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APPLICATION OF THE CLASSICAL RAYLEIGH-RITZ METHOD
IN DYNAMICS OF CIRCULAR ARCHES

B. OLSZOWSKI (KRAKOW)

The paper deals with Rayleigh-Timoshenko and Bernoulli-Euler models of circular
arches with extensible or inextensible axes clamped with free radial sliding at both ends.
The general algebraic equation defining the eigenproblem has been derived from Hamil-
ton’s principle. Spectral properties of the models were analysed by means of the classical
Rayleigh-Ritz approximation method. Eigenfrequencies as functions of the subtending
angle of the arch are plotted and tabulated.

NoOTATION -

U=TU/L radial displacement,

W == W/L tangential displacement,

" &=@& angular displacement,
Q= L*Q/(EI) shear force,
N =IL*N/(EI) axial force,
M =LM/(EI} bending moment,

p* = pAL*?/(EI) circular frequency,
f=dp/x® comparative frequency,
r = J/(AI?) moment of rotary inertia,
£ coordinate measured along the axis,
200 subtending angle of ihe arch,
m =1, vy = EI{(I*EA), vs = EI{(L*kGA).

1. INTROPUCTION

Analysis of circular arches with hinged ends and constant length of the
axis has revealed [6] a considerable complexity of their eigenspectra treated
as functions of the angle . Variation of this angle changes the positions
of all the eigenfrequencies and their mutual distances. As a consequence,
for some particular values of «, 'multiple or very close eigenfrequencies may
appear. These facts manifest the existence of some behavioural singularities
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of the vibrating arches being at the same time not only quantitative but also
qualitative in their nature [5/I11]. Therefore, there seems to be a reasonable
need to continue the analyses of the singularities being of interest from both
the cognitive and the practical points of view. The latter, for instance, has
the essential meaning when the eigenproblems have to be solved by means
of a,ppromma,tlon methods.

The aim of the present paper is to apply the classical Rayleigh-Ritz
method to the solution of dynamical eigenproblems for three fundamental
modeles of circular arches: 1) Rayleigh-Timoshenko (RT), 2) Bernoulli-Eu-
ler with extensible axis (BEe), and 3) — with inextensible axis (BEi). The
essential advantage of this application arises directly from the use of global
approximation technique, because it simply avoids the modelling defects
(element locking and spurious modes) caused always by the local a,pprom-
* mations commonly used in the FEM [1,2].

) The ‘numerical analysis of the eigenfrequencies was performed for arches
clamped at both ends, with clamps allowing for frictionless radial sliding.
Proper selection of the global Ritz approximation basis [3,4] yields, in this
case of boundary conditions, accurate numerical results, i.e. not disturbed
by any approximation errors. The eigenspectra were treated as functions of
the angle 2a subtended by the arch. The results of computations enabled
verification of previous outcomes obtained for circular rings and published in
[5/1).. At the same time, a convenient reference point was set up for further
analyses.

9. FORMULATION OF EIGENPROBLEMS
2.1. Model RT

Let us consider a circular arch with constant length 21 (Fig.1) and
the state of displacement described by three independent functions w(s, 1),
%(s,t) and ¢(s,t) [5/1]. The kinetic and potential energies of the vibrating
arch are defined by the formulae

. L '
, 1 . — .
T = 5/(,{1.A'w +MAU +PJ9°2) ds,

U : / [Eir(go’)2 +- EA(—’ ' u/R)2 +kGA( + w/R | @)2]
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Fia. 1.

Confining further considerations to the stationary and harmonic vibration
only, we assume that

W(s,t) = W(s)sin(wt), (s, t) = TU(s)sin(wt), ¢(s,t) = &(s)sin(wt).

After introduction of some dimensionless quantities (see Notation) we obtain

1
= %“Efrp cos”(wt) f RY(&)pR(¢) dE, p = diag(11r),

U= gD f (BR(E) o(OR(E) dE, @ = ding(or 03 03),

where
0 0 9 W(§)
21y 8=|0 -a 0 |, 9=d/dz, RE=]| U®
a O -1 &(¢)

From Hamilton’s principle
3,
sH :/(6T—6U)dt =0

after integration over the time interval [fg, ] = [¢, t—}- 27 /w] covering one
period of vibration, it follows that

(22) / [(aaR(é))Ta(aR(f))—pzaRT(e)pR(f)] -

-1
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Equation (2.2) sets up a basis for the numerical solution of the eigen-
problem of a vibrating arch by means of an approximation method.

