APPLICATION OF THE CLASSICAL RAYLEIGH-RITZ METHOD IN DYNAMICS OF CIRCULAR ARCHES

B. OLSZOWSKI (KRAKÓW)

The paper deals with Rayleigh-Timoshenko and Bernoulli-Euler models of circular arches with extensible or inextensible axes clamped with free radial sliding at both ends. The general algebraic equation defining the eigenproblem has been derived from Hamilton's principle. Spectral properties of the models were analysed by means of the classical Rayleigh-Ritz approximation method. Eigenfrequencies as functions of the subtending angle of the arch are plotted and tabulated.

NOTATION

```
U = \overline{U}/L
                            radial displacement,
           W = \overline{W}/L
                            tangential displacement,
                \Phi = \overline{\Phi}
                            angular displacement,
 Q = L^2 \overline{Q}/(EI)
                           shear force.
    N = L^2 \overline{N}/(EI)
                            axial force,
     M = L\overline{M}/(EI)
                            bending moment,
p^2 = \mu \overline{A} L^4 \omega^2 / (EI)
                           circular frequency,
           f = 4p/\pi^2
                           comparative frequency.
        r = J/(\overline{A}L^2)
                           moment of rotary inertia.
                           coordinate measured along the axis,
                           subtending angle of the arch,
      \nu_1 = 1, \nu_2 = EI/(L^2 EA), \nu_3 = EI/(L^2 kGA).
```

1. Introduction

Analysis of circular arches with hinged ends and constant length of the axis has revealed [6] a considerable complexity of their eigenspectra treated as functions of the angle α . Variation of this angle changes the positions of all the eigenfrequencies and their mutual distances. As a consequence, for some particular values of α , multiple or very close eigenfrequencies may appear. These facts manifest the existence of some behavioural singularities

of the vibrating arches being at the same time not only quantitative but also qualitative in their nature [5/III]. Therefore, there seems to be a reasonable need to continue the analyses of the singularities being of interest from both the cognitive and the practical points of view. The latter, for instance, has the essential meaning when the eigenproblems have to be solved by means of approximation methods.

The aim of the present paper is to apply the classical Rayleigh-Ritz method to the solution of dynamical eigenproblems for three fundamental modeles of circular arches: 1) Rayleigh-Timoshenko (RT), 2) Bernoulli-Euler with extensible axis (BEe), and 3) – with inextensible axis (BEi). The essential advantage of this application arises directly from the use of global approximation technique, because it simply avoids the modelling defects (element locking and spurious modes) caused always by the local approximations commonly used in the FEM [1,2].

The numerical analysis of the eigenfrequencies was performed for arches clamped at both ends, with clamps allowing for frictionless radial sliding. Proper selection of the global Ritz approximation basis [3,4] yields, in this case of boundary conditions, accurate numerical results, i.e. not disturbed by any approximation errors. The eigenspectra were treated as functions of the angle 2α subtended by the arch. The results of computations enabled verification of previous outcomes obtained for circular rings and published in [5/I]. At the same time, a convenient reference point was set up for further analyses.

2. FORMULATION OF EIGENPROBLEMS

2.1. Model RT

Let us consider a circular arch with constant length 2L (Fig. 1) and the state of displacement described by three independent functions $\overline{w}(s,t)$, $\overline{u}(s,t)$ and $\varphi(s,t)$ [5/I]. The kinetic and potential energies of the vibrating arch are defined by the formulae

$$T = \frac{1}{2} \int_{-L}^{L} \left(\mu \overline{A} \dot{\overline{w}}^2 + \mu \overline{A} \dot{\overline{u}}^2 + \mu J \dot{\varphi}^2 \right) ds,$$

$$U = \frac{1}{2} \int_{-L}^{L} \left[EI(\varphi')^2 + EA(\overline{w}' - \overline{u}/R)^2 + kGA(\overline{u}' + \overline{w}/R - \varphi)^2 \right] ds.$$

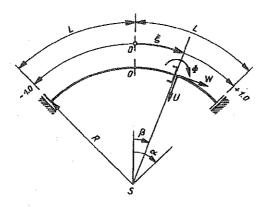


Fig. 1.

Confining further considerations to the stationary and harmonic vibration only, we assume that

$$\overline{w}(s,t) = \overline{W}(s)\sin(\omega t), \quad \overline{u}(s,t) = \overline{U}(s)\sin(\omega t), \quad \varphi(s,t) = \Phi(s)\sin(\omega t).$$

After introduction of some dimensionless quantities (see Notation) we obtain

$$T = \frac{1}{2} \frac{EI}{L} p^2 \cos^2(\omega t) \int_{-1}^{1} \mathbf{R}^T(\xi) \rho \mathbf{R}(\xi) d\xi, \qquad \rho = \operatorname{diag}(1 \ 1 \ r),$$

$$U = \frac{1}{2} \frac{EI}{L} \sin^2(\omega t) \int_{-1}^{1} (\partial \mathbf{R}(\xi))^T \sigma(\partial \mathbf{R}(\xi)) d\xi, \qquad \sigma = \operatorname{diag}(\sigma_1 \ \sigma_2 \ \sigma_3),$$

where

(2.1)
$$\boldsymbol{\partial} = \begin{bmatrix} 0 & 0 & \partial \\ \partial & -\alpha & 0 \\ \alpha & \partial & -1 \end{bmatrix}, \quad \partial \equiv d/dx, \quad \mathbf{R}(\xi) = \begin{bmatrix} W(\xi) \\ U(\xi) \\ \Phi(\xi) \end{bmatrix}.$$

From Hamilton's principle

$$\delta H = \int_{t_0}^{t_1} (\delta T - \delta U) dt = 0,$$

after integration over the time interval $[t_0, t_1] = [t, t + 2\pi/\omega]$ covering one period of vibration, it follows that

(2.2)
$$\int_{-1}^{1} \left[(\partial \delta \mathbf{R}(\xi))^{T} \boldsymbol{\sigma}(\partial \mathbf{R}(\xi)) - p^{2} \delta \mathbf{R}^{T}(\xi) \boldsymbol{\rho} \mathbf{R}(\xi) \right] = 0.$$

Equation (2.2) sets up a basis for the numerical solution of the eigenproblem of a vibrating arch by means of an approximation method.

