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THE FAST CRACK GROWTIH ANALYSIS UNDER DYNAMIC
LOADING WITH THE HELP OF ADINA

ILV. ROKACH and A. NEIMITZ (KIELCE)

Finite element modelling of dynamic crack growth during impact bend testing is per-
formed using ADINA 6.1. Results are compared with the numerical data reported in
literature. The influence of the time step, the Newmark method parameters, types of
quadrangular finite elements and form of their mass matrix on the accuracy of dynamic
stress intensity factor {(DSIF) evaluation is investigated, When numerical damping is not
used for some values of the time step, parasitic cscillations of DSIF are registered, Ef-
fective methods for elimination of these oscillations are proposed. Conditions for indirect
DSIF determination using crack mouth opening displacement are investigated.

1. INTRODUCTION

In the last decades, a steady increase of the interest in crack growth
modelling is noted. Because of the complexity of the mathematical descrip-
tion of the crack growth phenomenon, almost all of the results for solids
of real (that is, finite) geometry were obtained using numerical methods.
Among them, the most valuable data were obtained by employing finite
element analysis (FEA). The importance of such problems from the practi-
cal point of view and the sufficient level of reliability of the corresponding
algorithms caused that the crack growth modelling option was included in
well-known commercial FEA code ADINA [1]. In the nearest future at
least two consequences of this fact may be expected. First, the number
of scientists, who can solve the problems connected with crack growth will
increase. Second, the existence of a widely accepted software code will par-
tially eliminate the problem of reproducibility of the numerical solutions,
and comparison of the results of experimental data processing will be con-
vincing. l

The algorithm of crack growth modelling used in ADINA 6.1 has been
designed mainly for solving the quasi-static problems. Nevertheless, it may
be also used for certain dynamic problems. Unfortunately, direct suggestions
how to use ADINA for such problems are not included into the program
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manuals [1, 2]. In this paper we have tried to fill this gap partly by estimation
of the influence of some computational process parameters on the accuracy
of dynamic siress intensity factor (DSIF) K(t) evaluation during the fast
crack growth modelling in a two-dimensional (2D) solid.

2. FUNDAMENTAL METHODS OF FINITE ELEMENT MODELLING OF CRACK
GROWTH AND IMPLEMENTATION OF THIS PROCEDURE 1IN ADINA

The main difficulty one faces using the FEA in solving crack growth
problems is modelling of the continuous changes of boundary conditions on
a discrete FE mesh caused by crack tip extension. This problem exists both
for dynamic (or unstable), or quasi-static (or stable) crack growth, though
in the latter case it is much easier to solve.

There are two different approaches to this problem: using the station-
ary mesh, or the mesh which is deformed geometrically and periodically
remeshed corresponding to the crack extension (see review in [3]). Con-
sidering these methods let us assume, for simplicity, that the crack grows
along the symmetry axis of the symmetrically loaded 2D solid. This assump-
tion allows us to suppose that the crack is placed along the coordinate axis
(Y-axis in Fig.1), and to consider only a hall of the specimen. Boundary
conditions in the unbroken portion of the solid on this axis are satisfied by
prescribing the displacements to be equal to zero in the corresponding nodes
in normal direction (Z-direction in Fig. 1).

According to the first approach, the crack extension is modelled using
sequential release of the boundary nodes. Drastic change of solid compliance
is preserved by introducing fictitious force in the released node [4,5]. At the
beginning this force is supposed to be equal to the actual reaction in the
node. Next, this value is reduced in proportion to the crack tip advance
along the FE side. Of course, in such case the boundary conditions on the
crack surface are satisfied only approximately.

According to the second approach, any change of the crack tip position is
accompanied by a corresponding distortion of the mesh or by the remeshing
procedure [3, 6—8]. Here the boundary conditions on the crack surface are
satisfied exactly.

