures have
always better vibro-acoustic properties, than asymmetric structures [1, 4].
The existing tendency to preserve some elements of symmetry of a structure
results in the fact that, in many cases of separation of the complete model
into partial models, the proposed method of analysis enables us to select
partial models (or groups of models) of identical or very similar structures
(after elimination of certain components). In such a case we can use in the
computation programs, by judicious choice of the principle of indexing the
variables and the parameters of the models, a single procedure (or modulus)
for describing them.

The third advantage is the possibility of solving complicated problems,
if poor computation facilities are available (a computer of the IBM PC
class, for instance). In many cases the necessity of taking into consideration
the complicated form of some machine elements (bodies, housing or certain
assemblies) leads to very complicated dynamic models, with large numbers
of degrees of freedom, e.g. if we want to treat several structural elements as
continuous systems, and to analyse them by the method of finite elements.
Decomposition of the complete model into partial models makes it possible
to use several programs (separate programs for particularly complicated
partial systems), which are started conseculively and, therefore, it creates a
possibility to solve the problem by means of a computer of lower computing
power. : \

A diagrammatic illustration of the analysis of a certain discrefe-continu-
ous system of partial models is shown in Fig. 1.

The complete model has been decomposed into five partial models. The
models I to TV are of the discrete type and the model V is continuous. The
models II, ITT and IV are of identical structure, their analysis thus requiring
a single description procedure. Owing to this fact, there are only three
procedures which are required for the computation program (despite the
fact that five partial models have been separated) to describe the models [,
V, and the common procedure for models II, III and IV.

Table 1 illustrates the iteration procedure of analysis of the complete



284

4
excitation

.

T.L. STANCZYK
*15
“1 partial modei T 55,
TR ; »
x |1 R B
T 3 > SO
5 i X35 .
|| partiat model 11 _TIT
i ] X,
_._1 partial model HI 45
""""" 1 partiof model IV | S |

partial mode!

{housing, screen)

4

discrete models

contmnuous model

FIG. 1. Diagrammatic representaiion of the dynamic analysis of a system by means
of partial models.

model (letter s in Fig. 1 and in the table marks the signals having a character
of weak couplings). The computation should be continued until the required
agreement is obtained between two consecutive iterations of a definite signal.
In most cases the agreement is already satisfactory after a few iterations.

Table 1.
Inlet Moadel Outlet
Iteration G
stepl|Y Partial model I {12)» g%),z(l?,
step 2 ’3(102) Partial model 11 a:(z? (0)
mg‘;) Partial model TIT | 252, sgg)
AV Partial model IV | z{?5, s{3
step 3 §°5>, 2D, 282 (D Partial model V| X(), 5890 {2, 40 A8
Tteration ¢
step 1| Y, s, o400, s, 5" | Partial model 1 249,289, 247, 2V
step 2 (1‘2), (=) Partial model 1T | 242, 657
PO "-’) Partial model IIT | 2$?, s{?
49, g:;l) Pariial model IV | =42, s{}
step 3 a;(15 ) zgs), xg!,), {') Partial model V. | X0} o 1), s-g;,), s, 8td)

A condition of correctness of the analysis is that of correctness of the way
in which the complete model has been decomposed into partial models {6, 7],
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and the correciness of definition of the weak couplings between particular
partial models.

3. EXAMPLE OF APPLICATION

As an example of application of the method of partial models to the
analysis of vibrations of discrete-continuous systems, we shall discuss the
following analysis of the model represented in Fig. 2. This model corresponds
to the scheme shown in Fig. 1, except that the partial model I has the same
structure as the models IT to IV, and no direct couplings exist between the
models I, II, T and IV, '

F1a. 2. The dynamic model analysed in the paper,

The vibrations of the complete model are described by the following set
of equations:

(3.1) ma1 211 + 211 €1 — (221 — F11)ean + 211k — (221 ~ 201k = B,
maz Z12 + Z12 €12 + z12k12 — (221 — 212)k92 = 0,
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(3.1)

fcont] myy Fo1 +(321 — F11)ez + (221 — 211)kar + (221 — 212) ko2t 221 €1
con,

+za1ks1— 231 €31~ 2mks = 0,

Mis 13 + 313 €13 — (23 — #13)c23 + z13k13 — (223 — ma)kes = P,
M4 :?:'14 + 514 14 + 2«’14]‘"-14 - (223 - 214)k2,1 =1,
Mas Z23 +(223 — #13)c2s + (223 — z13) k23