In what follows use will be made of the classical Rayleigh-Ritz method. Let us assume that

(2.3)
$$\mathbf{R}(\xi) = \mathbf{N}(\xi)\mathbf{q} = \begin{bmatrix} \mathbf{W}(\xi) & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{U}(\xi) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{\Phi}(\xi) \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{bmatrix},$$

where

$$\mathbf{W}(\xi) = [W_1(\xi), W_2(\xi), \dots, W_n(\xi)],$$

$$\mathbf{U}(\xi) = [U_1(\xi), U_2(\xi), \dots, U_n(\xi)],$$

$$\mathbf{\Phi}(\xi) = [\phi_1(\xi), \phi_2(\xi), \dots, \phi_n(\xi)]$$

represent the sets of admissible functions.

After substitution of Eqs. (2.1), (2.3) into Eq. (2.2) one obtains

(2.4)
$$\left\{ \int_{-1}^{1} \left[(\partial \mathbf{N}(\xi)^{T} \mathbf{\sigma}(\partial \mathbf{N}(\xi)) - p^{2} \mathbf{N}^{T}(\xi) \mathbf{\rho} \mathbf{N}(\xi) \right] d\xi \right\} \mathbf{q} = \mathbf{0}$$

and finally

(2.5)
$$(\mathbf{S} - p^2 \mathbf{B}) \mathbf{q} = \mathbf{0}, \quad \mathbf{S}^T = \mathbf{S}, \quad \mathbf{B}^T = \mathbf{B},$$

where

$$\mathbf{S} = \left[\begin{array}{ccc} \mathbf{S}^{aa} & \mathbf{S}^{ab} & \mathbf{S}^{ac} \\ \mathbf{S}^{ba} & \mathbf{S}^{bb} & \mathbf{S}^{bc} \\ \mathbf{S}^{ca} & \mathbf{S}^{cb} & \mathbf{S}^{cc} \end{array} \right], \qquad \mathbf{B} = \left[\begin{array}{ccc} \mathbf{B}^{aa} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{B}^{bb} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{B}^{cc} \end{array} \right], \qquad \mathbf{q} = \left[\begin{array}{c} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{array} \right],$$

$$\mathbf{S}^{aa} = \sigma_2 < \mathbf{W}', \mathbf{W}' > +\alpha^2 \sigma_3 < \mathbf{W}, \mathbf{W} >,$$

$$\mathbf{S}^{ab} = -\alpha \sigma_2 < \mathbf{W}', \mathbf{U} > +\alpha \sigma_3 < \mathbf{W}, \mathbf{U}' >,$$

$$\mathbf{S}^{ac} = -\alpha \sigma_3 < \mathbf{W}, \Phi >,$$

$$(2.6) \mathbf{S}^{bb} = \alpha^2 \sigma_2 < \mathbf{U}, \mathbf{U} > +\sigma_3 < \mathbf{U}', \mathbf{U}' >,$$

$$\mathbf{S}^{bc} = -\sigma_3 < \mathbf{U}', \Phi >,$$

$$\mathbf{S}^{cc} = \sigma_1 < \Phi', \Phi' > + \sigma_3 < \Phi, \Phi >,$$

$$\mathbf{B}^{aa} = \langle \mathbf{W}, \mathbf{W} \rangle, \quad \mathbf{B}^{bb} = \langle \mathbf{U}, \mathbf{U} \rangle, \quad \mathbf{B}^{cc} = r \langle \Phi, \Phi \rangle,$$

and from the definition

$$\langle \mathbf{F}, \mathbf{G} \rangle = \int_{1}^{1} \mathbf{F}^{T}(\xi) \mathbf{G}(\xi) d\xi.$$

2.2. Model BEe

In this case we neglect the rotary inertia of the cross-section (J=0) and the shear deformation of the bar $(kGA=\infty)$. A kinematic constraint imposed on its state of displacement has the form of the differential equation $\overline{u}' + \overline{w}/R - \varphi = 0$ [5/I]. In consequence, the energies T and U are now defined by the formulae

$$T = \frac{1}{2} \int_{-L}^{L} \left(m \overline{A} \dot{\overline{w}}^2 + m \overline{A} \dot{\overline{u}}^2 \right) ds,$$

$$U = \frac{1}{2} \int_{-L}^{L} \left[EI(\overline{u}'' + \overline{w}'/R)^2 + EA(\overline{w}' - \overline{u}/R) \right] ds.$$

The reasoning analogous to the foregoing one leads us again to Eq. (2.5), but this time

$$\mathbf{R}(\xi) = \begin{bmatrix} W(\xi) \\ U(\xi) \end{bmatrix} = \mathbf{N}(\xi)\mathbf{q} = \begin{bmatrix} \mathbf{W}(\xi) & \mathbf{0} \\ \mathbf{0} & \mathbf{U}(\xi) \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix},$$

$$\mathbf{\delta} = \begin{bmatrix} \alpha \partial & \partial^{2} \\ \partial & -\alpha \end{bmatrix}, \quad \mathbf{\sigma} = \begin{bmatrix} \sigma_{1} & \mathbf{0} \\ \mathbf{0} & \sigma_{2} \end{bmatrix}, \quad \mathbf{\rho} = \mathbf{I},$$

$$(2.7) \quad \mathbf{S} = \begin{bmatrix} \mathbf{S}^{aa} & \mathbf{S}^{ab} \\ \mathbf{S}^{ba} & \mathbf{S}^{bb} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} \mathbf{B}^{aa} & \mathbf{0} \\ \mathbf{0} & \mathbf{B}^{bb} \end{bmatrix},$$

$$\mathbf{S}^{aa} = (\alpha^{2}\sigma_{1} + \sigma_{2}) < \mathbf{W}', \mathbf{W}' >,$$

$$\mathbf{S}^{ab} = \alpha \sigma_{1} < \mathbf{W}', \mathbf{U}'' > -\alpha \sigma_{2} < \mathbf{W}', \mathbf{U} >,$$

$$\mathbf{S}^{bb} = \sigma_{1} < \mathbf{U}'', \mathbf{U}'' > +\alpha^{2}\sigma_{2} < \mathbf{U}, \mathbf{U} >,$$

$$\mathbf{B}^{aa} = < \mathbf{W}, \mathbf{W} >, \quad \mathbf{B}^{bb} = < \mathbf{U}, \mathbf{U} >.$$

2.3. Model BEi

The constraint condition of axial inextensibility of the bar reads $\overline{w}' - \overline{u}/R = 0$, but it does not allow to eliminate any of the unknown functions from considerations. Both of them appear in the formula

$$T = rac{1}{2} \int\limits_{-L}^{L} \left(\mu \overline{A} \dot{\overline{w}}^2 + \mu \overline{A} \dot{\overline{u}}^2 \right) ds,$$

and have to be treated equivalently.

