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MAGNETOHYDRODYNAMIC NATURAL CONVECTION FLOWS
RESULTING FROM THE COMBINED BUOYANCY EFFECTS
OF THERMAL AND MASS DIFFUSION

AA. SAMAAN and F.N.IBRAHIM (CAIRO)

This paper presents a study of laminar doubly diffusive free convection flows of a vis-
coelastic fluid past an oscillating vertical plate in the presence of a transverse magnetic
field. The two buoyant mechanisms are the thermal diflusion and species diffusion. The
governing conservation equations of momentum, energy and concentration are nondimen-
sionalized and solved analytically. Effects of Pr (Prandt]l number), Sc (Schmidt number),
Gr (Grashof number), Gm (modified Grashof number), M (magnetic number), w (fre-
guency parameter) and k (viscoelastic parameter) upon the velocity field, the shear stress
on the plate, the temperature field and the concentration field are discussed. The results
show many interesting aspects of the complex interaction of the two buoyant mechanisms.

NOTATION

A, B quantities given by Egs. (2.18)1 2,
Ai, B; (i =5,..,10; § =1,..,b) quantities given by Eq.(2.31),
Bis, Big, Z1,Z2 quantities given by Eq.(2.38),
By strength of the applied magnetic field,
C}, specific heat at constant pressure,
' concentration of the diffusing species,
D' coefficient of chemical melecular diffusivity,
Gr Grashof number,
Gm modified Grashof number,
g acceleration due to gravity,
k viscoelastic parameter,
k' coefficient of the viscoelastic term,
M magnetic number,
Pr Prandtl number,
Sc¢  Schmidt number,
T’ temperature of the fluid,
t' time variable, .
t,u, ¢ dimensionless time, velocity and concentration, respectively,
u' v’ velocity components in z', 3’ directions,
u1,e1 functions representing the velocity and temperature and depending
on 7 only,
z' distance along the plate,
y' distance normal to z’.
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CREEK SYMBOLS

parameters given by FEqs. (2.21}1,2,

volumetric coefficient of thermal expansion,

volumetric coefficient of expansion with concentration,

thermal conductivity,

dimensionless temperature,

function that represents the temperature and depends on % only,
coeflicient of viscosity,

the density,

[T . .
= — kinematic viscosity,

complex quantity given by Eq. (2.27),
shear stress, Eq. (2.34),

dimensionless shear stress, Eq.(2.35),
dimensionless distance,

electrical conductivity,

frequency of fluctuation,

frequency parameter.

cfasaty v SR PaiT/wR

SUBSCRIPTS

imaginary part,

maximum value at the plate,
real part,

condition at the plate,
condition far from the plate.

88“83-&.

1. INTRODUCTION

A viscoelastic fluid is a type of fluid which possesses both the appreciable
elasticity of shape and also viscous properties. This property may be con-
ferred on the liquid, for example by the addition of long flexible molecules
in solution or by dispersing solid or liquid particles. Consequently, when the
flow of a viscoelastic fluid in the boundary layer is studied, it is necessary to
take into account the variation of concentration with temperature. In many
natural and technological processes, temperature and concentration differ-
ences occur simultaneously. Such processes occur in cleaning operations,
drying, crystal growth, solar ponds and photosynthesis. The term doubly
diffusive convection is now widely used for all the processes involving simul-
taneous thermal and concentrations gradients. In a recent survey, OsTRACH
[10] classified doubly diffusive convection based on the orientation of thermal
and concentration gradients with respect to gravity vector. GEBHART and
PERA [6] studied laminar natural convection flows driven by thermal and
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concentration buoyancy adjacent to flat vertical surfaces. They presented
an excellent summary of this class of doubly diffusive natural conveciion.
An analytical solution using the local nonsimilarity method for natural con-
vection heat transfer from a vertical surface to a thermally stratified fluid
was obtained by CHEN and EICHHORN [4]. They also present experimental
results and a summary of related work of other investigators. A numerical
study of laminar doubly diffusive free convection flows adjacent to vertical
surface in a stable thermally stratified medium has been given by AnGI-
RASA and SRINIVASAN [1]. Their results show many interesting aspects of
the complex interaction of the two buoyant mechanisms. The unsteady free
convection flow of a Newtonian fluid in the presence of a magnetic field has
been studied by GuPTA [7], CHaWLA [3], SOUNDALGEKAR [11] and MIsHRA
[9]. The unsteady free convection flow of an incompressible electrically con-
ducting viscoelastic fluid past an oscillating plate in the presence of a trans-
verse magnetic field has been studied by IsrRAHIM [8]. ELBASHBESHY and
IBRAHIM [5] presented a study for the flow of a Newtonian viscous incom-
pressible fluid along a heated vertical plate, taking into account the variation
of the viscosity and thermal diffusivity with temperature.

