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OPTIMIZATION OF THE FORM OF A BUILDING WITH AN
ARBITRARY BASE

M. ADAMSKI (BIALYSTOK)

The present paper is devoted to the formulation and solution of the problem of mul-
ticriterial optimization of the form of an energy-saving building with vertical walls and
constant volume and height. The base of the building is described by two arbitrary curves,
The criterion of minimum building cost and minimum annual heating cost are assumed
for optimization. The decision variables of the problem are the curves describing the base
of the building. An algorithm for the EUREKA software package has been elaborated.
The considerations are illustrated by a numerical example.

1. INTRODUCTION

If we study the development process of towns and housing estates in
Poland, considerable variety of building forms can be observed. Buildings
constructed of large reinforced concrete slabs have, from the geometrical
point of view, the form of cuboids, or, sometimes combinations of several
cubicoids with various side ratios. Buildings constructed of small elements
are, on the contrary, much more differentiated, but their form can usually
be reduced, to more or less fanciful combinations of prisms. Such build-
ings, the bases of which constitute rather complicated polygons are usually
characterized by an unfavourable geometrical compactness coeflicients [4].

The forms of some buildings with polygonal bases were optimized in [1]
and [5]. :

Solution of the optimization problem of the form of a building, the ground
plan of which is described by regular lines appears to be promising, such a
form being interesting from the architectural point of view and giving good
compactness coeflicients.

Below we present a method for determining, on the basis of two criteria,
the optimum form of a building, for prescribed climatic data and some
geometrical quantities such as the area and the projection diameter of the
bailding.
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The method of multicriterion optimization enables us to take into con-
sideration many antagonistic partial criteria. It is usually possible to find a
compromising solution, in which, usually, none of the partial criteria reaches
its extreme value, but all the requirements are satisfied to the highest degree
possible, according to a global criterion.

Among the partial criteria used in various optimization procedures of
building there are those of

e minimum volume or minimum weight of the structure,

o maximum safety or maximum reliability,

e maximum compactness,

e maximum natural lighting of rooms,

¢ minimum energy required for heating or cooling purposes of the build-
ing.

The criteria which will be used in the present paper are those of

e minimum building cost, and

o minimum annual maintenance cost of the building, including the cost
of heating.

9. COMPONENTS OF THERMAL BALANCE OF A BUILDING

The thermal balance of a building is composed of losses and gains of heat
in the course of the heat exchange processes under conditions of stabilized
comfort inside the building and variable atmospheric conditions. The heat
losses are due to

e heat transmission through external walls, ceilings and floors,

o heat transmission through transparent partitions,

e heat radiation through external walls, ceilings and floors,

e heating of ventillation air and

o infiltration of air through external partitions.

The gains are those of

o sun radiation through transparent partitions,

e heat emitted by lighting installations, household equipment and human
organisms and

e heat recovered from the ventillation air.

The differences between the losses and the gains constitute that part of
the energy, which must be supplied by the heating system. As regards the
present paper, we shall take into consideration only those heat losses and
gains which have an essential influence on the solution. They are
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o the heat losses through walls, ceilings, floors and transparent partitions
and

e the gains in the form of sun radiation heat through transparent parti-
tions.

The effect of the physical environment on a building was the sub ject of
numerous works [2, 5]. In the present optimization problem of the form of
a building it will be assumed that the physical environment of the latter is
characterized by the following quantities: $D — annual number of degree
-days [K — day], #;, 0, — average values of the total amount of sun radiation
falling during the heating season on the south, east or west vertical plane
(kWh/m?}, a; - coefficient of heat penetration from the inside [W/m?K],
ag — coeflicient of heat penetration from the outside [W/(m2K)].

2.1. Annual heat losses through the walls, ceilings and floors

‘The problem of determining the heat losses through building partitions
has been discussed in [5].

Problems of this type are considered with various assumptions concerning
spatial temperature distribution, time variability of heat conduction pro-
cesses and the convection and radiation type of heat exchange with the
environment. From [3] it follows that, in the case of sufficiently long time
intervals and processes in which the initial and final state of the partition
differ little from each other, we can consider the problem, with sufficient
accuracy, to be stationary and reducible to the one-dimensional case. In the
case of the problem of optimum form of a building, we consider the heat
balance of the building throughout the entire heating season, therefore use
can be made of simplified relations.