In order to fulfil the constraint condition, we will handle the problem using the concept of Lagrange's multiplier. Let us use the modified function

$$U = rac{1}{2} \int\limits_{-L}^{L} \left[EI(\overline{u}'' + \overline{w}'/R)^2 + \lambda(\overline{w}' - \overline{u}/R) \right] ds$$

containing an additional term with the unknown Lagrange's multiplier $\lambda(\xi) = N(\xi)$ being the axial force. This term may be interpreted as the work done by the axial force on the elongation of the axis.

Introduction of the dimensionless quantities leads to the following formulae:

$$T = \frac{1}{2} \frac{EI}{L} p^2 \cos^2(\omega t) \int_{-1}^{1} (W^2 + U^2) d(\xi),$$

$$U = \frac{1}{2} \frac{EI}{L} \sin^2(\omega t) \int_{-1}^{1} \left[\sigma_1 (U'' + \alpha W')^2 + \Lambda (W' - \alpha U) \right] d(\xi),$$

$$\Lambda = \frac{\lambda L^2}{EI}.$$

By means of Hamilton's principle we obtain the equation

(2.8)
$$\int_{-1}^{1} \left\{ p^{2} (\delta W \cdot W + \delta U \cdot U) - \sigma_{1} (\delta U'' + \alpha \delta W') (U'' + \alpha W') - \frac{1}{2} \left[\delta \Lambda (W' - \alpha U) + (\delta W' - \alpha \delta U) \Lambda \right] \right\} d(\xi) = 0$$

being the stationarity condition of the extended functional H. Making use of the approximations

$$W(\xi) = \mathbf{W}(\xi)\mathbf{a}, \qquad U(\xi) = \mathbf{U}(\xi)\mathbf{b}, \qquad \Lambda(\xi) = \mathbf{\Lambda}(\xi)\mathbf{c},$$

we may write Eq. (2.8) in the form (2.5) again, but with

$$egin{array}{lll} {f S}^{aa} &=& \sigma_1 lpha^2 < {f W}', {f W}'>, \ {f S}^{ab} &=& \sigma_1 lpha < {f W}', {f U}''>, \ {f S}^{ac} &=& rac{1}{2} < {f W}', {f \Lambda}>, \ {f S}^{bb} &=& \sigma_1 < {f U}'', {f U}''>, \ {f S}^{bc} &=& -rac{1}{2} lpha < {f U}, {f \Lambda}>, \ {f S}^{cc} &=& {f 0}, \ {f B}^{aa} &=& < {f W}, {f W}>, & {f B}^{bb} = < {f U}, {f U}>, & {f B}^{cc} = {f 0}. \end{array}$$

The eigenproblem (2.5) is now of a saddle-point-type because, in addition to the displacement-type variables **a** and **b**, it contains also the force-type variables **c**. To handle the eigenproblem of BEi-model in the standard way, let us first perform such a "symmetrical" elimination of the redundant unknown **c**, which leads to a modified, pure displacement-type eigenproblem, with positive definite matrices **S** and **B** representing the elastic and inertial properties of the arch with the active kinematic constraint, i.e. with a completely inextensible axis. This procedure is shortly described in Sec. 3.3.

3. Numerical solutions

The eigenproblems were analysed for clamped arch segments, the clamps allowing for free radial sliding at both the ends (Fig. 1). This case may be of lesser importance from the purely practical point of view, nevertheless it deserves certain attention due to some theoretical aspects. This is mainly why, on the one hand, it enables us to verify the results already known for the unsupported circular rings [5/I] and, on the other hand, it creates a convenient reference point for further numerical analyses.

The eigenproblems were solved by means of the classical Rayleigh-Ritz method leading in the case of the boundary conditions considered to the accurate results. It is due to the fact that, just in this case, we can easily guess all the exact eigenmodes and use them as the elements of the classical Ritz approximation basis.

In order to simplify verification of the results and to improve the comparative analysis we have introduced the so-called comparative frequency $f = 4p/\pi^2$ [6]. The spectrum of these frequencies has, in the case of bending of a straight BEi-beam with hinged ends, a convenient representation as the sequence of squares of successive integers. This sequence may be easily found in tables and graphs representing the results of computations obtained for the BEe and BEi models.

3.1. Model RT

Computation of the whole eigenspectrum is possible only when two kinds of approximations are used. Taking into account the "visual predominance" of the radial displacement, we shall define them as

symmetrical

$$W_k(\xi) = \sin(k\pi\xi),$$
 $U_k(\xi) = \cos(k\pi\xi),$
 $\phi_k(\xi) = \sin(k\pi\xi), \qquad k = 0, 1, 2, 3, ...,$

and antisymmetrical

and antisymmetrical
$$W_k(\xi) = \cos\left(k - \frac{1}{2}\right)\pi\xi,$$

$$(3.2) \qquad U_k(\xi) = \sin\left(k - \frac{1}{2}\right)\pi\xi,$$

$$\phi_k(\xi) = \cos\left(k - \frac{1}{2}\right)\pi\xi, \qquad k = 1, 2, 3, \dots.$$

Substituting Eqs. (3.1), (3.2) into formulae (2.6) we obtain two distinct sequences of the algebraic equations (2.5) describing the successive but completely independent (3×3) eigenproblems:

for the case of symmetry

$$\left(\alpha^{2}\sigma_{2} - p^{2}\right)b_{0} = 0,$$

$$\left[\begin{array}{cccc} k^{2}\pi^{2}\sigma_{2} + \alpha^{2}\sigma_{3} - p^{2} & -\alpha k\pi(\sigma_{2} + \sigma_{3}) & -\alpha\sigma_{3} \\ -\alpha k\pi(\sigma_{2} + \sigma_{3}) & \alpha^{2}\sigma_{2} + k^{2}\pi^{2}\sigma_{3} - p^{2} & k\pi\sigma_{3} \\ -\alpha\sigma_{3} & k\pi\sigma_{3} & k^{2}\pi^{2}\sigma_{1} + \sigma_{3} - rp^{2} \end{array}\right]$$

$$imes \left[egin{array}{c} a_k \ b_k \ c_k \end{array}
ight] = \mathbf{0}, \qquad k=1,2,3,\ldots,$$

and for the case of antisymmetry

(3.4)
$$\begin{bmatrix} \left(k - \frac{1}{2}\right)^{2} \pi^{2} \sigma_{2} + \alpha^{2} \sigma_{3} - p^{2} & \alpha \left(k - \frac{1}{2}\right) \pi (\sigma_{2} + \sigma_{3}) \\ \alpha \left(k - \frac{1}{2}\right) \pi (\sigma_{2} + \sigma_{3}) & \alpha^{2} \sigma_{2} + \left(k - \frac{1}{2}\right)^{2} \pi^{2} \sigma_{3} - p^{2} \\ -\alpha \sigma_{3} & -\left(k - \frac{1}{2}\right) \pi \sigma_{3} \end{bmatrix}$$

$$egin{aligned} -lpha\sigma_3 \ -\left(k-rac{1}{2}
ight)\pi\sigma_3 \ \left(k-rac{1}{2}
ight)^2\pi^2\sigma_1+\sigma_3-rp^2 \end{aligned} egin{aligned} a_k \ b_k \ c_k \end{aligned} = \mathbf{0}, \qquad k=1,2,3,\ldots.$$