In this paper a study is made for free convection flow of a Walter’s vis-
coelastic fluid (1964) past a vertical plate, whose velocity, temperature and
concentration fluctuate with time harmonically. The effects of the Prandtl
number Pr, Schmidt number Sc, Grashof number Gr, modified Grashof num-
ber Gm, magnetic number M, frequency w and the vicoelastic parameter
k on the velocity, skin friction, temperature and concentration have been
studied. Here we continue the problem discussed by IBrAmIM [8] taking
into account the variation of concentration with temperature.

2. MATHEMATICAL ANALYSIS

We consider two-dimensional, unsteady, magnetohydrodynamic free-con-
vection and mass-transfer flow of a viscoelastic and electrically-conducting
fluid along a vertical flat plate. The velocity, temperature and the concen-
tration of the fluid along the plate fluctuate with time harmonically. All the
fluid properties are assumed constant except that the influence of the den-
sity variation with temperature is considered only in the body force term. A
magnetic field of uniform strength is applied transversally to the direction
of the flow. The magnetic Reynold’s number of the flow is taken to be small
enough so that the induced magnetic field can be neglected. The origin of
the coordinate system is taken to be at any point of the {lat vertical infi-
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nite plate, the z’-axis is chosen along the plate vertically upwards, and the
y'-axis perpendicular to the plate, as shown in Fig. 1. In the special case
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Fia. 1. Physical coordinate system.

when the flow is independent of =’ and the velocity normal to the plate v
vanishes ewerywhere; the unsteady free convection flow of an incompress-
ible viscoelastic fluld in the presence of a magnetic field is governed by the
following equations of momentum, energy and mass transfer (IBRAHIM [8],
ANGIRASA and SRINIVASAN [1])

o’ 9! 93y’

] _ T AN 2.0 ot

(21) P 8t, - g(poo P) r:”'-BOM + ru'aylz l“ at,ayrz ’
ar’ o1’

(2.2) P’C;W = 7'5?;,77
oc! grC!

2.3 = D'—,

( ) 8?)’ 8y12

where p' is the density in the boundary layer, p!, is the density far away from
the plate, «’ is the velocity in the 2'-direction, ' is the time variable, o is
the electrical conductivity of the medium, By is the strength of the applied
magnetic field,  is the coefficient of viscosity, &' is the coefficient of the
viscoelastic term, g is the acceleration due to gravity, C} is the specific heat
at constant pressure, 7/ is the thermal conductivity, 7" is the temperature
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of the fluid, €’ is the concentration of the diffusing species, and D' is the
coeflicient of chemical molecular diffusivity. In the energy equation (2.2) the
terms representing viscous and Joule dissipation are neglected as they are
really very small in free convection flows.