In what follows use will be made of the classical Rayleigh-Ritz method.
Let us assume that ‘ :

. W) o 0 a
(2.3) R(&)=N{)q=| 0 U ¢© b |,
1] e c
where
W(‘f) = [Wl(f)a W?(f)a rery Wn(&)]r
U(E) = [Ul(g)v U2(E)7 ey Un(é)]a

B(6) = [$1(6), ¢2(8)s -+ $alE)]

represent the sets of admissible functions. _
After substitution of Egs. (2.1), (2.3) into Eq.(2.2) one obtains

1
(2.4) { [ [@enee(em(e)) - PPN (6N d&} q=0

—1

and finaﬁlly
(2.5) (S—p’B)q=0, SsT=8, B'=B,
where '
gea Sab gac I 0 0 a
S=|s g st B=| 0o B® 0}, q=|b},
gee Scb gee 0 o Bee c

8§ = o, <W’,W’> +O£20'3 <W,W>,

S = _—ag, <W/,U> +aoz <W,U'>,
8% = —aoy<W,®>,
(2.6) s~ a0, <U,U> 403 <U, U >,
gt = —o3 < U, @ >,
§° = o0y <®, P> o3 <P, P>,
B* = <W,W>, B?=<U,U> B*=r<®,®>,

and from the definition
1
<F,G>= [FO6E®

-1
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2.2. Model BEe

In this case we neglect the rotary inertia of the cross-section (J = 0)
and the shear deformation of the bar (kGA = 00). A kinematic constraint
imposed on its state of displacement has the form of the differential equation
T4+W/R~p = 0[5/1]. In consequence, the energies T and U/ are now defined
by the formulae '

L :
1 — 2 -2
T = 5[(mAw +mAu)ds,
L :
1 L
v = 5] [EI(T’+@’/R)2+EA(W_WR)] ds.

bt

The reasoning analogous to the foregoing one leads us again to Eq. (2.5),
but this time |

' wie) wE o ][a
R = = N = )

(®) [ s } (€)a [ o ue ||
ad 32 (23] 0
gaa Sab . Ree 0

(27) S = [ Sba Sbb } ? B = ,: 0 Bbb ] 7.

59t = (0201 + 02) <W' W'>,

S* = ag <W,U"> —agy <W',U>,

S = o1 <U"U"> a0, <U,U>,

B* = <W,W>, BY=<UU>.

2.3. Model BFEi

The constraint condition of axial inextensibility of the bar reads @’ —
/R = 0, but it does not allow to eliminate any of the unknown functions
from considerations. Both of them appear in the formula

L
T= % / (uﬁﬁz o+ ,ﬂ%ﬁ) ds,
—T. .

and have to be treated equivalently.
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In order to fulfil the constraint condition, we will handle the problem
using the concept of Lagrange’s multiplier. Let us use the modified function
L o
L ,
U=s jf [EX(@" + @'/ R + @ — U/ B)] ds
. kA ’ o
containing an additional term with the unknown Lagrange’s multiplier A({) =
N(£) being the axial force. This term may be interpreted as the work done
by the axial force on the elongation of the axis.
Introduction of the dimensionless quantities leads to the following for-
mulae:

1
= it Jorr
-1
1EI r
U = st [ [+ W) £ AW - )] d(e),
-1
M2
A. — Ej_‘ .

By means of Hamilton’s principle we obtain the equation
1

CONN| {p2(aw-w 1 6U-U) = o1(6U" + a8W')(U" + aW")

_% [6A(IT_’/)— al) + (6W' - aﬁU)A]} d(£)=0

being the stationarity condition of the extended functional H. Making use
of the approximations '

W) =W(Ea, UE)=UEb,  A€)=Al)e,
we may write Eq.(2.8) in the form (2.5) again, but with

5% = 0’101.'2 (W’,W’>,
Sa.b 2 i <WI,UH>’

1

. Sac - 5 <W’,A>,
ghb o1 <UH’UH>’
1 ° .

gt = —5e<U,A>,
SCC = 0,

B = <W,W>, B® =<U,U>, B*=0.
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The eigenproblem (2.5) is now of a saddle-point-type because, in addition
to the displacement-type variables a and b, it contains also the force-type
variables ¢. To handle the eigenproblem of BEi-model in the standard way,
let us first perform such a "symmetrical” elimination of the redundant un-
known ¢, which leads to a modified, pure displacement-type eigenproblem,
with positive definite matrices S and B representing the elastic and iner-
tial properties of the arch with the active kinematic constraint, i.e. with a
completely inextensible axis. This procedure is shortly described in Sec. 3.3.