In order to enable the comparisons between the present results and those obtained in [5/I] we have performed comparative calculations assuming for a semicircular arch

$$\alpha = \pi/2, \qquad r = 0.0048/\alpha^2, \qquad \nu_2 = r, \qquad \nu_3 = 0.01536/\alpha^2.$$

Pos	Results	N=	0	1	2	3	4	5	6	7
		(1)			2.5798	6.9841	12.693	19.342	_	_
1	Ref. [1/I]	(2)	14.434	20.363	32.225	45.604	59.480	73.572		_
		(3)	116.74	117.91	121.32	126.67	133.59	141.75	_	_
	Symmetrical	(1)			2.5798		12.693		26.655	
2	approximation	(2)	14.434		32.225		59.480		87.775	
	Eq. (3.1)	(3)			121.32		133.59		150.88	
	Antisymmetrical	(1)				6.9841		19.342		34.429
3	approximation	(2)		20.363		45.604		73.572		102.04
	Eq. (3.2)	(3)		117.91		126.67		141.75		160.77
	Double									
	antisymmetrical	(1)			2.5798		12.693		26.655	
4	approximation	(2)			32.225		59.480		87.775	
	Eq. (3.5)	(3)	116.74		121.32		133.59		150.88	

Table 1.

The results are listed in Table 1 and we may notice that the frequency $p_{02} = 116.74$ is missing. This frequency may be obtained by means of the Rayleigh-Ritz method when we make use of the third kind of approximation with double antisymmetrical properties

$$(3.5) W_k(\xi) = \cos(k\pi\xi),$$

$$U_k(\xi) = \sin(k\pi\xi),$$

$$\phi_k(\xi) = \cos(k\pi\xi), k = 0, 1, 2, ...,$$

leading to the following set of algebraic equations

$$\left[\begin{array}{cc} \alpha^2\sigma_3-p^2 & -\alpha\sigma_3 \\ -\alpha\sigma_3 & \sigma_3-rp^2 \end{array}\right] \left[\begin{array}{c} a_0 \\ b_0 \end{array}\right] = \mathbf{0},$$

$$(3.6) \begin{bmatrix} k^{2}\pi^{2}\sigma_{2} + \alpha^{2}\sigma_{3} - p^{2} & k\pi\alpha(\sigma_{2} + \sigma_{3}) & -\alpha\sigma_{3} \\ k\pi\alpha(\sigma_{2} + \sigma_{3}) & \alpha^{2}\sigma_{2} + k^{2}\pi^{2}\sigma_{3} - p^{2} & -k\pi\sigma_{3} \\ -\alpha\sigma_{3} & -k\pi\sigma_{3} & k^{2}\pi^{2}\sigma_{1} + \sigma_{3} - rp^{2} \end{bmatrix} \begin{bmatrix} a_{k} \\ b_{k} \\ c_{k} \end{bmatrix} = \mathbf{0},$$

the results being listed in Table 1, pos.4. However, the approximation (3.5) does not fulfil the boundary conditions of the segment. The vibration with eigenfrequency $p_{02} = 116.74$ is therefore a unique eigenvibration of the circular unsupported ring and does not belong to the set of eigenvibrations of the clamped segment with radial sliding.

The results of eigenfrequency analysis performed for RT-segment are partially tabulated in Table 2 and are shown in Fig. 2 as the set of curves (f_k) representing the dependence: eigenspectrum versus angle α .

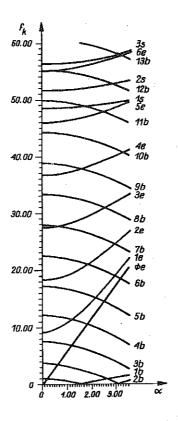


Fig. 2.

The eigenfrequencies f_k obtained on the basis of Eqs. (3.3), (3.4), form the triples is in Fig. 2 and Table 2 by symbols Lb, Le and Ls. Letter L is the number of vibration nodes common for each triple, and the second letter distinguishes the kind of predominating deformation of the vibrating bar, namely bending, extension and shearing. This notation corresponds to that applied in [5/1].