+(293 — z14)k24+ 223 €33 + zonkaa— Z33 €33 — Zaskas = 0,

mas 315 + 215 €15 — (225 — Z15)€as + 215k1s — (225 — 215)k05 = P,
mye Z16 + #16 €16 + #16F16 — (225 — 216 )26 = 0,
s o5 +{(¥25 — Z15)c2s + (225 — 215)k2s -+ (225 — 216)k26

+ Z95 ¢35 + Zaskas— Z3s cas — 2askas = 0,

My7 317 + 317 €17 — (227 — 2ar)ear + zurkar — (2o7 — z17)kar = Pr,
mug F1s + %18 18 + ziskis — (227 — 218)kas = 0,
Moy Za7 +(227 — H17)c2r + (227 — 217 )bar + (727 — #18)kas
-+ Z97 car + zarkar— Zzay ear ~ zarkar = 0,
4 4 4, 2,
(G g )+
= ca1(z3 — 221)0(2)8(y) + caa(2s — 223)0(x — 1)é(y)
4eas(23 — 225)0(x)0(y — ) + car(za — z97)8(x — 1)6(y — b)
+hai (23 — 221)0(2)8(y) + kas(zz — 223)6(x ~ 1)é{y)
+has(z3 — 225)8(2)6(y — b) + kar(zs — za7)b(w — 1)é(y — b),

where D is the cylindrical bending rigidity of the plate

. Eh?
3.2 D= ——"
(3:2) 12(1 - v)?’
and F is Young’s modulus, h — plate thickness and v —~ Poisson’s ratio.
The symbols 231, 2a3, 235 and z37 denote the vertical displacements of the
respective corners of the plate.
If the model considered satisfies the condition

(3.3) ks; < kai + kaiv1, i=1;3;5;7;

then the underlined terms of the Eqs. (3.1) have the character of weak coup-
lings. Thus, the complete model can be decomposed into five partial models
(as shown in Fig. 2).
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Because the partial models 1 to IV have the same structure, a single
common procedure has been used for their analysis, involving the following
set of three differential equations:

™M1 14 zgl‘)l_l_, + é&f{“ €114 — (‘é"g?1+r-_ i"gi)1+r)c2.1+r
+2 ok = (e — A ket = Prr,
mM1,24r zg’,)gw + éﬁ’?%,. €124 + zj(_f)g_;..rk],?-]-r
(3.4) - (’9)1+ - Z§f)2+r)k2,2+7' =0,
M2 147 zg’,)m +(2§f)1+T - égi)1+r)c2.l+r+ é"gi,)l+7' C3,14r
+(Z§f%+r - me)kz,m + (z%'fh?- - Z'Eg-l-r)kz.?‘l"f' + zgﬂwks,ur
=5TH st + 25710 ks 14

where 7 = 0,1,2,... is the number of iteration, r = 0,2,4,6 for the partial
models I, II, III, 1V, respectively, symbols zgifl), z:(,‘;”l), zg;l) and zgfl)
denote the vertical displacements of the plate corners; they appear in ex-
pressions representing the weak couplings acting on the partial models I to
IV. They are assumed to be zero in the zero iteration, and they are taken
into account as non-zero quantities beginning from the first iteration.

The method of rigid finite elements has been used for the analysis of
vibrations of the partial model V (the plate). According to this method,
the plate was initially divided into n, X n, rigid finite elements (RF'E). By
proceeding in a manner as that described in [3], (ny + 1) X (ny + 1) such
elements were obtained for a plate with free or simply supported edges.
Fach RFE has three degrees of freedom. Its motion is described by the
coordinates zaij, ¥zi; and @,;. Each RFE {(except those located at the
edges) is connected with other RFE elements by means of § elastic elements
with damping (EED). All the EED are characterized by their ability to move
in the direction of three coordinate axes.

The way of indexing the RI'E and the way of numbering the EED
co-operating with the RFE having indices ¢, j are shown in Fig. 3.