The annual heat losses through an element A - df of a wall, a ceiling and
a floor were found from the formulae [5]:

l1-p , p
: 7 = | — = ).24-5D hdl,
(2.1) E (Rs +RO) 945D hdl
Ad
(2.2) Ba= 3% ¢a-24- 5D,
(2.3) Ep.—.ﬁ-(pp'm-sp,'
. R,
where
1 1 d
(2.4) By=--+——+7.
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The annual heat loss due to ventillation can be expressed by the formula.

(2.5)
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area of roofs and floors [m?}, respectively,

building height {m],

length element of a wall [m},

ratio of the area of the windows to that of a wall element,
thermal resistance of a wall, ceiling and floor element
[m2K /W],

thermal resistance of a window [m*K/W],

partition thickness [m],
coefficient of heat conduction of the partition
material [W/{mK)],
tar — tdw
B tsz - tsw ’
— tpz - tpw
tsz - tsw ’

mean temperature of the external side of a roof, wall and
floor [K], respectively,
mean temperature of the internal side of a roof, wall and
floor [K], respectively.

E, = 0.36n; 245DV,

where n; is a multiple of air exchange. For n; = 0.5 we have

(2.6)

E,=0.18245DV.

2.2, The gains in energy by sun radiation

The gains in heat by sun radiation through opaque walls will be disre-
garded. It is assumed that the daily gain due to sun radiation through a

vertical window, the azimuth of which is @, and the area A, is [5]

(2.7)

the symbols J and e, denoting the intensity and the azimuth of radiation.
Assuming that the building is symmetric, the annual gain in heat due to

E, = AJ cos(a, — ay),

sun radiation will be calculated from the formula

(2.8)

Ay
E,=2 B(ﬁ)p(x)h dl,
J

where $ is the orientation angle of the wall element (Fig.1) and

(2.9)

#(B) = By cos 3 + B sin f.
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FIa. 1. The form of the building and the symbols used.
3. FORMULATION OF THE OPTIMIZATION PROBLEM

The subject of our considerations is a building with vertical walls, con-
stant volume V' and height . The base of the building is described by two
arbitrary curves y;{z} and y(z) (Fig. 1).

The gain in heat received through the north facing windows will be dis-
regarded and the building will be assumed to be symmetric along the N — §
axis.

The aim of the present considerations is to determine the form of the
curves y3(z) and yo(x) using two criteria;

e minimum building cost and

e minimurmn annual cost of heating.

The function expressing the construction cost is defined as follows

A4
(3.1) B o= 2]((1 — p(x))es + p(x)e,) hdly
B

Ay
+2 [ heydly + Leat T+ Dy,
B,

where ¢,,¢,,¢q, and ¢, — are the construction costs of a wall, a window,
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a roof and a floor, [thousand z1/m?], V - volume of the building [m?] and
D, - other costs independent of the decision variables, [thousand zl].

The function expressing the annual heating cost is described in the fol-
lowing way

Ay Ay
1 1
(32) Fz = 2451)632 / (}B_(l — p(.‘E)) 4+ —JR—;U(I)) hdll + / hdlg
B ° Ba
Ay
1 1 14
+{=pat+ 5¥p] 7t JuV ¢ — 2¢e f H(ﬁ)p(x)hdll + Dy,
Ry R, h 2
1

where dly, dl; are the lengths of elements of the curves y; and y2, D2 — other
costs independent of the decision variables [thousand z1].

The function (2.9) can be expressed in the form #(z), assuming as a first
approximation that the sought-for curve is a segment of a circle. Then

8(x) = 1/ 1 — £ + 03¢,
where £ =sin 8 = z/r.
The function 6(z) has been approximated by a polynomial of the follow-
ing type
O(z) = ap + 1€ + a2 + . + aal" .
If the curve y;(z) obtained as a solution differs considerably from a cir-
cular arc, the analysis must be repeated assuming another function y{z),

with a form differing from that of a circular arc.
Because di = /1 + y2dz, dlcos § = dz, dlsin § = dy, we obtain

Ta
3.3) H”= 2/((1 —p(x))es + p(ﬂ:)coh,)\ﬂ + % de
0
o VoV
-l—QO]hcs 14 yéz dx + 5 cd + Ecp + Dy,

(3.4)  Fy,=245Dc.2 {/ ("Rl_s(l —plz)) + Riop(m)) b/ 1+ y; de

o]
T - 1 1 \v
+/Eh\/1+y2 dz -+ (Rd‘Pu!'l' “R;‘Pp) "IL“Fwa}
0

_9e, / 8(a)p(2)h/1 + 9,2 dz + Dy,
Lt}
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The decision variables of the problem are the functions 1 (), y2(2).