N L a = 0.0 L a = 1.0 L a = 1.5 L a = 2.0 L a = 3.0 B B A = 3.0 B A = 3.0 B <th></th> <th>Ι</th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th>		Ι																_				_		
L $a = 0.0$ L $a = 1.0$ L $a = 2.0$ L $a = 2.0$ L $a = 2.0$ L $a = 3.5$ D $a = 3.5$ $a = 3.5$ $a = 3.5$	a = 3.5	0.588404	1.566115	2.691168	7.210551	12.339709	17.771196	20.474234	22.021811	23.350733	26.646860	28.996894	33.396621	34.665124	40.330653	41.202516	45.979828	49.525792	49.858747	51.605449	53.372927	57.204128	58.127290	58.418882
L $a = 0.0$ L $a = 1.0$ L $a = 2.0$ L $a = 2.0$ L $a = 3.5$ D $a = 3.5$ <t< td=""><td>T</td><td>2p</td><td>1^{b}</td><td>3b</td><td>4b</td><td>5b</td><td>qg</td><td>0e</td><td>1e</td><td>129</td><td>2e</td><td>88</td><td>36</td><td>96</td><td>108</td><td>4e</td><td>118</td><td>5e</td><td>18</td><td>12b</td><td>2s</td><td>13b</td><td>ee</td><td>33</td></t<>	T	2p	1^{b}	3b	4b	5b	qg	0e	1 e	129	2e	88	36	96	108	4 e	118	5e	18	12b	2s	13b	ee	33
L $a = 0.0$ L $a = 0.5$ L $a = 1.0$ L $a = 1.5$ $a = 1.5$ L $a = 1.5$	11	0.232774	1.191141	3.751374	8.353890	13.496563	17.549344	18.911876	19.492200	24.462109	24.873001	30.073084	32.098932	35.703698	40.213324	41.330979		48.731352	49.456784		52.878828	57.464729	57.835619	58.093986
L $a = 0.0$ L $a = 1.0$ L $a = 0.0000000$ 1b 0.835615 1b 0.489476 1b 0.062193 1b 0.374278 1b 1b 0.976219 2b 3.522865 2b 3.523869 2b 3.523899 2b 1.831272 2b 3.623899 2b 1.831272 2b 3.623899 2b 1.831272 2b 3.623899 2b 1.831272 2b 3.623899 2b 1.831272 2b 3.62389 2b 1.831272 2b 3.62389 2b 1.831272 2b 3.62389 2b 1.831272 2b 3.62399 2b 1.831272 2b 3.62399 2b 1.8312732 2b 1.831289 3.62399 3.62399 3.6	7	28	16	3b	46	56	0e	69	16	19	2	88	3e	99	4e	108	118	56	1.8	12b	2s	6e	38	13b
L $a = 0.0$ L $a = 1.5$ L $a = 2.0$ 0e 0.000000 1b 0.835615 1b 0.489476 1b 0.062193 1b 0.374278 2b 3.662256 2b 3.522865 0e 5.849781 3b 6.431231 3b 5.655987 3b 7.547002 3b 7.415099 3b 7.032068 0e 8.74672 4b 10.326986 1e 9.188815 1e 9.641165 1e 10.87138 4b 11.096957 0e 11.699563 2b 17.208039 3b 7.4150467 4b 11.078997 1e 11.699563 2b 17.208646 2e 11.678907 1e 12.636053 1e 11.678907 1e	a = 2.5	0.794034	1.047889	4.749969	9.402060	14.541004	14.624453	17.048111	19.931538	23.144673	25.448495	30.887797	31.022962	36.616255	39.285457	42.206610	47.782017	47.982790	49.117787	52.467272	53.336203	56.838394	57.351916	58.866303
L $a = 0.0$ L $a = 0.5$ L $a = 1.0$ L $a = 1.5$ <td>T</td> <td>18</td> <td>2b</td> <td>38</td> <td>4<i>b</i></td> <td>29</td> <td>0e</td> <td>1e</td> <td>99</td> <td>2e</td> <td>42</td> <td>36</td> <td>98</td> <td>96</td> <td>4e</td> <td>10^{6}</td> <td>11b</td> <td>5e</td> <td>18</td> <td>28</td> <td>12b</td> <td>99</td> <td>33</td> <td>138</td>	T	18	2b	38	4 <i>b</i>	29	0e	1e	99	2e	42	36	98	96	4e	10^{6}	11b	5e	18	28	12b	99	33	138
L $a = 0.0$ L $a = 0.5$ L $a = 1.0$ L $a = 1.5$ 0e 0.000000 1b 0.835615 1b 0.489476 1b 0.062193 1b 0.976219 0e 2.924891 2b 3.129887 2b 2.543699 2b 3.662256 2b 3.522865 0e 5.849781 3b 6.431231 3b 7.547002 3b 7.415099 3b 7.032068 0e 8.743623 4b 12.166536 4b 12.042647 4b 11.678907 1e 12.636053 5b 17.208039 5b 17.091655 5b 16.748076 5b 11.096957 4b 12.166536 4b 12.042647 4b 11.678907 1e 12.636053 5b 17.208039 5b 17.709165 7b 11.678907 1e 12.636053 5c 18 22.481118 6b 22.049131 6b 22.049131 6b <t< td=""><td></td><td>0.374278</td><td>1.831272</td><td>5.655987</td><td>10.326986</td><td>11.699563</td><td>14.737122</td><td>15.448518</td><td>20.808812</td><td>21.613317</td><td>26.291205</td><td>29.799731</td><td>31.830143</td><td>37.388395</td><td>38.451419</td><td></td><td>47.309007</td><td>48.487882</td><td>48.841038</td><td>52.134862</td><td>54.011311</td><td>56.273989</td><td>56,963063</td><td>59.512342</td></t<>		0.374278	1.831272	5.655987	10.326986	11.699563	14.737122	15.448518	20.808812	21.613317	26.291205	29.799731	31.830143	37.388395	38.451419		47.309007	48.487882	48.841038	52.134862	54.011311	56.273989	56,963063	59.512342
L $a = 0.0$ L $a = 0.5$ L $a = 1.0$ L $a = 1.5$ 0e 0.000000 1b 0.835615 1b 0.489476 1b 0.062193 1b 0.976219 0e 2.924891 2b 3.129887 2b 2.543699 2b 3.662256 2b 3.522865 0e 5.849781 3b 6.431231 3b 7.547002 3b 7.415099 3b 7.032068 0e 8.744672 1e 9.188815 1e 9.641165 1e 10.871358 4b 11.096957 4b 12.166536 4b 12.042647 4b 11.678907 1e 12.036053 5b 17.208039 5b 17.091655 5b 16.748076 5b 16.192853 2e 18.377630 2e 18.607856 2e 19.204913 3e 27.720450 3e 27.720450 7b 27.472140 3e 27.472140 8b 3	T	16	26	38	49	06	1e	29	99	2e	42	3e	88	96	46	108	5e	116	18	2s	126	99	38	13b
L $a = 0.0$ L $a = 0.5$ L $a = 1.0$ 0e 0.000000 1b 0.835615 1b 0.489476 1b 0.976219 0e 2.924891 2b 3.129887 2b 3.662256 2b 3.522865 0e 5.849781 3b 7.547002 3b 7.415099 3b 7.032068 1e 9.188815 1e 9.641165 1e 10.871358 4b 12.166536 4b 12.042647 4b 11.678907 2e 18.377630 2e 18.607856 2e 19.270804 6b 22.483118 6b 22.373571 6b 22.049131 3e 27.566445 3e 27.720450 7b 27.472140 7b 27.882134 7b 27.778811 3e 23.169214 8b 33.341676 8b 32.344043 8b 32.953803 4e 36.755260 4e 36.732700 9b 38.45	a = 1.5	0.062193	2.543699	6.431231	8.774672	11.096957	12.636053	16.192853	20.298758	21.521666	26.971529	28.877710	32.478599	37.747140	38.006297	43.533784	46.740763	48.626095	49.049458	51.878936	54.547198	55.798252	56,665006	60.024150
L $a = 0.0$ L $a = 0.5$ L $a = 1.0$ 0e 0.000000 1b 0.835615 1b 0.489476 1b 0.976219 0e 2.924891 2b 3.129887 2b 3.662256 2b 3.522865 0e 5.849781 3b 7.547002 3b 7.415099 3b 7.032068 1e 9.188815 1e 9.641165 1e 10.871358 4b 12.166536 4b 12.042647 4b 11.678907 2e 18.377630 2e 18.607856 2e 19.270804 6b 22.483118 6b 22.373571 6b 22.049131 3e 27.566445 3e 27.720450 7b 27.472140 7b 27.882134 7b 27.778811 3e 23.169214 8b 33.341676 8b 32.344043 8b 32.953803 4e 36.755260 4e 36.732700 9b 38.45	T	91	29	38	0e	4 b	1e	29	2e	6 9	4 <u>7</u>	3e	98	4e	96	10b	5e	18	11_{6}	2s	12b	9	38	13b
L $a = 0.0$ L $a = 0.5$ 0e 0.000000 1b 0.835615 1b 0.976219 0e 2.924891 2b 3.662256 2b 3.522865 3b 7.547002 3b 7.415099 1e 9.188815 1e 9.641165 4b 12.166536 4b 12.042647 5b 17.208039 5b 17.091655 6b 22.483118 6b 22.373571 3e 27.566445 3e 27.720450 7b 27.882134 7b 27.720403 4e 36.755260 4e 36.870902 9b 38.825109 9b 38.732700 10b 44.223824 1 5e 45.944075 5e 46.036639 1s 48.350055 1s 48.380711 1lb 49.788818 1lb 49.788618 1 2s 51.539182 2 51.589182 2s	11	0.489476	3.129887	5.849781	7.032068	10.871358	11.678907	16.748076	19.270804	22.049131	27.472140	28.169214	32.953803	37.209317	38.457658	43.962851	46.308063	48.472701	49.457722	51.697503	54.936073	55.436551	56.454487	
L $a = 0.0$ L 0e 0.000000 1b 1b 0.976219 0e 2b 3.662256 2b 3b 7.547002 3b 1e 9.188815 1e 4b 12.166536 4b 5b 17.208039 5b 2e 18.377630 2e 6b 22.483118 6b 3e 27.566445 3e 7b 27.882134 7b 8b 33.341676 8b 4e 36.755260 4e 9b 38.825109 9b 10b 44.311421 10b 5e 45.944075 5e 1s 48.350055 1s 1s 48.350055 1s 2s 51.553165 2s 6e 55.132890 12b 3s 56.287511 3s 40.694891 13b	T	16	26	0e	39]e	49	29	2e	99	7.6	. 3e	98	4e	96	10b	5e	18	11b	28	12b	9e	38	139
L a = 0.0 0e 0.000000 1b 0.976219 2b 3.662256 3b 7.547002 1e 9.18815 4b 12.166536 5b 17.208039 2e 18.377630 6b 22.483118 3e 27.566445 7b 27.882134 8b 33.341676 4e 36.755260 9b 38.825109 10b 44.311421 5e 45.944075 1s 48.350055		0.835615	2.924891	3.522865	7.415099	9.641165	12.042647	17.091655	18.607856	22.373571	27.720450	27.778811	33.244043	36.870902	38.732700	44.223824	46.036639	48.380711	49.705661	51.589182	55.171934	55.210050	56.329135	60.619634
N L a = 0.0 1 0e 0.000000 2 1b 0.976219 3 2b 3.662256 4 3b 7.547002 5 1e 9.188815 6 4b 12.166536 7 5b 17.208039 8 2e 18.377630 9 6b 22.483118 10 3e 27.566445 11 7b 27.882134 12 8b 33.341676 13 4e 36.755260 14 9b 38.825109 15 10b 44.311421 16 5e 45.944075 17 1s 48.350055 18 11b 49.78818 19 2s 51.553165 20 6e 55.132890 21 12b 55.250987 22 3s 56.287511	\overline{T}	1b	90	59	36	le	4 p	29	2e	99	36	1.9	86	4e	96	10b	56	18	119	2s	12b	e^{e}	38	13b
N	a = 0.0	0.000000	0.976219	3.662256	7.547002		12.166536				27.566445	27.882134	33.341676	36.755260	38.825109	44.311421	45.944075	48.350055	49.788818	51.553165	55.132890		56.287511	60.694891
N 1 2 2 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8	Ш	06	16	29	38	H.	4P	5 <i>b</i>		99	36	42	88	4e				Ls				126		139
	z		7	က	4	ro		<u></u>	<u>∞</u>	6	10	11	12	13	14	15	16	17	18	19	20	21	22	53