In the past, the ADINA users utilized, most often, different versions of
the node release method, which may be simply included in any general pur-
pose FE code [9, 10]. Only a few of them used the remeshing procedures for
* - solving more exactly 2D [11, 12] and 3D [13] fracture mechanics problems,
- after attaching additional subroutines to the program. In the new version of
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Fia. 1. The node shifting and releasing procedure for crack propagation. (Courtesy
ADINA R & D). Nodal conditions along crack propagation surface: Y-direction = free,
Z-direction = null prescribed displacement.

ADINA the “node shift/release” technique [12} is applied to 2D modelling
of crack propagation. The order of successive changes of a mesh near the tip
of a growing crack, according to this technique, is illustrated in Iig.1. To
determine the crack tip position at any load and/or time step, the general-
ized crack resistance curve is used. This is a user-defined relation between
a crack growth control parameter and the crack extension value Aa. As
a crack growth control parameter, the node displacement or energy release
rate (J-integral) may be used. Other types of this parameter may also be
used in the program by the user through Fracture Mechanics Interface.
Depending on the type of crack resistance curve, two different methods
of using the FE code may be distinguished. In the firsi case, the fracture
process is modelled by means of the experimentally obtained crack growth
history (e.g., in the “grip displacement — crack extension” form). The nu-
merical solution provides values of the parameters, which characterize the
stress-strain state near the crack tip (DSIF, J-integral, crack opening dis-
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placement or angle, etc.) and which are widely used in different crack ini-
tiation and growth criteria. Results of such analysis (so-called “generation
phase” [3]) may be used in another phase of calculations, the “application
phase”. Here the relation between the crack extension and a selected crack
growth control parameter (supposed to be a material property) is used for
prediction of the crack evolution in the given solid under prescribed mechan-
ical and/or thermal loading.

Standard ADINA capabilities for solving dynamic crack growth problems
are limited to the generation phase calculations only. An application phase
calculations cannot be performed because, as a rule in dynamic fracture me-
chanics criteria, the crack growth parameter defines not the crack extension
but its velocity.

3. TEST PROBLEM AND THE SOLUTION METHOD

As a test problem, the crack growth modelling in the 4340 steel beam
specimen (length I = 181mm, width W = 38mm, thickness 15.8mm) has
been used. The specimen was tested on a pendulum testing machine with
support span 5 = 165 mm and tup velocity 6.88m/s [14]. The crack started
from the initial length @ = 9.5mm, at t = 95pus after the first contact
between the tup and the specimen, and ran with average velocity of 375m /s
until ¢ = 144 ps. Then the crack ran with average velocity of 95 m/s up to
the failure of the specimen.

Previously this experiment in a 2D (plane strain) approximation was nu-
merically modelled in [15]. DSIF values were determined directly as internal
variables of special motion of the FE [7]. We have considered only one type
of boundary conditions for this problem denoted DDT1 in [15]. Here it is
‘assumed that the specimen during a test is in constant contact with both
the tup and the supports, and the tup velocity does not change,

For determination of the DSIF two methods were used. In the first one the
well-known relation between DSIF and the dynamic analogue of J-integral
was used [16]. The latter is determined in ADINA either by contour inte-
gration or by the virtual crack extension (VCE) method, used in this work.

As the second approach, the simplified method of NisHIOKA and ATLURI
[17} was used. This method is based on the numerically discovered property
that the relation between DSIF and the crack mouth opening displacements
(CMOD) for impact beam specimens is not essentially sensitive to the crack
velocity. For crack growth velocities lower than 15% of the shear wave
speed, this relation may be considered to be equal to the static one, with
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an error less than 2%. For this case DSIF calculation is reduced to simple
multiplication of CMOD values for any time step by the corresponding values
of function A,(\) = K7(A)/CMOD(A) determined in statics, where A = a/W
is nondimensional crack length.