The appropriate boundary conditions are

aty' =0:

P b dwt
U = u,e ,

(2.4) T/ = T, = Tl + (T = Th,)é",
C' = Cly = Cly + (Chy — CL)E,

asy — oo
(2.5) u' 0, T — 17, ¢ = CL,

where u!,, T}, and (], are the maximum velocity, temperature and concen-

“tration of the fluid at the plate, respectively, 77, and C?, are the correspond-
ing values at the plate and w' is the frequency of fluctuation. To eliminate
the term g(pl, — p) from Eq. (2.1}, we use the equation of state (GEBHART
and PERA [6])

(2.6) (Poo = P") = p'B(T" - To,) + p'B(C" — CL),

where § is the volumetric coeflicient of thermal expansion, #* is the vol-
umetric coefficient of expansion with concentration. Consequently, Egs. (2.1)
and (2.6) give
ou’ - 0%’ Pl
Uy 't N 1 e o AR Y I Y
(2-71) Pl = P9B(l =T ) +p'gA™(C7 = Coo) —o Bou +#ay,2 k iy
Hence we observe from Eq.(2.7) that the two buoyant mechanisms aid eacﬁ
other when the quantities S(T" — TZ,)) and S*(C’' — C,) have the same sign,
and oppose each other when they have opposite signs.
We introduce now the dimensionless quantities

Yy, e w'?t! o vy o
= T4y’ wt '’ u_u;n’
T —T! C'-c! puC
0:T" Tof’ s7 Coro’ Pr= rp’
(2.8) m -~ ‘oo m~ “oo v
_ v _ vgB(Ty, — TE) _ vgB(Chn — C&)
Sc= A GI‘_—B—_—" Gm = T3 ?
D (1] U
. o B3y P ku? L, B
T opiyf2? T Au2at? Y
Pty vep P
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Equations (2.2), (2.3) and (2.7) together with the boundary conditions (2.4)
and (2.5) under the transformation (2.8) reduce to

v 1 0u Fu

. - — = _k—— = —QGrf —
(2.9) 55— 1 3~ M kg = ~Gr0—Gm, |
0% 1 09 _ :
(210) 577—2“ :L'Pra =0, ]
§:C 1, aC

associated with the boundary conditions.

(2.12) at p=0: wu= evt, ¢ = e, C =i,

(2.13) as p—oo: u=0, 8 =0, C=0.

In order to solve the partial differential equations (2.9)—(2.11) subject
to the boundary conditions (2.12) and (2.13), we assume that (IBRAHIM 18])

@14) (0= wm)e,  On 1) =0, (1) = Cr(n)e
Substituting Egs. (2.14) into Eqs. (2.9)—(2.13), we get

(2.15) (1- zkw)d - (% + M) wy = —Grf - GmCy,
a2, wPr

2.1 diid 0, =

( 6) dnz 4 1 (}!
d*Cy  iwSc

2. it S = 0.

(2.17) = L C1=0

The boundary conditions for 1,6 and 'y are

(218) at n = 0 : Uy = 1, 91 = 1, 01 = 1,
(2.19) as g —oo0: w =0, #=10, Cr =10

"The solution of Eqs. (2.16) and (2.17) subject to the boundary conditions
(2.18)3,3 and (2.19)23 is given by

(2.20) g, =  and Cp=e*,

where

(2.21) a = -;» wPr  and o = % iwSc,
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the real and imaginary parts of o = a, + ia; and o' = ol + il are

(22 w=a=yST ad ah=af= [

From Egs.(2.14)2 3 and (2.20)

(2.23) f =elii=en)  and O = elwt-a)

the real and imaginary parts of @ = 8, +i8; and C = C, + iC; are given by
(2.24) 0, = e cos(wl — a;7) | and 0; = e " sin(wit — a;7),
(2.25) C, = e~ cos(wt - ain) and | C; = e o sin{wt — afn).

Substituting from Fqs. (2.20) into Eq. (2.15) and using the boundary condi-
tions (2.18); and (2.19), we get

= _ e—om
(2.26) w3 =e M4 Gr (e ‘ )

[a2(1 —wk) ~M — izw]

Gm (e—’\" - e“"‘"’)

3

+ i
[a'z(l — twk) — M — Zzw]

where
A=A+ 1A,

1 1" w(1 + 4MFE)
2.27 AT = [— A A2 4B ] s Ai = —_— 7
(2.27) 2 ( + + ) 8A,(1 4+ w2k?)’