3.2. Model BEe

Similarly as in the RT-model, we shall use two kinds of approximations: symmetrical

(3.7)
$$W_k(\xi) = \sin(k\pi\xi),$$

$$U_k(\xi) = \cos(k\pi\xi), \qquad k = 0, 1, 2, ...,$$

and antisymmetrical

$$(3.8) W_k(\xi) = \cos\left(k - \frac{1}{2}\right)\pi\xi,$$

$$U_k(\xi) = \sin\left(k - \frac{1}{2}\right)\pi\xi, k = 1, 2, 3, \dots.$$

Substitution of Eqs. (3.7), (3.8) into Eq. (2.7) gives two corresponding sequences of the independent algebraic equations:

for symmetrical vibrations

$$\left(\alpha^2\sigma_2-p^2\right)b_0=0,$$

(3.9)
$$\begin{bmatrix} k^2 \pi^2 (\alpha^2 \sigma_1 + \sigma_2) - p^2 & -\alpha k \pi (k^2 \pi^2 \sigma_1 + \sigma_2) \\ -\alpha k \pi (k^2 \pi^2 \sigma_1 + \sigma_2) & k^4 \pi^4 \sigma_1 + \sigma_2 - p^2 \end{bmatrix} \begin{bmatrix} a_k \\ b_k \end{bmatrix} = \mathbf{0},$$

$$k = 1, 2, 3, \dots,$$

and for antisymmetrical vibrations

(3.10)
$$\begin{bmatrix} \left(k - \frac{1}{2}\right)^{2} \pi^{2} (\alpha^{2} \sigma_{1} + \sigma_{2}) - p^{2} & \alpha \left(k - \frac{1}{2}\right) \pi \left[\left(k - \frac{1}{2}\right)^{2} \pi^{2} \sigma_{1} + \sigma_{2}\right] \\ \alpha \left(k - \frac{1}{2}\right) \pi \left[\left(k - \frac{1}{2}\right)^{2} \pi^{2} \sigma_{1} + \sigma_{2}\right] & \left(k - \frac{1}{2}\right)^{4} \pi^{4} \sigma_{1} + \alpha^{2} \sigma_{2} - p^{2} \end{bmatrix} \\ \times \begin{bmatrix} a_{k} \\ b_{k} \end{bmatrix} = \mathbf{0}, \qquad k = 1, 2, 3, \dots$$

In Fig. 3 the results of complete eigenfrequency analysis are shown. Table 3 contains only the partial results, obtained for selected values of α .