The values of the coefficients of stiffness for the EED numbered 1, 2, 3
and 4 are determined by the relations

Ghly Gh3l, Di,
. zh = » vfzh = y kigh = =7+
(3:5) kah =5, Teh = T3, Tuh = 31
and for 5, 6, 7 and 8 — by the relations

94l fow =91 Tvw = a1,
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FIG. 3. Principle of indexing the RFE (rigid finite elements) and EED (elastic
elements with damping).
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The damping coefficients are defined as for an isotropic material, the
properties of which are those of the Kelvin - Voigt model [3], in agreement
with the relation

Q—I

where k_ - arbitrary stiffness coefficient determined by the relations (3.5)
and (3.6), ¢ — damping coeflicient corresponding to any given k., Q1 -
coefficient of losses, w — angular frequency of vibration.

In all the relations given below, the way of indexing the variables and

coefficients will be simplified as follows:
e the indices 7, j of the variables and coefficients will be disregarded.

Thus, for instance, z; ; — =.
e The remaining modifications of indices are

Li+l—=3+1,
i, j—-1—37-1,
i1, 5 — i1,
i—1,7—i—1.
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Let us substitute

(3.8)

“and

(3.9)

By = con(z + @ Y24 @ X1= 2oy = @y Y21 Py X2j1)
thop(z 4+ @aY2+ X1 - 2jo1 — 901 Y 2501 — @yi-1X251),

By = ean(2+ @, Y1+ ¢y X1= 301 — @1 Y1 py;0 X245-)
than(z + @Y1+ @, X 1= 201 = @oj1Y 11 — g1 X251),

B3 = eap(Zi41 + Pojr1 Y21t @y Xljp1— 2 — 0, Y2 ¢, X2)
(2501 + i1 Y 21 + Oy X jgn — 2 — 92Y 2 — ¢, X2},

By = (i1 + Pojaa ¥ Livih Pyjn XLjpn— 2 — ¢, Yi- ¢, X2)
+ k(741 + @oin Vg + ogiaa X i — 2 — a¥ 1~ 9, X2),

Bs = cow(ig1 + Poigr ¥ Livib @i Xliga— 2 — 9, ¥2— ¢, X1)
thzw(zip1 + @oiriY Lipn + e X i — 2 — @, Y2 — ¢, X 1),

Bs = cauwlZitt + @pig1 Yl + @yip X 20— Fe @ Y2— @, X2)
thw(Zigr + Puit1 Y Lipt + 0yin1 X 2141 — 2 — 0:Y2 — 0, X 2),

Br=ca(3+ @Y1+ @, X1= 2ing — Qri 1 Y21~ @1 X1ica)
ka2 + @Y1+ 0 X1 — zii1 — 00i1 Y 251 — g1 X 1),

Bg = couwl(3 + @ Y1+ 0y X2 2t — Qi1 Y 21— @iy X2i1)
Fho(z + @Y 14 X2 — zi1 — 02ic1 Y 21 — @1 X 2i-1);

Bjs1 = Bpar = ¢zh(Ps — Poje1) T kson(9e — @oi1),
Byt = Brya = cpyn(@y — @yj1) + kpyn(y — @yj1);
Bfs3 = Bag = cron{Pujyr — Px) + kpaen(@ajsr — ¢a),
Bpys = Brys = cpyn(@yisr — @) T Epynl@yivt — @),
Bjos = Bfes = Craul Priz1 — Pz) T EjowlPuits — @2),
Bpys = Byye = nyw(‘)byi-[-l - ‘Py) + kpyu(Pyits ~ @y,
Bjor = Bsg = ¢rzul Py — Pric1) + kfawlPs — @ri1),
Bpyr = By = nyw(‘nby - ‘fbyiml) + kfyw(‘f"y - ‘Pyi—l)-

The geometrical quantities X1, X2, Y1 and Y2 involved in (3.8) and
(3.9), for internal RFE, are defined as follows:

(3.10)

(3.11)

X1, = _'IE 3 Y2 = l_za
2 2
12 {2

Y1, = ___E’ Y2 = £,
2 2
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For elements located at the edges of the plate parallel to the z-axis (that
is for i = 1 and ¢ = n,), the quantities X1 and X2 are defined by the
relations (3.10), and Y1 and Y2 - by the relations (3.12),

2 [z
(3‘12) Yledge r = —'42 3 Yzﬂdgﬁ x = 'Zii .

For elements located at the edges of the plate parallel to the y-axis (that
is for j = 1 and j = n,), the quantities Y1 and ¥ 2 are defined by the
relations (3.11), and X1 and X2 — by the relations

lm [-1.-
(3.13) Xledge y = —Z' ’ Xzedgf: ¥ i" .