Two types of FF meshes were used in calculations. The meshes of A-type
(see Fig.2) were used for accurate determination of A,(}) function values.
We had to obtain these values numerically due to nonstandard span-to-width
ratio (S/W = 4.34) of the specimen. The meshes consisted of Q8 eight-node
quadrilateral finite elements. Singularity in the crack vicinity was modelled
by shifting the midside nodes of the corresponding elemen!« to the quarter
points.

The B-type mesh (see Fig.3) was used for dynamic crack growth modell-
ing. In this mesh Q8 or Q9 (Lagrangian 9 node) regular FEs were used.
Singularity in the crack tip was not modelled (the limitation of implemen-
tation of the crack growth modelling technique in ADINA).

There were some differences in the VCE method when it was used for
each type of mesh. For A-type meshes, the VCE shift zones consisted of
2 to 5 layers (“semirings”) of FEs around a crack tip node. For moving
cracks ADINA allows us to use either a moving shift zone or a spatially
fixed one. In the first case, the shift zone is linked to the crack tip node and
must be defined by the number of “semirings” of F'E connected to this node.
ADINA selects automatically the elements that belong to the current shift
zone. In the second case, numbers of FE in the shift zone are not changed.
Hence, this zone must be chosen large enough to include all possible crack
tip locations for the problem considered. If the nodal displacement is used as
a crack growth control parameter, ADINA permits to use the latter method
only. We used three types of VCE shift zones (see I'ig. 4) assuming that the
nondimensional crack length is within the limits of A € [0.25,0.85].

The quality of both meshes and sensitivity of the method of SIF determi-
nation to the size of VCE shift zone were tested by solving static problems
for three-point bending of the specimen with A = 0.25 (0.05) 0.85. Results
were compared with the Fett solution [18], obtained by means of the weight
functions method for specimens with arbitrary crack length and S/W > 2.
Frror in the SIF determination did not exceed 0.7% for the A-type mesh
and 2.5% for B-type mesh, and did not depend on the size of the shift zone.

Simultaneously with SIF, CMOD values were determined and A,(A) val-
ues were obtained. The difference between A,(A) values obtained on both
types of meshes was within 2.5%. For L/W = 4, A,()) may be derived from
the Bakker formulae for K7()) and CMOD(A) [19]. The differences between
these data and the results obtained by B-type mesh were less than 2%.
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Fic. 2. The A-type mesh (the impact direction is indicated by the arrow).

The dynamic problem for DDT1 boundary conditions was solved using
the Newmark time integration method. The specimen deflection A in the
point of contact with the tup was used as the crack growth parameter.
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ADINA-IN YERSION 6.4, 17 JUNE 1994
DOT1 SPECIMEN

I'iG. 3. The B-type mesh.

History of crack growth was described by introducing the piece-wise linear
crack resistance curve. According to this curve, the crack was assumed to be
stationary (Ae = 0) for A < 0.6536 mm (it corresponds to the moment t =
95 ps after the beginning of loading). Later the crack length grew linearly.



346 LV. ROKACH and A. NEIMITZ

ADINA-IN VEASION 6.1, §5 JUNE 1304
DOT4 SPECIMEN
2
L
Y CE SHIFT ZONE 1
AR /. L Ll
AN Il [ [/
PR \:,\:{‘:./‘:'/‘: e -
4
V CE SHIFT ZONE 2 L,
\\}\\\\ \\ f l’ ,’// P Wi /////://i’/
\ AL A) hY b \l \' A 1 1 1 1 L] 1 : .I (3 (] (] l‘l/
~ NP ;{:'%I:‘:/:'(:'ﬁ: L e
z
Ly
vV CE SHIFT ZONE 3
NS "\ "‘\ ‘\ "\ A\ “\ !
111 11 LR 11 11 11 1
Elilitlillillliliill
NSNS\ EI R BT BT RT NV BT BRI BT ST 80 8 A A AT,
NS S T 7] T il el 2 A
\:\]‘\ﬁ]\l\j‘\lﬁI‘ :II‘II!Il!.Jl/.ll/ll'I/I!/'l/.//xl/.f/:le/i'/l,I/{‘/‘/l | A