Z	7	a = 0.0	T	a = 0.5	7	a = 1.0	7	a = 1.5	T	a = 2.0	7	a = 2.5	T	a = 3.0	7	a = 3.5
-	1 0e	0.000000	116	0.854640	1.6	0.499254	118	0.063349	136	0.381530	129	0.811698	26	0.249069	28	0.629837
7	QT.	1.000000	90	2.924891	28	3.397729	28	2.746962	28	1.968500	29	1.122839	19	1.223198	116	1.618008
က	2b	4.000000	26	3.841072	0e	5.849781	38	7.563854	38	6.603736	38	5.508836	36	4.326563	36	3.090855
44	38	9.000000	36	8.825988	38	8.327672	0e	8.774672	0e	11.699563	46	11.939216	49	10.519855	49	9.014957
ທ	ટ	9.188815	le	9.662309]e	10.945789	le	12.780339	44	13.234791	0e	14.624453	06	17.549344	29	16.816105
9	46	6 4b 16.000000	46	15.802765	49	15.234670	49	14.354945	1e	14.959601	le	17.354628	56	18.572382	0e	20.474234
<u>~</u>	26	18.377630	3e	18.653249	2e	19.443091	2e	20.659959	29	21.742581	56	20.228556	le	19.888819	16	22.516114
∞	29	25.000000	29	24.765546	29	24.092624	29	23.056023	2e	22.208706	2e	24.010066	2e	26.004710	99	26.266149
<u>о</u>	36	27.566445	36	27.793483	36	28.450418	36	29.477091	3e	30.802103	99	30.222464	99	28.293094	2e	28.149490
10	99	10 6 36.000000	99	35.702125	99	34.858995	99	33.587285	99	32.009582	3e	32.360987	36	34.102746	3e	35.989337
Ξ	46	11 4e 36.755260	46	36.978343	4e	37.623908	4e	38.632496	4 e	39.932536	4e	41.458501	1.9	39.446134	42	37.118010
12	56	12 5e 45.944075	5. 9.	46.191057	5 e	46.901551	2.2	45.787695	42	43.836459	1.19	41.699245	4 e	43.158107	4e	44.992330
13	1.0	13 76 49.000000	14	48.579401	29	47.432439	56	48.000728	5e	49.401684	5e	51.028070	88	51.675586	89	49.036641
14	99	14 6e 55.132890	99	55.436417	9 9	56.296502	99	57.596465	98	56.828120	98	54.280339	5e	52.821332	5e	54.739285
15	q_8	15 8b 64.000000	98	63.269495	88	61.507275	89	59.272444	ge	59.213706	e e	61.051633	9e	63.043065	e e	65.143302
16	7e	16 7e 64.321704	1e	64.744445	7e	65.897832	<u> 1</u>	67.553284	7e	69.519509	7e	71.675991	7e	73.952649	7e	76.308594
12	17 8e	73.510519	8e	74.241545	8e	76.005327	8e	78.242762	8e	80.690730	se 8	83.243197	8e	85.853677	8e	88.499389

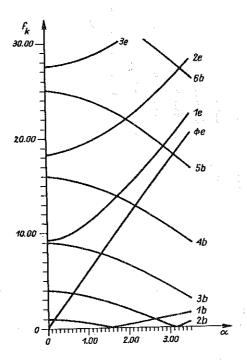


FIG. 3.

3.3. Model BEi

In this model we have to approximate three unknown functions, namely displacements $W(\xi)$, $U(\xi)$ and axial force $\Lambda(\xi)$, playing the role of Lagrange's multiplier. As in the foregoing cases, we make use of two kinds of approximations:

symmetrical

$$(3.11) W_k(\xi) = \sin(k\pi\xi),$$

$$U_k(\xi) = \cos(k\pi\xi),$$

$$\Lambda_k(\xi) = \cos(k\pi\xi), \qquad k = 1, 2, 3, \dots,$$

and antisymmetrical

$$(3.12) W_k(\xi) = \cos\left(k - \frac{1}{2}\right) \pi \xi,$$

$$U_k(\xi) = \sin\left(k - \frac{1}{2}\right) \pi \xi,$$

$$\Lambda_k(\xi) = \sin\left(k - \frac{1}{2}\right) \pi \xi, \qquad k = 1, 2, 3, \dots$$

leading to two corresponding sequences of the independent algebraic equations:

for the case of symmetry

$$(3.13) \begin{bmatrix} k^2 \pi^2 \alpha^2 \sigma_1 - p^2 & -k^3 \pi^3 \alpha \sigma_1 & \frac{1}{2} k \pi \\ -k^3 \pi^3 \alpha \sigma_1 & k^4 \pi^4 \sigma_1 - p^2 & -\frac{1}{2} \alpha \\ \frac{1}{2} k \pi & -\frac{1}{2} \alpha & 0 \end{bmatrix} \begin{bmatrix} a_k \\ b_k \\ c_k \end{bmatrix} = \mathbf{0}, \quad k = 1, 2, 3, \dots,$$

and for the case of antisymmetry

(3.14)
$$\begin{bmatrix} \left(k - \frac{1}{2}\right)^{2} \pi^{2} \alpha^{2} \sigma_{1} - p^{2} & \left(k - \frac{1}{2}\right)^{3} \pi^{3} \alpha \sigma_{1} & -\frac{1}{2} \left(k - \frac{1}{2}\right) \pi \\ \left(k - \frac{1}{2}\right)^{3} \pi^{3} \alpha \sigma_{1} & \left(k - \frac{1}{2}\right)^{4} \pi^{4} \sigma_{1} - p^{2} & -\frac{1}{2} \alpha \\ -\frac{1}{2} \left(k - \frac{1}{2}\right) \pi & -\frac{1}{2} \alpha & 0 \end{bmatrix} \times \begin{bmatrix} a_{k} \\ b_{k} \\ c_{k} \end{bmatrix} = \mathbf{0}, \quad k = 1, 2, 3, \dots$$

Solutions of both the eigenproblems (3.13), (3.14) were obtained by means of a "symmetrical" elimination of the redundant unknowns. Procedure of elimination is as follows: unknowns a_k and c_k are calculated from the third and the first equations, respectively, and then they are substituted into the second one. As a result, the equation is obtained describing the eigenproblem of the vibrating system with the imposed and active kinematic constraint.