It is assumed that

1) y1(x) and y2(=) are continuos functions of C* class within range [0, z,),
2) the form of the building is symmetric in relation the 0Y axis:

(3.5) $1(0) = 0,
(3.6) ¥3(0) = 0,

3) the functions y1(z), y2(z) bound a region of an area V/h, that is

T

(3. 2 [ () — ale)) da = Vi,
0

4) the functions ¥, (z) and y(z) are zero at the point, the abscissa of
which is z,4:

(3'8) y(2a) = ya(ze) = 0.

A set of compromises can be determined by the method of weight coef-
ficients. We seek for a minimum of the objective function

(3.9) Fo=AFy + (1= AV,

where A €<0, 1>, the condition (3.7) being satisfied.
In the present work the weight cocflicient A can be subjected to the
modified number N of utilization years of the building as follows:

1
TN+1

The modified number of utilization years is the number of years multi-
plied by a coeflicient expressing the rate of interest and inflation.

The value of the coeflicient A being zero is a result of disregarding the
costs of building materials and construction. The same effect is produced by
assuming the time of utilization of the building to tend to infinity (N — o0).

The assumption of A = 1.0 corresponds to the utilization costs being
disregarded, that is to the assumption that ¥ = 0. Both cases are not
interesting, therefore it is not the entire set of compromises corresponding
to § < A <1 that will be determined, but its part

1 1
2 A» —
Q_A_lﬂl’

corresponding a utilization period of 1 to 100 years:

A

1< N < 100.
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4. SOLUTION OF THE OPTIMIZATION PROBLEM

From the objective function (3.9) we find

@1  F= (Acs F(1- N 245Dce) 2h [(1— s/ 1+ 91? da
i 0

1 i

+ (Aco +(1- )«)R—24SDCE) 2h]p(:v)\/1 +y)? de
¢ 0
+ (Acs - ,\)Rl 24SDce) 2hf 1+ 92 do
0
1 v

+{(catep)ht | et R -0 | (1= A)245Dec | — + D1

F(L = NV 28D, 201~ Nech | (o4 7
0
+(1— A)D,.

Taking into consideration (3.7) we obtain the functional

(12)  F* = As/(l — p()y/1+ ¥, do + Aofp(a:)\/l + 2 de
0 )
-E—AS/\/I +ytde+C+D— E/f)(:ﬂ)p(m)\ll + 4% dz
1) Q

$2) / (31(2) — %2(2)) do — 2\ V/h,

where

Acs + (1 - )—_~ 24.5'ch> 2h,

Dy + (1= \)fuV 248 De,,

1 |4
(Cd + CP)A + ( ——d + ﬁ—(Pp) (]. — A) 24SDCB) E + (1 - A)Dg,

(/\cg (1- ,\)R—2450c6) o,
AD
2(1 — A)eeh.

C =
D
E
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This is an isoperimetric problem of the variational calculus [6]. The
conditions (3.5)—(3.8) enable us to determine the integration constants and
the constant ;.

The functional (4.2) reaches its extreme value, if Euler’s equations

(43) fyly yl + fy;ly' yl + fyl = 07
(44) fyzy yz + fy2y2y2 + zyh — fyg =0,
are satisfied, the symbol f denoting the integrand, that is
1
(45) (As(1 - p(m)) + Aop(m) - Ep(w)ﬂ(:c))—%m—gyi'
14y

+(( Ay + Ay — E8(2)) P p(‘”) — Eps )d‘};’”)) Y _ox =0,

1
(46)  Ai————+ 2 = 0.
1442

The equation (4.5) can be reduced, by substituting

1 dv{z) yy
(4.7) o(z) = —TL =
T g
to the form
dp(:ﬂ) .:w(g;)
" (Aot Ay - Bo(a) ) _ iy 902)
4.5) ‘”)+()( )

