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NATURAL CONVECTION IN A CYLINDRICAL CAVITY HEATED
BY AN INTERNALLY-LOCATED STRONG SOURCE

JLSEOMCZYNSKA (WARSZAWA)

Stationary natural convection caused by a strong source of heat centrally located in a
cylindrical cavity is analyzed by a finite-difference method. Since gradients of pressure are
much smaller than gradients of both the temperature and density, the axisymmetric flow
is treated as incompressible while, for the same reason, variable density is fully accounted
for. Viscosity and thermal conductivity are assumed to be functions of temperature.
Coupled stationary equations of confinuity, motion, and energy are formulated in the
framework of primitive variables. Line integration of the equation of motion over a closed
contout is used to eliminate pressure. The solution, i.e. temperature (hence, density) and
velocity distributions in the cavity, is found by a two-step iterative procedure based on line
succesive overrelaxation. Examples of computation showing the effects of change in the
source heat-rate, mean value of pressure and the aspect ratio of the cavity are provided.

1. INTRODUCTION

Steady progress in developing computational equipment and techniques
for nonlinear partial differential equations accounts for the rapid growth in
the number of studies devoted to natural and forced convection in physics
and enginecering applications. However, in spite of the great variety in the
physical and mathematical models of convection as well as in the methods
for seeking numerical solutions, only a few basic models of the heat source
setting have been utilized.

The majority of papers devoted to buoyancy driven, laminar natural
convection in immobile cavities pertain to situations in which heat is trans-
ferred to the cavity by an isothermal wall. Most often this is either a bot-
tom wall of a cavity for which the onset, stability and fiow patterns of the
Rayleigh-Bénard convection are analyzed (e.g. STENGEL et al. [32], BLAKE
et al. [3], ARTER [1], BussE and FRICK [4]), or a vertical wall of a cavity
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for which the dependence of the flow pattern upon the aspect ratio is stud-
ied (e.q. Quon [23], KNigHT and PALMER [13], LEE and KorPELA [15],
PuiLiies [21], Le QuERE and DE RoQUEFORT [22]). Less frequently con-
sidered are convection models with different ways of wall heating, e.g. with
temperature changing along the wall (MALLINSON et al. [16], GILLY et al. 8],
WALTON [33)), a differentially heated corner of the cavity (KIMURA and Be-
JAN [12]), time periodic heating (RoPPo et ol [28]), or with the source of
heat moving along the wall (RAMARAIU et al. [24]). Modelling the source of
heat inside the cavity is seldom done and almost exclusively limited to prob-
lems involving combustion (e.g. O’ROURKE and Bracco [19]). KARWE and
JALURIA [11] considered a different example of convection due to an internal
source but that source was not strong enough to produce high gradients of
temperature and density.

This paper focusses on convection in a laser chamber, caused by a strong
stationary source of heat located in the center of the cavity. An unusual
modelling of the heat-source setting necessitates modifications of the rela-
tionship among the main variables. The source generates high temperature
and density gradients while the spatial changes of pressure are considerably
smaller. Because of highly variable density, the Boussinesq approximation,
which is standard for incompressible problems, cannot be used. Therefore,
even though the flow is considered to be incompressible, variable density
makes the method developed for obtaining the numerical solution similar in
this respect to the methods used in compressible studies.

2. ASSUMPTIONS, EQUATIONS AND GENERAL STRATEGY FOR OBTAINING
THE SOLUTION

We present and discuss a model of natural convection in a laser chamber
during a continuous optical discharge. A small volume of high tempera-
ture plasma is maintained by a strong focussed laser beam for a sufficiently
long duration to consider a stationary effect (GENERALOV et al. [7], Ko-
ZLOV et al. [14], Moopy [17]). Since the plasma is centered in the chamber
and relatively small, we represent the chamber as a cylinder and define the
problem as axially symmetric. The most important other physical feature is
that the strong heat source causes high temperature and density gradients
in the flow of viscous gas around the plasma, while pressure in the cavity
remains nearly uniform (MUcHA et al. {18], BARANOWSKI et al. [2]). There-
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fore, we treat the gas as incompressible. Specifically, we assume that local
changes of density depend solely on temperature and not on the pressure. A
nonuniform density distribution must be fully considered (pmax/pPmin = 40).
Therefore, contrary to common practice in the analysis of incompressible
flows, the velocity field is not treated as divergence-free.