By performing the substitutions (3.8) and (3.9) and using the system of
notations assumed, the set of equations describing the vibrations of RI'E

with the indices 7, j can be expressed in the form

m3+By+By— By — By — B; — Bs+ By + By = 0,
Jo $p +Y 1By — By + Br + Bs) + Y2(B1 — B3 — Bs — Bo) + By
(3.14) + Byws — Bea — Byza — Bias — Boe + Byor + Bres = 0,
Jy @, +X1(By + By — Bs + B7) + X2(—Bs — By — Bs + Bg) + By
 +Bya ~ Bpys — Byyt — Brys — By + Byyr + By = 0.

If we denote
plbh

NpNy

(3.15) Mppp =

the mass m and the moments of inertia J; and J, of the RFE element with
indices ¢, j located in ihe interior of the plate are defined as

(3.16) m = mRFE, Ju: _ RFE (12 + ]?,2), Jy _ RF‘E (12 _|_ h2)

For elements located at the edgcs of the plate parallel to the 2-axis (ex-
cept the elements located at the corners), we have

12
(3.17) m= mﬁ%’ g, = ﬂ;% (Zy + ]32) , J, = RI‘E Drre (g2 4 h?)

and, in addition
By =10,

(3.18)
Bfa:k = nyk =0,
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for k=2,4,7,8, if i=1 and

for £k =1,3,5,6, if i=n,.

For elements located at the edges of the plate parallel to the y-axis (except
the elements located at the corners), we have

m m ™m 12
1 — "RFE , Jp = REE (12 4 12 — 'RFE | 'z 2
(3.19) m 5 9 (I, +h%), Jy 7 (44-};),
the relations (3.18) being additionally satisfied
for k=1,2,5,7, ifj=1,
for k = 3,4,6,8, if j = ny.
For elements located at the corners we have

T m 2 m 12
.20 = —BFB g o ZRFB [V 4 p2 . Mere [z p2
G 48 (4+h)’ 7= (4+h)’

and the expressions By, Bygi, By take the following values:
In the case of i= 1,7 = 1:
values which are in agreement with relation (3.18), for £ = 1,4,5,7,8;
values which are in agreement with relation (3.18); for k = 1,2,4,5,7,8.
The quantity B; becomes

(3.21) By = ¢st (.?: -+ (;Dx Y14+ (rby X1- 221) + k31(3~§~ Y 1+ (pyXl - 321).

In the case of i = 1, j = ny:

relation (3.18); is satisfied for £ = 2,3,6,7, 8;
relation (3.18); is satisfied for & = 2,3,4,6,7,8;
By takes the value

(3.22) Ba=cas (¥ + ¢y Y1t @, X2 52s) + kus(z+ a1+ 9y X2 = 230).

In the case of i =mny, j =1

relation (3.18) is satisfied for k = 2,3,5,86,7;
relation (3.18); is satisfied for k¥ = 1,2,3,5,6,7;
B assumes the value

(3.23) By =css (5 + ¢, Y2 o, X1- o ) + kss(+ Y 2+ 9, X1 = 225).

In the case of i =ny, j=ng:

relation (3.18); is satisfied for k = 1,4, 5,6,
relation (3.18); is satisfied for k =1, 3,4, 5,
By assumes the value

8;
6,8;

(3.:24) By = ez (5 + @u Y2k @, X2 fa7) +hir(2+ 0o 2+ 0, X2 — 2217).
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This way of constructing a mathematical model of vibration of the plate
is very convenient for formulating a computation algorithm. In its ex-
panded form, the vibrations of the plate should be described by a set of
3 X (ng + 1) x (ny + 1) differential equations. The above rclations have been
used to formulate a procedure of vibration analysis for the partial mode] V,
that is for the plate.

4. THE RESULTS OF THE ANALYSIS

The principal aim of this presentation of the computation results is to
show the convergence of the iteration procedure used. The problem of con-
vergence of iteration procedures for linear systems was studied by analytical
means in [7] and [8]. In the present paper it will be illustrated by quoting
the numerical results obtained.

Figure 4 shows, as a function of time, the displacement z9; of the mass
a1, and Fig. 5 — the displacement of the corner of the plate connected with
that mass by means of an elastic pad with damping, the indices of which
are 3, 1 (see I'ig. 2).

Z.

2
fomI

1
0 ar az a3 04 05 tfs)

I1G. 4. Displacements of a mass mz; obtained in consecutive iterations.

