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THERMOELASTIC WAVES IN A TRANSVERSELY ISOTROPIC
PLATE WITH THERMAL RELAXATIONS

D. CHAND (HAMIRPUR)

The generalized form of heat conduction equation is used to study the thermoelastic
waves in a transversely isotropic, thermally conducting and infinitely extended, stretched
elastic plate due to a cylindrical projectile, in the context of the Green and Lindsay
theory of thermoelasticity. The Laplace transform technique is employed to obtain small
time solutions. The discontinuities in stresses and temperature have also been discussed at
their wavefronts. The jumps obtained have been computed numerically and are tllustrated
graphically for a single crysfal of zinc.

1. INTRODUCTION

The thermoelasticity theory which includes the temperature rate in con-
stitutive equations, developed by LoRrD and SnurLman [2] and GREEN and
LINDSAY [3] is a generalization of the conventional coupled thermoelastic-
ity theory [1] and predicts the finite speed for the propagation of thermal
signals. The generalized theory of thermoelasticity have been extended to
anisotropic media by DuALIWAL and SHERIEF [4]. BANERIEE and Pao [5]
also discussed the propagation of thermoelastic waves in anisotropic solids
based on the theory of thermoelasticity which includes the effect of ther-
mal phonon relaxation, and illustrated their results numerically and graph-
ically for NaF and solid helium crystals. SHARMA [6] studied the transient
generalized thermoelastic waves in transversely isotropic medium with a
cylindrical hole. SHARMA et al. [7] investigated the distribution of displace-
ments, temperature, and stresses due to a thermal shock in a homogeneous
transversely isotropic elastic solid with cylindrical hole, in the context of
generalized theories [2, 3] of thermoelasticity. KuMAR [8] studied the cou-
pled thermoelastic waves in an infinitely extended plate resulting from a
suddenly punched cylindrical hole. SHarRMA and CHAND [9, 10] studied the
thermoelastic waves in a homogeneous isotropic elastic plate due to suddenly
punched hole in the context of generalized theories of thermoelasticity [1,2].
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In this article, the distributions of displacements, temperature, and stres-
ses in a homogeneous transversely isotropic stretched elastic plate due to
sudden punching of a cylindrical hole have been studied in the context of the
generalized theory of thermoelasticity [3] by employing the Laplace trans-
form technique.

2. FORMULATION OF THE PROBLEM

We consider a homogeneous transversely isotropic thermally conducting,
infinitely extended stretched plate of thickness d, initially at temperature 7}
in the undeformed state. We take the origin of the coordinate system on the
plane surface, and the z-axis pointing normally into the plate which is thus
represented by z > 0. The z-axis is assumed to coincide with the axis of
elastic and thermal symmetry of the material, and the planes of isotropy are
perpendicular to z-axis. Let a flat nose [10] cylindrical projectile of radius a,
moving with velocity v, strike the plate and begin to punch a hole of radius
equal to its own. The following assumptions are taken into considerations;

e The plastic flow due to punching is localized in the neighbourhood of
punching section and the punching starts instantaneously at { = 0 over the
whole punched section, based on small thlckness d of the plate and large
value of impact speed v.

e The punching action takes place at an average speed v/2, which is the
projectile’s velocity in the compressional wave that develops in both the
projectile and the plate, on a large portion of the diameter of the projectile
and the plate. Thus the punching time 2d/v = ' is based on a large ratio
of the diameter of projectile to the plate thickness.

We choose the origin of the cylindrical coordinate system (7,8, z) at the
axis of the cylindrical hole. Assuming the radial symmetry, the non-zero
displacement component 4 = u(r,t) is obtained. Then the governing. field
equations of mation and heat conduction, in the absence of body forces and
heat sources, are [4]

en [upr+ (B7') 5] ~ BT+ 71 D)k = p i
(2.1)

K(Trp+ R7'TR) — pCeo(T +10 T) = Tofs(sp +R™ @),
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B = (e11 + c12)1 + cizes is the coupling between elastic and thermal
fields,
¢;; are isothermal elastic parameters,
oy, a3 coeflicients of linear thermal expansions,
K thermal conductivity,
p material density,
(¢ specific heat at constant strain,
71,70 thermal relaxation times satisfying the in-
equalities