Let us introduce a quantity

(3.15)
$$h = \begin{cases} k\pi & \text{for the case of symmetry,} \\ \left(k - \frac{1}{2}\right)\pi & \text{for the case of antisymmetry,} \quad k = 1, 2, 3, \dots \end{cases}$$

enabling us to solve both the eigenproblems (3.13), (3.14) simultaneously. From the third and the first equations we have

(3.16)
$$a_k = \pm (\alpha/h)b_k, \quad c_k = (2\alpha/h^2)(h^4 - h^2\alpha^2 + p^2)b_k,$$

respectively, and from the second one, taking into account Eq. (3.15), we obtain

(3.17)
$$\left[h^6 - 2h^4\alpha^2 + h^2\alpha^4 - (h^2 + \alpha^2)p^2 \right] b_k = 0.$$

Equation (3.17) describes the constrained eigenproblem of the vibrating BEi-model and leads to the explicit formula for the eigenfrequencies (see Eq. (3.15))

$$p = \sqrt{(h^6 - 2h^4\alpha^2 + h^2\alpha^4)/(h^2 + \alpha^2)}$$
.

In the case when $\alpha = 0$, we obtain

$$p = h^2 = \begin{cases} (k\pi)^2 & \text{for symmetry,} \\ \left(k - \frac{1}{2}\right)^2 \pi^2 & \text{for antisymmetry,} \quad k = 1, 2, 3, \dots, \end{cases}$$

$$f = 4p/\pi^2 = \begin{cases} (2k)^2 & \text{for symmetry,} \\ (2k - 1)^2 & \text{for antisymmetry,} \quad k = 1, 2, 3. \end{cases}$$

The results concerning the eigenfrequencies are presented in Fig. 4 and in Table 4.

Table 4.

N	L	a = 0.0	L	a = 0.5	L	a = 1.0	L	a = 1.5
1	1b	1.000000	1 <i>b</i>	0.856343	1 <i>b</i>	0.501680	16	0.063722
2	2b	4.000000	2 <i>b</i>	3.850220	2b	3.425370	2b	2.786752
3	36	9.000000	36	8.849008	3 <i>b</i>	8.407498	3 <i>b</i>	7.707083
4	46	16.000000	46	15.848577	4 <i>b</i>	15.400881	4 <i>b</i>	14.675697
5	5 <i>b</i>	25.000000	56	24.848376	5 b	24.397750	5 <i>b</i>	23.660459
6	66	36.000000	6 <i>b</i>	35.848267	6 <i>b</i>	35.396030	6 <i>b</i>	34.651981

N	L	a = 2.0	L	a = 2.5	L	a = 3.0	L	a = 3.5
1	1 <i>b</i>	0.383658	1 <i>b</i>	0.815599	2b.	0.254889	2b	0.644422
2	2b	2.006721	26	1.147874	1 <i>b</i>	1.228100	1 <i>b</i>	1.623375
3	36	6.792428	3 <i>b</i>	5.712818	3 <i>b</i>	4.515121	3 <i>b</i>	3.239490
4	46	13.701480	46	12.512863	46	11.147008	4 <i>b</i>	9.640464
5	5 <i>b</i>	22.655833	5 <i>b</i>	21.408563	5 <i>b</i>	19.946818	5 <i>b</i>	18.300367
6	6 <i>b</i>	33.629992	6 <i>b</i>	32,348271	6 <i>b</i>	30.828331	6 <i>b</i>	29.093875

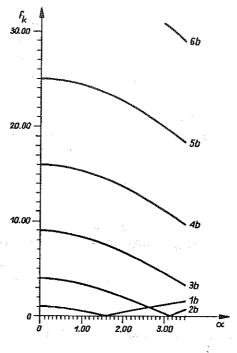


Fig. 4.

4. Conclusions

The models of circular arches clamped with free radial sliding at both ends represent the vibrating systems, the eigenfrequencies of which can be computed exactly by means of the classical Rayleigh-Ritz method. Using the exact eigenmodes as admissible functions we obtain, in the case of the RT model, a set of the separate triples of the homogeneous algebraic equations defining the separate (3×3) eigenproblems. This separation enables us to solve each eigenproblem independently, and to obtain always three exact eigenfrequencies corresponding to the exact eigenmodes denoted as Lb, Le and Ls (see Sec. 3), where L is a common number of vibration nodes. These eigenmodes are related to the three types of deformations with the characteristic predominance of bending, extension and shearing of the arch, respectively.

Two main advantages of application of the classical Rayleigh-Ritz method described in the present paper should be stressed. The first is that this method enables us to calculate the exact values of the eigenfrequencies owing to the special type of boudary conditions assumed. The second, and a

more general advantage results from application of the global approximation technique enabling us to avoid completely all the numerical troubles, such as element locking and appearance of spurious modes, arising from the imperfections of the local approximations commonly used in the FEM [1,2].

The results described in the present paper confirm all the conclusions drawn in [5/1] and, therefore, set up a kind of a reliable "point of reference" for numerical analyses in the dynamics of circular arches.

REFERENCES

- D.G.ASHWELL and R.H.GALLAGHER [Eds.], Finite elements for thin shells and curved members, Conf. on Finite Elements Applied to Thin Shells and Curved Members, University College, Cardiff 1974; J.Wiley and Sons Ltd., 1976.
- K.C.PARK and D.L.FLAGGS, A Fourier analysis of spurious mechanisms and locking in the finite element method, Comp. Meth. Appl. Mech. Engng, 46, 65-81, 1984.
- 3. L.MEROVITCH, M.K.KWAK, On the convergence of the classical Rayleigh-Ritz method and the finite element method, AIAA J., 28, 8, 1509-1516, 1990.
- 4. H.BARUH, S.S.K.TADIKONDA, Another look at admissible functions, J. Sound Vibr., 132, 1, 73-87, 1989.
- B.OLSZOWSKI, Free in-plane vibrations of unsupported circular rings. Part I. Natural frequencies [in Polish], Engng. Trans., 37, 3, 547-563, 1989; Part II. Natural modes [in Polish], Engng. Trans., 38, 3-4, 185-202, 1990; Part III. Free single frequency vibrations [in Polish], Engng. Trans., 38, 3-4, 203-219, 1990.
- B.Olszowski, Universal algorithm for generation of matrices used in dynamics of circular Timoshenko segments, Engng. Trans., 40, 2, 213-228, 1992.

KRAKÓW UNIVERSITY OF TECHNOLOGY.

Received November 20, 1991.