3. NUMERICAL SOLUTIONS

The eigenproblems were analysed for clamped arch segments, the clamps
allowing for free radial sliding at both the ends {Fig.1). This case may be
of lesser importance from the purely practical point of view, nevertheless it
deserves certain attention due to some theoretical aspects. This is mainly
why, on the one hand, it enables us to verify the results already known for
the unsupported circular rings [5/I) and, on the other hand, it creates a
convenient reference point for further numerical analyses,

The eigenproblems were solved by means of the classical Rayleigh-Ritz
method leading in the case of the boundary conditions considered to the
accurate results. It is due to the fact that, just in this case, we can easily
guess all the exact eigenmodes and use them as the elements of the classical
Ritz approximation basis. '

In order to simplify verification of the results and to improve the com-
parative analysis we have introduced the so-called comparative frequency
f = 4p/x? [6]. The spectrum of these frequencies has, in the case of bend-
ing of a straight BEi-beam with hinged ends, a convenient representation
as the sequence of squares of successive integers. This sequence may be
easily found in tables and graphs representing the results of computations
obtained for the BEe and BEi models.

2.1. Model RT

Computation of the whole eigenspectrum is possible only when two kinds
of approximations are used. Taking into account the ”visual predominance”
of the radial displacement, we shall define them as
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symmetrical T
Wi(§) = sin(bre),
(1) . Ux(§) = cos(kxf), - _
k(&) = sin(kxf); o k=0,1,2,3,...,

and antlsymmetrlcalf_'.”:'..: |
W) = cos (k) wE
(3.2) Up(€) = sin (k—%) Ty
i(6) = cos(k—%)vrf', k=123,

Substituting Eqgs.(3.1), (3.2) into formulae (2.6) we obtain two distinct
sequences of the algebraic equations (2.5) describing the successive but com-
pletely independent (3 x 3) elgenproblems

for the case of symmetry

(az&g - pz) by = 0,. )

k2rloq + ooy — p? —akm(oe +03) - —aoy
(3.3) —akw(og + 03) aloy + kinlos — p? k:rrag
| —aos - kros krloy 4 03 — ’J"p
ag _
X | bg =0, ki.1,2,3_,...,

Ck

and for the case of antisymmetry

1 9 ) , . . 1y _
(k-—-—-i) o+ ooz —p @ 3 7r(0‘2+03)

: 3
(3-4) o (k — %) m{oy -+ o3) a202 + (k - %) 203 — p2
—ao - (k — —1-) TO
3 5 ) 793
—ao03 G
1y .
_Q”§>"W3 by | =0, k=1,2,3,....

_ 1N2
(k — 5) 7['20'.1 + 0'3“—“ 'I'p? Ck_
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In order to enable the comparisons between the present results and those
obtained in [5/1] we have performed comparative calculations assuming for

a semicircular arch

a=7/2, r=00048/a%, wm=r 3 =0.01536/a’
Table 1.
Pos Results N= 0 1 2 3 4 5 [ 7
(l) 2.5798 6.9841) 12.693| 15.342 - —
1 Ref, [1/1] (2) | 14.434| 20.363] 32.225 45.604 59.480| 73.572 — -
(3) f116.74 |117.91 |121.32 126.67 133.59 [141.75 - -
Symmetrical (1) 2.5798 12.693 26.655
2 | approximation { {2} | 14.434 32.225 59.480 B7.775
Eq.(3.1) (3 121.32 . |13359 150.88
Antisymmetrical [ (1) 6.9841 19.342 34.429
3 | approximation (2 20.363 45.604 73.572 102.04
Fq.{3.2) (3) 117.91 126.67 141.75 160.77
Double i
antisymmetrical { (1) 2.5798 12.693 26.655
4 | approximation | (2) 32.225 59.480 87.775
Eq. (3.5) (3) |116.74 121.32 133.59 150.88

The results are listed in Table 1 and we may notice that the frequency
poz = 116.74 is missing. This frequency may be obtained by means of the
Rayleigh-Ritz method when we make use of the third kind of approximation
with double antisymmetrical properties