T1G. 4. The VCE method shift zones,

For A = 0.99137mm (¢ = 144ps) its extension reached A = 18.41mm,
which corresponds to the experimentally registered velocity of 375m/s and
for A =1.232mm (f = 179us) Ae = 21.66mm (95m/s for ¢ > 144 ps).
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4. RESULTS AND DISCUSSION

Analysis of the earlier results shows that the parasitic oscillations of DSTF
are usually the main source of errors during FEA modelling of crack growth
[20]. These oscillations are registered for both the “node release” and “mov-
ing mesh” techniques. In the latter case they are caused by interpolation
errors corresponding to the remeshing procedure(!). The amplitude of the
oscillations may be considerably reduced by utilizing high precision interpo-
lation formulae [21]. Tt is worth to note that elimination of these oscillations
can not be reduced to simple and coarse data filtration or smoothing. These
procedures may lead to elimination of important information about physi-
cally based drastic changes of DSIF due to the influence of the loading waves
on crack propagation.

The influence of the following parameters of numerical solution on the
accuracy of DSIF determination and amplitude of its parasitic oscillations
has been investigated:

e time step value At;

o type of FE mass matrix (MM=L corresponds to the lumped form,
MM=C corresponds to the consistent form);

e type of FE (Q8 or Q9);

e VCE shift zone size (notations VCE1, VCE2, VCE3 correspond to zone
numbers from 1 to 3 in Fig.4);

s method of DSIF determination (direct method or using CMOD values).

Time step value

Calculations were performed for At = 0.5, 1, 2, 4 and 6ps. (For com-
parison, the dilatation wave travels the distance equal to the smallest FE
side in 0.25us, crack growth with velocity of 375m/s requires invoking the
remeshing procedure every 3.67 ps).

In Fig. 5 some of K[(t) curves obtained using ADINA are compared with
numerical results of NISHIOKA et al. [15], denoted here and later by K, (t).
For small time step the noticeable K';(¢) oscillations for a running crack have
been observed. The character and amplitude of these oscillations are better
shown in Fig.8, where K;(t) values for ¢ > 95us are normalized by the
corresponding values of K,,,(1)(%). The mean period of oscillations is about

(') After each remeshing all data determined in “old” nodes must be recalculated {for
“new” ones.

(*} Values of Kppa(t} used for normalization are not accurate, because they were ob-
tained from piece-wise linear approximation of plots in [15]. Hence, curves in Fig. 8 must
be interpreted rather qualitatively than quantitatively.
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2us, their amplitude reaches maximum for At = 1..2ps and practically
vanishes after the time step is increased to At = 4...6ps. However, when
time step is increased, the phase error (or period elongation) grows. This
phenomenon is commonly observed when the Newmark method is used. It
causes the small delays of DSIF responses obtained for larger time steps in

comparison to smaller ones (see Fig. b, 6).
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FIG. 5. Comparison of time variation of DSIF obtained in [15] and wsing ADINA
(VCEL, MM =L, o = 0.25, § = 0.5). '
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FIG, 6. Comparison of time variation of DSIF obtained in {15] and using ADINA
(VCEL, MM = C, a = 0.5, § = 0.6),
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Oscillations of DSIF are not the consequence of numerical instability,
because the Newmark method is unconditionally stable for § > 0.5. One
might assume that the oscillations are connected with high frequency direct
and reflected waves of loading. These waves can alter DSIF, and this effect
becomes visible only when sufficiently small time steps are used. But even

allow us to suppose that these oscillations are a purely numerical artifact
caused by the algorithm of DSIF (more precisely, J-integral) evaluation.
There are no oscillations observed for other results of calculations such as
CMOD or tup and supports reactions.