Ay(1 - ple)) + Aop(fﬂ) - E’p(ﬂr)ﬂ(fﬂ)
2

T A p() + Aup(2) — Ep(e)o(s)

This is a linear differential equation of the first order. On integrating we
obtain

'0(3:) N 2/\13? + C
A1 p(a)) + Aop(z) — Ep(2)(x)

From the condition (3.5) we find the integration constant C. Because
y1{0) = 0, v(0) = 0, therefore

(4.9)

22404+ C
A {1 —p(0))+ A,p(0) —~ Ep(0)6(0)’

0=
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that is C = 0. Hence

2A1-’E
{4.10) v(z) = A,(1— pla)) + Apla) — Ep(x)8(z)
(4.11) () o

\/1 + ¥ (2)? = A,(1— p(z)) + A.p(z) ~ Ep(z)8(z)

It is easy to show that v(z) is the sine of the inclination angle of the
tangent to the 0.X-axis at the point (z,y1(x)). It follows that the value of
2)1 is limited,

(4.12) 1244} < A1 — p(2)) + Aop(z) — Ep(z)0(z) ’

for any z € (0, z,).
From (4.7) we find
) = A

Because g} (z) < 0 and v(z) < 0 for z € (0, 2,), we have

(4.13) i(z) = —1%
Similarly, on integrating (4.6), we have |
(4.14) v(e)  _ 2ht
S
that is
(4.15) ) = T

Similarly to the function v(z), the expression (2A1z/A;) Is the sine of
the inclination angle of the tangent to the 0.X-axis at the point (z,y2(2)).
It follows that the value of A; is limited:

(4.16) 1204} < (As/za).

Because y4(z) > 0 for z € (0,2,], we have

(4.17) ") = 7o /“;1)2 —.



OPTIMIZATION OF THE FORM OF A BUILDING WITH AN ARBITRARY BASE 369

Hence, on integrating, we obtain

(4.18) va(@) = —/(Ao/2/M1)2 — 22 + Ch, .

From the condition (3.8) y2(x) = 0 we find the constant Cp,:

0= —\/(AS/Q/M)Z — 22 + Cp,  therefore (g, = \/(/13/2/)\1)2 — 22,
Hence

(419)  wa(e) = —/(A/2/0)2 - 32 +\(Au/2/ M) - ot

It is seen that

(yg(.’n) - \/(A3/2/).1)2 - a:g)2 +a? = (4,/2/M)%

This is an equation of a circle with its centre at the point 02(0,Cp,) and a
radius Ry = A,/2/\.

The area of the segment of that circle bounded by the 0X-axis, is, for
'y2(m) < 0:

(120)  S=2 [ @)
)

= 27(\/(/-13/2/)\1)2 — a2 —\[(As/2/ M) - mg) dz

= (As/2/A1)? arcsin (m“js’\l) - :Ea\/(As/Q/)\l)2 —z2.

Integration of the Eq.(4.11) requires assumption of the form of the func-
tion p(x). Then, the integration constant will be determined from the con-
dition (3.8) y1(z.) = 0 and the parameter A; — from the condition (3.7).

4.1. Solution of the optimization problem for assumed forms of the func-
tions 6(x) and p(z)

It is assumed that the function #(z), the value of which is 8, on the
south facade and #; on the east or and west facade, can be approximated
by a second order polynomial. We obtain

0(z) = 01 — (61 — 02)(wa /) (2 /7a)?,
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where r is the abscissa, for which the tangent to the line i1 (x) is parallel to
the 0Y -axis.