Wi(§) = cos(knt),
(3.5) Uk(§) = sin(kwt),
dr(€) = (:OS(kﬂ’f.), k=0,1,2,...,
leading to the following set of algebraic equations
alos —p?  —aoy “w [ _o
—ao; o3 — rp? S
_ k?frzag + az_dg —p*  kwa(oy + 03) . —ao3 G
(3.6) | - kra(og+03) Qloy+kirlos—p? . —kroy b | =0,
o —aos o ~kros k?xl0y 4+ 03— rp* || e

k=1,2,3,...,



12 B. OLSZOWSKI

the results being listed in Table 1, pos.4. However, the approximation (3.5)
does not fulfil the boundary conditions of the segment. The vibration with
eigenfrequency poz = 116.74 is therefore a unique eigenvibration of the cir-
cular unsupported ring and does not belong to the set of eigenvibrations of
the clamped segment with radial sliding.

The results of eigenfrequency analysis performed for RT-segment are paz-
tially tabulated in Table 2 and are shown in Fig.2 as the set of curves (fi)
representing the dependence: eigenspectrum versus angle a.

£ A

£0.60 - Is
p te
] 13b
3 ‘ 25
h 12h
50.00 —
:3{ A
. b

] 4
40.00 108

85
e

30.00 —: 8b
] 28
; 76
: 18
20,00 ve
] &b
] 5b
16.00 -]
g
2 100 200 308 b

Fi1a. 2.

The eigenfrequencies f obtained on the basis of Egs.(3.3), (3.4), form
the triples is in Fig.2 and Table 2 by symbols Lb, Le and Ls. Letter L is
the number of vibration nodes common for each tnple, and the second letter
distinguishes the kind of predominating deformatlon of the v:bra,tmg bar,
namely bending, extension and shearing. This notatlon con‘esponds to that
apphed in [5/1]. ' :
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2.2, Model BEe

Siiﬁila.rly as in the RT-médél, _wé shall use two kinds of approximations:
symmetrical
Wi(€) =sin(kré),

(3.7) SRR
Ui(€) = cos(kn§), k=0,1,2,..,

and antisymmetrical

o Wi(€) = cos (I - 1%) £,
Ur(€) =sin (k—i) &, k= 1,2,3,....'.

Substitution of Eqs.(3.7), (3.8) into Eq.(2.7) gives two corresponding
sequences of the independent algebraic equations:
for symmetrical vibrations

(0520'2 - pZ) bD : 0,

(39) | Bt (ola) + 09) — p?  —akn(k*rloy + 02) ag

3.9 ‘
—akr(kirio) 4+ a3) kintoy + o2 — p? b

B k=1,2,3,...,

an:d for antisymmetrical vibratioﬁs '
N .
k——2— __w(acrl-i—ag)—p k—— 7r k—— 7rcrl-|—arg
1 1)? ‘ 1
a(k.— -é-)ar l(k — 5) oy +02] ( 5) T arl + aloy - p?

ap 7
X =0, k:LZ&.
bk )

In Flg 3 the results of complete elgenfrequency ana.lys1s are shown.
Table 3 contains only the partial results, obtained for selected values of e,