Type of FE mass matriz

When the consistent mass matrix is used, the amplitude of DSIF oscil-
lations is reduced in comparison with the lumped MM form (see Fig.8b).
But this replacement did not lead to qualitative changes in numerical re-
sults. From the computational point of view, the lumped MM form saves
the memory but does not decrease the CPU time.

Type of FE

The most popular serendipity displacement-based FEs are more sensitive
to angular distortions than the Lagrangian ones [22]. To obtain maximum
accuracy, the serendipity elements should be as nearly rectangular as possib-
le. As shown in Fig. 1, the remeshing procedure utilized by ADINA causes
angular distortions of FE near the crack tip. Thus, replacement of con-
ventional Q8 elements by more tolerable to this type of distortion Q9-type
elements might lead to noticeable improvement of the results. But real
changes in DSIT behaviour were very small if ever (see Fiig. 8d).

Numerical damping

Values of the Newmark method parameters used in the calculations dis-
cussed above do not provide damping of higher modes of specimen response.
Application of a slight damping (a = 0.5, § = 0.6) removes DSIF oscilla-
tions for all time steps considered (see Fig. 6, 8b, 8¢). At the same time this
procedure does not magnify the overall error of DSII" determination and
does not change the local variations of K [{t) connected with the influence
of direct or reflected waves of loading.
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The VCFE shift zone size

We have speculated previously thai DSIF oscillations are connected with
the procedure of J-integral evaluation only. If this assumption is correct,
the numerical damping method may be too rough for removing the DSIF
oscillations. In principle, the same result can be achieved by modification of
J-integral calculation procedure by the VCE method. There are some indi-
cations in the literature as to what kind of modification could be successful
here. As it was shown in [20], when the energy release rate was evaluated
by the contour integral method, the amplitude of fluctuations of the results
decreased with increasing area surrounded by the contour of integration.
Similar effect is observed when several elements are moved with a crack
tip without distortion during geometrical deformation of a mesh (there is
no such option in the procedure implemented in ADINA). If the number
of such elements increases, the amplitude of energy release rate oscillations
decreases [20]. For the reasons given we may suspect that when dynamic
problems are solved (contrary to the static ones), the size of VCE shift zone
may affect the accuracy of J-integral determination.

To verify this assumption, DSIF time curves obtained for three different
VCE shift zones (see Fig.4) were compared. It was found that the results
for VCE1 and VCE2 zones were almost the same. But when the largest
VCE3 zone was used, DSIF fluctuations were practically removed without
numerical damping (Fig. 7, 8¢). This important result shows that the pro-
cedure of increasing the VCE shift zone is the most appropriate method for
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F1G. 7. Comparison of time variation of DSIF obtained in [15] and using ADINA
(VCE3, MM = C, At = 2ps).
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elimination of the Kj(t) oscillations. This procedure does not force us to
change such global parameters of the computational algorithm as the time
step or the Newmark method parameters.
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F1G. 8. Normalized time variations of DSIF obtained using ADINA for: a) At = 0.5ps,
MM = L, a = 0.25, § = 0.5, VCE1; b) At = 1ps, VCEL; ¢) MM = C, VCEL,;
d) At =1ps, MM = L, o = 0.25, § = 0.5, VCE1; e) At = 24ps, MM = C, VCE3.

Method of DSIF determination

There are at least two reasons why the determination of DSIF from
CMOD values is attractive. First, this method allows us to use more coarse
mesh along the crack path. Thus, the time for computations may be con-
siderably reduced. Second, as the authors of this method noticed, it may
be useful in experimental practice. Having in mind these circumstances, it
is very important to define the limits of applicability of this method.

CMOD for a running crack was determined on B-type mesh. No fluctu-
ations of this value were observed. If the time step is increased, it results
in the phase error growth mentioned above {see Fig.9). But the changes
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FiG. 9. Comparison of time variation of CMOD obtained in [15] and using ADINA
(MM = L, & = 0.25, § = 0.5).
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of T'E or MM-type and values of the Newmark method parameters have no
influence on CMOD.