(2.2) - m27 20

The comma is used to denote spatjal derivalives, and a superposed dot
represents the time derivatives.
Define the following physical quantities:

7 = Ww*R/vy, T = w*, U = pw*vyu/ToB,
(2.3) Z = T[T, 1 = W, T = w7y,
£ = Toﬁ%/pﬂuce, w* = CnCe/I(, ‘Ug = Cn/p,

where w* is the characteristic frequency, ¢ is the coupling constant, and Up
be the velocity of the longitudinal wave.
Introduce the physical quantities (2.3) into Egs. (2.1), we get

Uer + T_lU,r —r - = Ze+T Z,T,
(2.4) . ; : .
Zrr + T‘_IZ,.,. (2475 2) = e(U, 471 U),

where we have sﬁpressed the dashes in 7 and 7.
The boundary of the hole B = a, is given by

(2.5) r=w'afv, =q (say).
The initial and regularity conditions are given by

U:0:Z &a;t T:()g T:n!

2.6
Tw L
or a T=0%
(2.7 U=0=2 for r=0, when 7 — oo,
The boundary conditions are
0, T<0
(28) Sp=4 —or/l, O0<7<! at r=75 and [=2dw*/v,

-0, T>1
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(2.9) Z(n,7)=0,
where

Ser = Up+ b0 U —(Z 411 2),
(2.10)

b= 612/(}11 and Tr =7+ Sﬁl

Sy 15 the dimensionless form of the stress in the radial directjon.

3. SOLUTION OF THE PROBLEM

Applying the Laplace transform defined by
(3.1) B(r,s) = f p(r,t)e=*"dt,
0

o Eqs. (2.4) we obtain
11)(0 +r - sﬂ T = r1sD7Z,

3.2)

[(D +r YD s TO] Z = es(D +r 1T,

ere D = d/dr, ¢ = (r +s71), and 7§ = (7o + s71).
_Simplifying Eqs. (3.2) we get

[{D(D +r Y —(m2 4+ mD(D+r 1)—i— mlmz] U =0,

[

0,

[ {(D +r7)DY — (md + my)D(D + 1~ ‘)+m1m2]“z“
- omt = (A + sh)m? 4+ most =0,
M =1+c¢, M =14en + 7.

U = G1I\’1(m1?‘) + GzI(}(mgT‘),
7 = Ifl_[f@(ml?‘) + HQI(Q(TT?QT),
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where Ky(m;r) and Ko(m;r} are the modified Bessel functions of the first
and zeroth order, respectively.
From Egs. (2.10)3, (3.2); and (3.6), we get

(3.7) H; = (s* — mHGi/m;, i=1,2.

Therefore from Eqs.(2.10)1, (3.6) and (3.7), we obtain

Srr = GrA{(mir) + Ga Ax(mar),

(3.8) _
A= GIB]_('TH]_T) + Gng(sz);

where

Ay(myr) = [my B2 K (mar) + rs2 Ko(mgr)
‘ tr7i8(s® — mHYKo(myr)]/rmy,
Ag{mgr) = [myf Ki(myr) + rs? Ko(mar)
(3.9) + rr18(s* — mE)Ko(mar)]/rma,
Bi(myr) = (s* — mP) Ko(myr)/my,
By(mar) = (8* — m3) Ko(mar)/ma,
B2 = (c11 — e12)/es.

Applying the boundary conditions (2.8) and (2.9) to Eq.(3.8),, we get

G1 = —a(1 = e™) By(man) /154,

(3.10)

Gy = o(1— e ) Bi(man)/is’A,
where
(3.11) A = Ay(min) Baman) — Az(man)Bi(min).