1 2L
(2.28) A= M_—Zwk B = [M ’
1+ w?k? 8(1 + w2k?

The real and imaginary parts of w3 = uy, + iuy; are given by

AsBs + AaBﬁ)
AL+ AL )

A5_86 — A5B5>
A+ AL )

(2.29) . U1, = €M cos Ain + (

(2.30) Uy = —e M7 gin )\in + (
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where
: w ' w?
As = —dola 2 (1 — kPw) + E(af + o)1 - 4Mk) + M? - 16
' ' 1
Ag = 8alatkw — (o + af) (QM + iwgk) + %Mw ,
Bs = GI‘(A'?Bl + A8B2) + Gm(Ang-l- A1QB4),
Bg = GY(A'TBQ - AgBl) + GIII(AQB4 - A10B3),
Ar = e " cos \;np — €77 cos a1,
(2.31) 7 n U]

Ag = "M sin A — e~ %" sin ey,
I
— - !
Ag = e cos Ay — e " cos oy,
i . —atn .
Ao = e~ gin \jp — e~ * " sin o},

&
By = 2a%kw - M,  By=20 - e

By = 2a%kw — M,  By=2a?- "Z’.

From Eq. (2.14); the real and imaginary parts of the velocity u = u, + tu;
are given by

(2.32) wy = Uyy COSWE — 1y; SINWE,
(2.33) w; = g coswt + 1wy, sin wi.

The physical quantity of primary interest is the shear stress on the
plate 7/, which is defined by

! Y
(2.34) = [ ow _ o O ] .
y'=0

Foy — " avay

Equation (2.34) can be written in the dimensionless form by using Eqs. (2.8)
and (2.14)y, as

d Ju 3?u . du
935) r=—— =[5 k| =eHl-ike (-‘) .
(2:35) 7 (3?7 atan)nﬂ =)\ )

From Egs. (2.29) and (2.30) the real and imaginary parts of r = 7, +im; are
(2.36) 7 = Zy (coswt + wksinwt) — Zg (sinwit — wk cos wt),
(2.37) 7 = Zy(coswt + wksinwt) + Z1 (sinwt — wk coswt),

where

AsBys + AGBIS) ' (ASBIG - AGBIS)
7 = A Zy= Y
= (e = " A A
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Bis = Gr[Bi{a, — A:) + Ba( i — )]

(2.38) +Gm [By(ay — A,) + Ba(Ai — al)],
Bis = Gr[By(er — M) — By(X; — a,)]

+Gm [By(a) — A,) — Ba(\ — all].

v

3. RESULTS AND DISCUSSION

In order to have a physical point of view of the problem, numerical cal-
culations are carried out for different values of the dimensionless parameters
(or numbers) of the flow. These parameters of the flow are k (viscoclas-
tic parameter), M (magnetic number), Gr (Grashoff number), Gm (modi-
fied Grashoff number), Pr (Prandtl number), Sc (Schmidt number) and w
{frequency parameter). The vicoelastic parameter k represents both the
appreciable elasticity of shape and also the viscous properties of the fluid.
The Grashoff number Gr represents here the effects of the free convection
currents due to the difference between the maximum temperature of the
flat plate and the temperature of the free stream. The modified Grashoff
number Gm represents the effects of the free convection currents due to the
difference between the maximum concentration at the flat plate and the
concentration of the free stream. -

The results of calculations are presented in Figs.2-8 and Table 1.

Figure 2 shows the variation of u, with k¥ when Pr = S¢ = 2, w = 10,

Table 1. The variation of r, with the parameters of the flow.