In Fig.10 the DSIF values determined directly and indirectly with the
time step of 4 ps are compared with K,p,(t). All curves were fitted up to the
150ps {A = 0.75). Later the indirect results begin to deviate from both the
direct ones. FErrors in the CMOD(Z) and A4(A) determination, being very
small, can not be the reason for such a considerable divergence. Thus, the
indirect approach is of no use here.
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¥'1G. 10. Comparison of time variation of DSIF oblained in [15] {line 7) and using
ADINA (line 2 — direct calculations, line 3 — indirect method).

The CMOD method is based on an assumption that the Ag(\) func-
tion for a running crack under dynamic loading conditions can be obtained
from its static analogue A,(A). For the simplest case of the specimen with
stationary crack we have

(4.1) Ad(A) = A5(N).

If the specimen is considered as a linear system, its response to external
excitation may be expanded into series with respect to eigenmodes. Hence,
both Kf(t) and CMOD(t) may be expanded into such a series too [23]. Let
the function A;(A) denote SIF to the CMOD ratio for deformation of the
specimen according to the i-th eigenmode. The Eq.(4.1) may be satisfied
for any dynamic loading and crack length only if

(4.2) A5(X) = Ai(A)
fori=1,2,....
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In order to verify the validity of formulae (4.2), the first five symmetrical
eigenmodes for the specimen under consideration were determined using
ADINA. Two types of boundary conditions (free oscillations and constant
contact with the supports) and A-type meshes were used. SIF values for each
normalized mode were determined from displacements in the nodes nearest
to the crack tip (unfortunately, ADINA does not allow us to use more precise
contour integration or VOE method in the modal analysis). According to the
results obtained, only A4;()) coincides with A;() (see Fig.11). For higher
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modes the divergence between A,(A) and A;(}) increases with increasing
crack length. It means that, even for a stationary crack, employing indirect
DSIF calculation method [17] is possible only for such loading, which causes

the first mode to be dominrant in the specimen response.
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p =2 mcs, delta=.6, alfa= 50.

MM

=L

TIME -~ 40 mcs

L c

TIME - 152 mcs

l_v

F16. 12. The deformed specimen shapes at various time momenis (magnification

factor — 50).
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Research programs carried out previously have shown that the first mode
of vibration dominates during the one- or three-point bending test [23, 24].
Moreover, this dominance is strengthened when the relative crack length
increases. However, these results were obtained for more accurate (one-side
contact) boundary conditions (specimen “bouncing” effect was taken into
account) than that used in the DDT1 scheme. The assumption CONCETRINE
the continuous contact of the specimen with the striker and supports causes
negative nonphysical reactions to appear. Due to this “sticking” (marked by
arrows in Fig. 12), the specimen deformation is altered. The second symmet-
rical mode oscillations are amplified artificially what results in changes of the
specimen concave direction for ¢ > 150 ps. This is the reason of divergence
between the DSIF values determined by ADINA directly and indirectly.

5. CONCLUSIONS

1. Program ADINA 6.1 in the standard configuration allows us fo per-
form dynamic crack growth modelling in generation mode when a displace-
ment in the selected node is used as a crack growth parameter. For the test
problem under consideration the accuracy of DSIF determination using the
VCE method on coarse regular mesh is comparable with the accuracy that
may be obtained using a special moving singular FE.

2. Accuracy of the DSIF determination does not essentially depend on
the second order FE type (Q8 or Q9) and their mass matrix type (consistent
or lumped).

3. To remove the parasitic oscillations of DSIF, the following methods
may be used:

a) the time step increasing;

b) slight numerical damping;

¢) increasing of the VCE shift zone size.

The last method seems to be the most efficient.

4. Indirect method of DSIF determination from the CMOD values is
valid only for such types of loading which causes the first eigenmode to be
dominant in deformation of a specimen.
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