@wj



68£667'88 28| L.98G8'C8 28| LEIEPL'ES 28 | 0EL069°08 98 | TOLTFL'SL 98 | LTES00°9L 98 | SHPSTFTFL 28| 6190TC'EL 98] LI
6920€°9L 9L | 679296'€L L | T66SLO°TL 5L | 60S6TS'69 3L | ¥ezeess9 o1 |ze8L68'¢9 oL | e¥ipbLPe oL | T0LTZEFY oL | ol
TOLEFI'SY 29 | SO0EFO'EY 29| £29IS0°'TY 39 | YOLETT'6S 29 | PFHTLT6S 48 | GLZA0S'TO 98 | C6¥69Z°ES 98 | 000000779 98 | ST
S8TEEL'FS 2G| TEETES'ES 2% | 6LE0ST'FE 98 | 0TTBTE'9C 98 | COP96S G 29 | ZOSY6Z'9C 29 | LIFOSH'SS 29 | 068TEI'SS 99| 3T
TP99L0'6Y 98 | 98SSLYTS 98 | 0L08C0°IS 3% | $ROTOF'6F 25 | §TL000'8% 2¢ | 6EPTEH LT 9L TOF6LC'SH 4L | 000000°6F 9L | €1
0EET66'FY 2% | LOTSST'SF 5% | SPT669'TF QL | 6SFOER'ET 9L | S69L8L°SF 9L | TSSTO6°0F 2¢ | LSOTBI'9F o¢ | CLOPHG'SH 2¢!gl
O0STI'LE qL | PETOVP'6E 4L | T0SSCH'IP % | 9LSTE6'6E 95 | 96FCEU'SE 9% | S06EZ9'LE °F | £PE8LE'9E b | 09786L°08 9% | IT
LEEOB6'SE 2% | OPLEOLPE 2€ | L8609E'CE 9F |89600°7¢ 99 | 987185°€E 90 | C66858°FE 99 | STIZOL'SE 99 | 000000798 99 OT
06F6¥1°8C 27 | $60E62°8C 99 | F9F2CT 08 99 | £0TTO%'0E 98 | 16041367 €| 8TFOSH'SZ 98 | £S¥€6L°LT °¢ | CPPO9e LT 28 | 6
67195279 99 | 0TLP00°9T 2C | 990010°FZ 9T | 90L80Z'ZZ 5T | £20950°SC 95 | $29T60'FC 9< | 9FSS0LFZ 4G | 000000°ST ¢¢ | 8
PIT9TS'TE 21| 618888°6T 21| 998822°02 9% | T8STHLIC 92| 656659°00 27 | 160EPH'61 2T | 652£S9°ST o2 | 089448'8T 9712
VETVLY'0T 20 | ZBECTLS'ST 9% | 8TIPSELT o1 | T096S6FT 21| SP6FSEFL 9% | OLOPEZ'ST 4% | €92208°ST 9F | 000000°9T 4% | 9
SOTOTS'ST 9¢ | PPEEVCLT 20| £STHLIFL 20 | T6LFET'ET 9% | 6EL08LTT 21| 68LS%6°0T 91 | 608799°6 o1 | SIS8RI'6 21 | ¢
LE6YI06  q¥ | SS86TSOT 9% | 9TZ66°'TT Q¥ | £99669°IT 20| CLO¥LL'S 20 | CLOLZE'®  9€ | 9265788  ¢f | 000000°6 45 | 3
SS8060°¢ 98 | £9992E°F  9€ | 9E880C'S  9€ | 9LLEO9'9 Q€ | FSSLOC'L Q€ | TRL6FR'C 201 CLOTPS'E 97 | 000000F 9T | %
BOOSTO'T 4T | 86IEZT'T 9T} 6€82TI'T 92 | 00SBY6'T 4T | Z969FL'T 9 | 6TLLBE'S 9T | T68FZ6'T 20| 000000'T 9T)|C
LE86Z9'0 97| 6906720 9T | 869TTR'0 9T | 0SSISL'0 9T | 6EE90°0 4T | PST66Y0 4T | 0FOPSE'0 4T | 0000000 201 T
fe=2 7| 0e=2 T| §g=v 7T| 0r=2 F| ¢I=v 7| ¢I=2 T| ¢0=v 7| 00=0v T|N

't 91qEL

[15]



16 B. OLSBEOWSKI

2 am

8
8

|||

\ |

20.G60

IS I YT NN N T 0 T Y 0 OO

10.00

L=}

PP T T Y B

1.00 zon 300

Fra. 3.
3.3, Model BFa

In this model we have to approximate three unknown functions, namely
displacements W (), U(£) and axial force A(§), playing the role of La-
grange’s multiplier. As in the foregoing cases, we make use of two kinds
of approximations:

symmetrical

Wi (&) =sin(knf),
(3.11) Ui (€)= cos(kw€),
' Ap(&)=cos(kn§), k=1,2,3,...,

and: antisjmmetrical
| Wi(§)=cos (k - %) =€,
(3.12) Up(§)=sin (k - %) w§,

Ax(€)=sin (k _ %) xt, k= 1,2,3,._..
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leading to two corresponding sequénces of the independent algebraic equa-
tions:
for the case of symmetry

1 _
Brlalo —p?  —krdacm §k1r ay,
(3.13) -k r3a0oy kirto, — p? -—%a by | =0, k=1,2,3,...,
' 1
%k‘ﬂ' —Ea -0 Cx

and for the case of antisymmetry

[ 1\? 1\?* 1 1\ 7
(k — —2-) r2alay — p? ( — 5) a0y —3 (k — 5) T
1 3 1 1
(3.14) (k - 5) ooy (k — 5) rloy ~ p? —%a
1 1 1
aj

Solutions of both the eigenproblems (3.13), (3.14) were obtained by
means of a "symmetrical” elimination of the redundant unknowns. Pro-
cedure of elimination is as follows: unknowns ay and ¢; are calculated from
the third and the first equations, respectively, and then they are substituted
into the second one. As a result, the equation is obtained describing the
eigenproblem of the vibrating system with the imposed a,nd active kinematic
constraint.