Pr=8c=2 Pr=Sc=2 Pr=Sc=2 Sc=2 Pr=58c=2
Gr=Gm =10 | Gr = Gm = 10 Gr =10 Gr=Gm=10| Gr=Gm = 10
M=3 k=201 k=01, M=4|k=01 M=14 k=01
wt:% wt=:} Lut=-2:lE wi:% M=3
k T M Tr Gm Tr Pr T wi T
0 3.9235 0 4.9315 0 0.4411 1 3.3751 0 1.3510
0.1 3.3961 1 4.4672 10 2.9334 2 2.9034 cwf4 3.3961
0.2 3.1523 2 3.9282 20 5.3658 3 2.6328 wf2 3.4518
0.3 2.9166 3 3.3961 30 7.8281 4 2.4469 3x/4 1.4855
0.4 2.6731 4 2.9034 40 | 10.2904 5 23074 | « —1.3510
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a2} L\

Fiq. 2. Velocity field u, against 7 for different values of k for Pr =8¢ =2, w =10,
wt = {“’ Gr= Gm =10 and M = 3.

wt = E, Gr = Gm = 10 and M = 3. As shown in Fig. 2, the velocity

increases near the plate with a decrease in k. This result contradicts that
obtained by IBraHIM [8] for the case when the concetration is neglected.
This shows that the concentration currents increase the velocity of a New-
tonian fluid (k = 0) more than that corresponding to a viscoelastic fluid
(k > 0). Numerical studies show that the variation of u, with Gr is similar
to the variation of u, with Gm given in Fig.4. From Figs.3-5 it is clear
that the effects of the magnetic number M, the Grashof number Gr and the
Prandtl number Pt on the velocity field for the viscoelastic fluid are similar
to that for a Newtonian fluid (MissrA and Mo#APATRA [9]). The positive
value of the velocity u, at any plane parallel to the plate and near to it
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F1G. 3. Velocity field u, against 5 for different values of M with Pr = Se = 2, w = 10,
wt = %, Gr=Gm =10 and k = 0.1.

increases as either Gr or Gm increase and either M or Pr decrease, respec-
tively. From Figs.6 and 7, we can see that as the time # increases, both
the temperature of the plate 8, and the velocity of the plate u, decrease.
Consequently the fluid adjacent to the plate will be heated and its velocity
in the direction of the plate will be greater than the velocity of the plate
itself. It can also be scen that regions of high velocity correspond to regions
to high temperature and concentration and vice versa. From Fig. 8 it can be
seen that the temperature of the fluid 8, increases as the Prandt]l number Pr
decreases. Figures 5 and 8 emphasize the fact that regions'of high velocities
correspond to regions of high temperature and concentration.

Table 1 gives the variation of the dimensionless shear stress 7, with the
parameters of the flow &, M, Gm, Pr and wt for w = 10. Thus 7, decreases
as one of the parameters k£, M and Pr increases, keeping the other two



FIG. 4. Velocity field u, against » for different values of Gm with Pr = Sc = 2, w = 10,
wt=mn/4, Gr=10,M=4 and £ = 0.1.
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TG, 5. Velocity field «, against g
for different values of Pr with
Sc =2, w = 10, wi = =/4,
Gr=0Gm =10, M =4
and £ = 0.1.
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Fia. 6. Velocity field ur against 5 for differeni values of wt with Pr = Sc = 2, w = 10,
Gr=Gm=10,M=3and k =0.1.

parameters constant. 7, increases with the increase of either Gr or Gm,
. T . .
keping the other parameter constant. For 0 < wt < 5> Tr increases with the

. . L3 . .
increase of wt, while for — < wt < w, 1. decreases with the increase of wi.

The negative sign of 7, when wt = 7 means that the velocity of the fluid
particle on the plate will be in the negative direction of the z'-axis. The
magnetohydrodynamic unsteady free convection flow of a viscoelastic fluid
along a vertical plate, when the concentration is not taken into account, can
be derived from the above analysis by taking Gm = 0.
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FIG. 7. The variation of 6, with # at different time instants wt with Pr = Sc = 2,
w=10,Gr=GCGm =10, M =3 and & = 0.1.
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FiG. 8. The variation of ¢, with 5 for different values of Pr with Sc = 2, w=10,
wt = :}, Gr=GCGm=10,M =4 and &k = 0.1,
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