Substituting formulae (3.10) in Eqgs. (3.6) and (3.8) we get
U(r,s) = —o(l — e"ls)[lx’l(mlr)Bg(mum)
—K1(mgr)By(myn)]/1s* A,
Z(r,s)=o(l—e™") [m1(32 — mE) Ko(mgr) By (myn)
(3.12) —mg(s? — mf)fg’o(mlr)_ﬂg(mzn)] Jmamgls A,

Ser(r,8) = (1 — e7) [ Ag(mar) By (myn)
— Ay (myr)Ba(man)}/Is* A,
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4. SMALL TIME APPROXIMATIONS

Since the thermal relaxation effects, i.e. “the second sound” effects, are of
short duration [11], the discussion is confined to small time approximations,
i.e. s is assumed to be large. The roots of the Eq. (3.4) are given by

(4.1) mi=so; 4+ o(s7),  i=1,2,
where

oid = [he it (N — 4m)2] " /3,
(4.2) 2
P12 = {/\1 4 (A g — 2)/(A5 - 41-0)1/2]/2\/5 [)\2 £ (M- )1/2]1/

The above analysis (4.1) shows that there exist two types of waves,
. namely, an elastic wave and a thermal wave. The former follows the latter
- one. The modified Bessel function K,(z) has the asymptotic expansion [12]

- 1/2 n?_ 12
(43)  Ka(z)= (2”“—2) e [1 + “—““(4(8.2) )
| | (4n? — 12)(4n? — 3%) ]

_ (82)2

ﬁ.s.ing; Eqgs. (3.9), (4.3} in Egs. (3.12) and solving them, we obtain

- T(r,s) = o(n/r)V? [{m(vf = 1)(s72 + Era™ + .. )™ '}
—{oa(0? = D72+ Bl 4 )™ /(0] - o),

Z(r,5) = a(n/r)/ (o} — D)0} = 1) [(s + Eas™2 4 .. Je ™R

—(s7 By 4L )™ J(0] - 0]),
_ Selr,s)=o(n/r)? [(Bs + s By + .. )
~(By+ s By + . )] [(o} — o),

B = [Boin(e} = 1) = roa(v = 1) = 800 {(bavs + 20d)

Bt +(v§ = DI} /8ra(vd - 1),
{:- [(;"__“1){3U277—TT}1} 8T’7{(¢1v1+¢51v1)

. +(v} - )} /8ra(e} - 1),
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B = [~ (s = 8T = (ot v} = B {(0F = D
+1v3) + (vF = 1){(bavn + pa2d) }] /87m(vE — 1)(o - 1),
Ej = [(v] = 1)(v} — 1){8rnI — (van + vr)} — 8rn { (0] — 1)(¢avs
+8208) + (o — )(don + $rod) }] /8rn(vd — 1)(o2 1),
Es = (v} - 1)(v3 - V) = B},
Eq=n(vi - D)(vd — DE; + v (vi ~ 1),
Ey = 1(v ~ 1)(v] — 1) B} + va(0f — 1),
I= ['U% {(?)1 + v2) + 8n(d1v1 + wa?)}
+803 {va(0] — 1) = v1(v] — 1)} + 02 {(v1 + v3)(0] — 1)
+8n(¢2vz + ¢20d) }| /8n(v} - o),
and

R = (r—19).
Now, inverting the Laplace transforms of Eqs. (4.4) we get

U(r,m) = o(n/r)/? [oi(v] = D{L+ Ex(r — R/ fv)}(r — B [v1)
X H(7 — R [v)e™"F — uy(0? — D{1+ El(r — R'[vy)}
X(r = B [o) H(r — B [o2)e™ "] /(0] — }),

(4.6)  Z(r,my=o(n/r)/*(] = 1)(v] — 1) {1 + Eo(7 ~ RB'/w1)}

xH(r — R Jv)e " F — {1 4 E)( ~ R'Jv)}
xH(r — R [v)e™ | [(w} — o),
Spe(r,7) = o(n/r)'/? [{ Ed(r — B/ fmn) + EadI(1 — R/ [vy)} e %
— {BL8(r — R'[v5) + EYH(r - R'[w)} e ® ] (0} — o).

H. LoNG TIME SOLUTIONS

The long time solutions can be obtained by expanding the values of m?,
(i = 1,2) of equation (3.4) for small values of s into Taylor’s series. The
roots my, my can be obtained as

my = (14 )"/ 4 0(s*%),
my = (14 )%+ O(s?).