In both diagrams it is seen that the iterations 4 and 5 coincide almost
perfectly, therefore the computation process may be stopped (iterations 2
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-6 L 1 s 1 X I 1 i i

I
0 ar Q2 a3 o4 05 t(s}

FiG. 5. Displacements of the corner of the plate supported on the mass mq;.

and 3 have not been shown for the sake of clarity). This conclusion is
confirmed by the analysis of other functions of time (not discussed in the
present paper), obtained for variables appearing in the partial model 1 and
models IT to IV.

Vibration analysis of the partial model V (the plate) shows similar the
differences between the iterations 0, 1 and 4, 5 for elements located at the
corners and in the interior of the plate region. Convergence was “most
difficult” to be obtained for the edges of the plate, although I'ig. 6 shows that
the analysis may be limited, also in this case, to about 5 iterations. This
figure represents the vibration process of the middle point of the shorter
edge of the plate (between the supports indexed 3,1 and 3.,5).

Figures 7 and 8 illustrate the convergence of the procedure in another
way, showing the form of the plate obtained for consecutive iterations at
two arbitrarily selected instants of time ¢ = 0.35[s] and ¢ = 0.45[s]. To
enhance the differences between the iterations, the dimensions of the plate
(axes z and y) are expressed in meters, and the vertical displacements — in
milimeters. ' :

Despite the expansion of the vertical axis, the forms of the plate obtained
in the iterations 4 and 5 are almost identical (and they coincide over a
considerable part of the plate). '

In the analysis, the results of which are presented above, the rigidity
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FIG. 6. Displacements of the shorier edge of the plate.

- iter. 0

Fia. 7. The form of the plate as obtained in consectutive iterations, at the instant
of time ¢ = 0.35s.

of the supports ks; of the plate has been deliberately increased in order to
bring out the differences between particular iterations. Theoretical analysis
as well as practical realization of the computation show that a decrease in
rigidity of the supports ks; weakens the couplings acting in the system and
accelerates the convergence of the iteration procedure.
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~~~~~ iter. &
—————— iter, 1
..... merves jtop O

F1G. 8. The form of the plétte as obtained in consecutive iterations, at the instant
of time £ = 0.45s,

Figures 9 and 10 shows the results of the computations performed for the
rigidities k3; reduced to one-fifth of their original values {all the other data

z
fmm]

———= ter" 1
-4 — ter 2
-6 L 1 : i . i L i . I
0 ot 0z 03 04 a5 Hs)

¥1a. 9. Displacement of the corner of the plate supported on the mass ma, after a L5
reduction in the support rigidity ka1 (result of weakening of the couplings between the
plate and the partial models I to IV).
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F1a. 10. Displacement of the shorter edge of the plate after = 1:5 reduction in the
support rigidity kai; (result of weakening of the couplings between the plate and the
partial models I to IV).

remaining unchanged). They show the displacements of the same points
as in Figs.5 and 6. In this case the computation could be limited to the
iterations 0 and 1 only.

A similar effect of weakening of the couplings between the partial models
I to IV and the plate (partial model V) can also be obtained by increasing

the damping in the system, {7, 8].

5. CONCLUSIONS

The results just presented confirm the efficiency of the method suggested.
For such models the iterative procedure of computation is rapidly conver-
gent. Such a way of analysing the vibration of a complete model is more
lucid and facilitates inferences to be drawn. It makes also possible to replace
any partial model with another, of a more developed structure, or to take
into consideration the nonlinearity of the elastic elements, etc. This reduces
to an exchange of one of the procedures of the computation program for
another.

A simplification which is often made in the analysis of vibration of sys-
tem similar to the system represented in Fig.2 is the assumption of total
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uncoupling of the system, that is the analysis of the partial models T to IV
and introduction of the response of those systems as an excitation acting
on the plate. In some cases such a procedure may be justified (see Figs.9
and 10), but sometimes it may lead to considerable errors (see Fig.6, for
instance). An analysis made in the manner described in the present paper
will enable us to avoid such errors.

There is another advantage of the above method for the analysis of com-
bined discrete-continuous systems: the knowledge of the weak couplings
acting in the system may be used, by weakening them, to reduce the vibra-
tion and the noise. In the physical sense, weakening of the couplings means
that vibrations of some subassemblies of the machine are not transferred (or
transferred in a small proportion) to other subasemblies and elements.
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