Tt is assumed that p(z) is a trinomial square. Taking into consideration
the symmetry condition we find that p(z) = az? + ¢. On denoting p(0) = po
and p(z;) = po, we find

(4.21) p(2) = po — (o — Pa)(@/2a)? -

On substituting the expressions for p(z) and 6(z) into (4.13), we obtain
the relation

2A1.’B

(4-22) niz) = m s
where
M = A, + (po — (30— a)(@/22)")
x (Ag— A — E (61— (61 - 62)(wa/T)(2/7a)?]) -

Because the form of the function () cannot be determined from the
Eq.{(4.22) in an analytical manner, the function v} (z) will be approximated
within the interval 0 < z < z, by the polynomial

4.23 ¥ (z) = Bawr + Byz® + Bga®.
1

The coefficients Bs, By, Bs can be determined by the method of smallest
squares. On integrating we find

(4.24) yi(2) ~ Byz?/2 + Baz*[4+ Bez®/6+C.
The condition (3.8) will be used to determine the integration constant
0 ~ Byz?/2+ Byzl/4+ Bezl /64 C,
that is
(4.25) n(z) ~ Bo(z? —a2)/2+ Ba(z* — 22)/4 + Be(2® — 28)/6.

To determine the values of the coefficients Bz, By and Bg, the knowl-
edge of the constant 2); is necessary. This quantity will be determined by
iteration from the condition

(4.26) £, = |51+ 52 = 5] £ €50,
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where

La

(4.27) S1 o 2]_1;1(:1:) dz

1]
~ zf (Ba(a® — 22)/2 + By(a® — 28)/4 + Bo(a® — 2%)/6) da
0

= —2 (By3/3 + Byal/5 + Beel/7),

Sz is determined by the Eq.(4.20) and c,, denotes the tolerance of calcula-
tion of the area.

If the inequality (4.26) is satisfied for the values of ) and S, thus de-
termined, the calculation work may be finished. If this inequality is not
satisfied and the expression under the modulus sign is positive, then, for the
new calculation, the parameter 2); should be reduced.

The value of the parameter 2); thus obtained determines, in an unam-
biguous manner, the lines () and y,(%), thus making us able to determine
the functions Fy, Fy and F’. To do this we must calculate the integrals:

La

/\/1«1—31{2 dz, fp(m)\/l-l—yiz dz,

0 0

f\/l + yh? da, /ﬁ(w)p(m)\/l + 2 da.
0 0

Making use of the Eqs. (4.10), (4.13) and (4.23), we obtain

1 yi(z)
4.2 Vit+u® = ) - !
( 8) + yl 1= ’U2($' ’U(:E)
_ Bg + B4IL'2 + BGQ.A
- 2

(As + p(a (A, — A — EO(z))),

and, for the functions p(z), 8(z}, which have already been assumed,

By + Byz? + Bga! ’
429 1447 = 22t “2"’:'\1+ 5% (g + oga? + ag?)

fal 1/2/)\1 (Bgao + ﬂfz(Bgaz + B‘la’o) 4 334(_820:4 + Byag + Bﬁao)
+336(B4CY4 + Bgay) + -’883604)a
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where

Qg = As‘l‘po(Ao_As_Eel):

s = —L (00 Ao = Ay = B8) ~ B0~ 0o/ 75

[3=]

1
oy = —;“3—(1?0 — pa)E(01 — 82)(2a /)",
Hence
(4.30) /\/ 1+ yig dx ~ 1/2/)\1 (Bgaoma, + (Bgag + B40‘0)IL'§/3
0
+(Baoy + Byaz + Bgao)as /5 + (Byoy + Bea)zl /7 + 36064:32/9),

¥ Po—Pa
(4.31) /p(a;)\/l + % de e 1/2/ M (Bza'o% (Po -3 )
0

+(Byaz + Byag)z? ('Pa/3 P Pa)

5
+(Byay + Baaa + Beao)z) (p0/5 — ?%p“)
o~ Fa Po — Pa
+(Baog + BGO"?)"EZ (p0/7 - P__g_?_) + BGG4$2 (Po/g - T)) s

(4.32) fﬂ(m)p(:n) 14+ 9? de

~ 1/2/)\1(3206070% + (Bz(e270 + cov2) + Bacoye)zl /3

+(Ba(ogvo + azy2 + @o74) + Balazyo + aoy2) + BGGO7O)$2/5
+{Ba(aayz + az7s) + Balaayo + 0272 + ao¥s) + Be(cavo + agy2))ey /7
+(Baaays + By(aavz + agv4) + Be(aayo + aav2 + 0074))972/9
+(Byagra + Be(@ayz -+ azra))ag’ /11 -+ 3604743313/13)3

where

Yo = pOBh
1
Y2 = _;;5 (pa — Pa — (91 - 02)(2:(1/7.)2) »

a

Y4 = _%(po - pa.)(al - 92)($G/T)2'
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From (4.30) we find

(4.33) /\/1 + it do
/ |

= A2/ M A, .
= | AT =t 1 3, tresin@hize/A).
0

The above integrals having been determined, we find from (3.3), (3.4)
and (3.9) the functions Fy, F7 and F.