Let us introduce a quantity

kn for the case of symmetry,
(3.15) h = 1 '
: (k - 5) 7 for the case of antisymmetry, £ =1,2,3,...

enabling us to solve both the eigenproblems (3.13), {3.14) simultaneously.
From the third and the first equations we have

(3.16) ar = :i:(‘ra/h)bk, ek = (2a/h%)(h* — h2a® + )by,
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respectively, and from the second one, taking into account Eq.(3.15), we
obtain

(3.17) [ - 2h%a® + k2% — (" + o®)p?] b = 0.

Equation (3.17) describes the constrained eigenproblem of the vibrating
BEimodel and leads to the explicit formula for the eigenfrequencies (see

Eq.(3.15))

p = /(RS — 2102 + h2at)/(h? + o?) .

In the case when a = 0, we obtain -

(kx)®  for symmetry,
P = h2 = 1 2
(k - 5) x? for antisymmetry, k=1,2,3,...,

(2ky?  for symmetry,

f = dp/r* =

{

(2k — 1)? for antisymmetry, k=1,2,3.

The results concerning the eigepfrequencies are presented in Fig.4 and
in Table 4.

Table 4.
N1 L a=00 | L a=05 |I a=10 |L a=15
1] 16  1.000000 | 1b  0.856343 b 0,501680 | 15 0.063722
2126 4.000000 | 25 3.850220 | 26 3.425370 | 2 2.786752
‘3 36 9.000000 | 3b  8.849008 | 3b §.407498 | 3b  7.707083
4| 46 16.000000 | 45 15.848577 4b 7 15.400881 | 4b  14.675697
5 | 5p° 25.000000 | 56 24.848376 | '5b - 24.397750 | 5b 23.660459
6 | 6b 36.000000 | 65 35.848267 | 6b 35.396030 | 6b 34.651981
N1Z e=20 1L a=25 |L ea=30 |L =35
1|16 0383658 | 16  0.815599 | 2b  0.25488% | 2b  0.644422
o 1os 2006721 | 26 1147874 | 16 1.228100 | 16 1.623375
3|3 6792428 | 36 5712818 | 3b 4515121 | 3b 3239490
14| 4 13701480 | 4 12.512863 | 4b  11.147008 | 46 9.640464
s | 55 90.655833 | 5b 21.408563 | 5b 19.946818 | 55  18.300367
6 | 66 33.629992 | 6b - 32.348271 | 6b 30.828331 | 6b 29.093875
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4. CONCLUSIONS

The models of circular arches clamped with free radial sliding at both
ends represent the vibrating systems, the eigenfrequencies of which can be
computed exactly by means of the classical Rayleigh-Ritz method. Using
the exact eigenmodes as admissible functions we obtain, in the case of the
RT model, a set of the separate triples of the homogeneous algebraic equa-
tions defining the separate (3 x 3) eigenproblems. This separation enables
us to solve each eigenproblem independently, and to obtain always three ex-
act eigenfrequencies corresponding to the exact eigenmodes denoted as Lb,
Le and Ls (see Sec.3), where L is a common number of vibration nodes.
These eigenmodes are related to the three types of deformations with the
characteristic predominance of bending, extension and shéaring of the arch,
respectively. '

Two main advantages of application of the classical Rayleigh-Ritz method
described in the present paper should be stressed. The first is that this
method enables us to calculate the exact values of the eigenfrequencies ow-
ing to the special type of boudary conditions assumed. The second, and a
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more general advantage results from application of the global approxima-
tion technique enabling us to avoid completely all the numerical troubles,
such as element locking and appearance of spurious modes, arising from the
imperfections of the local approximations commonly used in the FEM [1,2].

The results described in the present paper confirm all the conclusions
drawn in [5/1] and, therefore, set up a kind of a reliable ”point of reference”
for numerical analyses in the dynamics of circular arches.
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