326 D. CHAND

The roots my, my do not contain thermal relaxation times up to the first
order, which indicates that the “second sound” effects are of short duration.
Therefore, the small time solutions are more useful than long time solutions.
However, the expressions for displacement, temperature and stress can easily
be obtained by using these roots in different relevant equations.

6. DIsSCUSSIONS OF THE RESULTS

The detailed analysis sketched above shows that there are two kinds
of waves i.e., the dilatational wave and the thermal wave travelling with
velocities v and vy, respectively. The expressions containing H(r — R'/v)
and H(r — R’/v;) represent the contributions of the dilatational wave and
the thermal wave in the vicinity of their wave fronts R’ = v 7 and R’ = vy,
respectively. ' ,

The displacement is found to be continuous, but the temperature and
stress are found to be discontinuous and are given by the formulae

(2% = Z7 ) mne = a(n/r)?[(0] = 1)(vd = 1)
x exp(—gron7)] [ (v} - 03),
(2% = Z7 ) pmiyr = —o(n/r)*|(v] — 1)(0} - 1)
X exp(=$ava7)| /(0] — v3),
(6:1) (S = 87 mmmys = o(n/r) 2 [03(0F ~ 1)
+ri{(v} = 1)(0} = 1)Bnrl — (o1 + va7))
=8nr((vF — 1)(@ren + $193) + (o = D(dava + $203)) }/80r]
x {exp(~ o)} /(0} — v3),
(5% = S5 ) mur = —o(n/r)? [0(0F = 1) + 71 {(0F - 1)(e - 1)
X (87 = (03 + v1r)) = 87 (v = 1)(dav2 + $03)
+(vF = D(d1v1 + ¢1od)) } /80r] {exp(=pavar)} /(0? — od).

From the above expressions, it is clear that the discontinuities decay expo-
nentially with radial distance.
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7. PARTICULAR CASES

i} If /.= 79 = 0, i.e. in the case of conventional coupled thermoelasticity,
we have

A1=1+€3 Ag=1, m=1, v — o0, ¢’1:E/2’ sz—*OO-

From Eqgs.(4.6)2,3, it is seen that the temperature at both the wavefronts
and stress at the thermal wavefront become continunous. The stress suffers
a finite jump at the elastic wavefront, given by

(Sv-l;- - S;-)R'sz = —o'(n/r)llzexp[—gr/Q]_

ii) If the strain field and thermal field are not coupled to each other, i.e.,
€ =0, then

/\1 = 1, /\2 = (1 + T()), N = 1, Vg = (Tg)ul/z, ¢1 = 0, ¢2 = 1)2/2.

Here again the stress is found to be discontinuous at the elastic wavefront
and the jump is given by

(S;.';. - ST:-)R’:'LHT = _O-(n/r)ll/z_

ili) When ¢ = 0, 7 = 19 = 0, i.e. the coupling and relaxation effects are
ignored, then

/\]:13 )\2:1; ?)1:17 vy — OC, ‘?51:0, ¢2“+OO-

The results obtained agree with case ii).

8, NUMERICAL RESULTS AND DISCUSSION

Various jumps obtained theoretically for temperature and stress at their
respective wavefronts are computed numerically for a single crystal of zinc
[13] for which the physical data are

= 7.14 x 10°kgm ™3, e = 0.022,
11 = 1.628 X 1o Nm”‘z, ¢z = 0.362 x 101 Nm_z,
c13 = 0.508 x 10" Nm~2, B1 = 5.75 x 108 Nm~2%deg™?,

C, = 3.9 x 102 Jkg~ deg™?, Ty = 296°K.

The variations of jumps with respect to time for different relaxation times
11, 70 = 0.0, 0.1, 0.5, are plotted as shown in the Figs. 1 and 2. It is observed
that these jumps decay exponentially with time. It is also observed that the
jumps at the thermal wavefront decay exponentially at a higher rate than
those at the elastic wavefronts.
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