5. NUMERICAL EXAMPLE

The present calculations have been performed with the IBM PC 12 MHz
computer using the Borland International EUREKA software package. The
data assumed for computation were as follows:

cs = 400{thousand zl/m?], ¢, = 300[thousand z1/m?),
eq = 320[thousand zl/m?], ¢, = 210[thousand zl/m?],
c. = 0.6[thousand z1/kWh],
1/Rs = 0.72{W/m?%K], 1/R, = 2.6[W/m?K],
/Ry = 0.44[W/m?K], 1/R, = 0.57[W/m?K],
o4 = 1.1, ¢y = 0.9,
SD = 4000K day, h = 1m,
po = 0.3, Pa = 0.2, _
61 = 350[kWh/m?], 0, = 120[kWh/m?],
T, = 0.8m, S = 1.0m?, €50 = 0.01m?2,

The values of the parameter A used for computation were
A=1/2, 1/11, 1/26, 1/51 and 1/101,

which corresponds to the modified utilization times of the building, ex-
pressed in years, N = 1, 10, 25, 50 and 100.

For such assumptions we find, from (4.12) and (4.16), the maximum value
of the parameter |2A;]. '

The points of the set of compromises which have been determined are
shown in Fig.2 and the corresponding forms of the bases of the buildings
in Fig. 3.

The final results of computation are quoted in Tahb. 1.
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F1G. 2. The set of compromises and indication of the perfect solution.
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Fi1G. 3. The form of the optimum base of a building for various values of the parameter A,
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Table 1. The results of computation.

A [ 1/2 1/11 1/26 1/51 1/101
I2}) [-] | 4503 147.4 102.5 86.4 78.2
o/t [-] 0.855 0.830 0.794 0.777 0.767
z [m] yi(z) [m]

0.00 (.480 0.560 0.590 0.624 0.654
0.08 0.476 0.555 0.583 0.616 0.645
0.16 0.464 0.538 0.563 0.592 0.618
0.24 0.444 0.511 0.530 0.554 0.575
0.32 0.416 0.473 0.484 0.501 0.516
0.40 0.380 0.423 0.426 0.436 0.446
0.48 0.334 0.363 0.358 0.362 0.366
0.56 0.277 0.291 0.281 0.279 0.279
0.64 0.206 0.207 0.195 0.190 0.189
6.72 0.116 0.111 0.111 0.097 0.095
0.80 0.000 0.000 0.000 0.000 0.600
B, —1.2471 | —1.7165 | —2.1284| —2.5067 | —2.8517
By [-] +0.1524 | +0.1144 | +1.0957 | +42.1993 +3/3103
Be —2.1999 —0.5205 ~-0.4906 —1.0693 —1.8443
o ] 0.980 1.005 1.078 1.123 1.151
Chr, 0.567 0.608 0.723 0.788 0.827
S 0.5375 0.5533 0.6123 0.6314 0.6500
Sz [mg] 0.4640 0.4434 0.3939 0.3699 0.3556
S 1.00%5 0.9966 1.0061 1.0013 1.0058
F 1229.1 1219.1 11991 1189.2 1183 .4
F, [10002]) 66.6 68.4 74.1 76.3 77.5
F 647.9 173.0 117.4 98.1 88.5

6. INFERENCES

The optimization problem of the form of a building with an arbitrary base
has been solved by variational methods. The solution obtained is composed
of a circular segment bounding the northern part of the building and a curve
described by a sixth degree polynomial bounding its southern part. The ratio
of the area of the southern part to that of the northern part depends on the
gsize of the windows, the density of sun radiation energy and the ratio of
unit costs of the windows and walls. They increase along with the number
N, which determines the modified utilization time of the building. In the
present problem they are

Spd/Spn = 1.1584  for N =1 and
Spd/Spn = 1.8279 for N =100.
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