Similarity analysis of the momentum and energy equations of a compress-
ible flow at small Mach numbers shows that spatial fluctuations of pressure
are negligible in equations of energy and state. So is the dissipation function
in the energy equation (O’ROURKE and Bracco [19]). Thus, in our model
of a stationary incompressible flow we simplify the energy equation by drop-
ping the pressure term and the dissipation function. Of course, the pressure
gradient cannot be neglected in the equation of motion. The constitutive
relationship among thermal variables is provided by the equation of state
for perfect gas in which the mean (i.e. volume averaged) rather than local
value of pressure is used (O’ROURKE and Bracco [19}).

In Cartesian coordinates (23,22, 23) covering the cylindrical domain £2 C
R3 equations that specify the problem under consideration are
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where g, v, = 1,2,3, x = (21, %2,23) € & C R?, v¥(x) — »'* component
of gas velocity, p(x) — pressure, with P being its mean value in 2, p(x) —
density, 7(x) — dynamic viscosity, {{x) — bulk viscosity, ¢* — v** component
of acceleration of gravity, ¢, — specific heat at constant pressure, T'(x) —
gas temperature, x{x) — thermal conductivity, g(x) — source heat-rate per
‘wnit volame, R — the gas constant. Coefficients of viscosity and thermal
conductivity are assumed to be known functions of temperature.

Pressure — appearing in the momentum equations — is a rather cumber-
some variable. In numerical schemes involving pressure explicitly, the distri-
hution of this variable is usually found as a solution to a Poisson equation,



190 J. SEOMCZYNSKA

derived from the momentum equations. One of the difficulties in solving
this equation stems from the lack of natural boundary conditions.

Neumann homogeneous boundary conditions, usually adopted in this
case, are sometimes inconvenient for physical (HirscHEL and Grou [9])
and computational (RUBIN [29], LE QUERE and DE ROQUEFORT [22]) rea-
sons. Moreover, incorporating the Poisson equation for pressure normally
leads to the continuity equation being satisfied only indirectly. This, in
turn, may result in poor convergence il the global compatibility condition
for the pressure gradient normal to the boundary is not accurately satisfied
(RuBIN [29]). In low-Mach-number compressible flow problems with small
pressure inhomogeneities there are still other pressure-related difficulties in-
volving inefficiency of computation (RAMSHAW et al. [25]).
~ In the analysis of two-dimensional incompressible flows the usual way
to avoid dealing directly with pressure is to formulate the problem in the
vorticity-stream function framework. In this framework, uncoupling pres-
sure is accomplished by having the momentum equation replaced with the
vorticity-transport equation. If density is constant, the new equation is eas-
ier to handle because the basic terms involving the main variable (i.e. vortie-
ity in the vorticity-transport equation and velocity in the momentum equa-
tion) are the same as in the original equation, while pressure is eliminated.
Variable density makes this framework much less attractive (RoAcHE [27]).
Although pressure can still be eliminated by replacing primitive variables
with vorticity and stream function, this is accomplished at the cost of many
new terms appearing in the vorticity-transport equation (e.g. INABA and
Fuxuba [10]).

With no clear gain to follow from applying the vorticity-stream func-
tion framework to our problem, we retain primitive variables. Nevertheless,
pressure is eliminated as an active variable. Elimination is based on the
Stokes theorem from which it immediately follows that a line integral of
a gradient, taken over a closed contour, vanishes identically®. Thus, an
integration of the momentum equation over any closed contour results in
eliminating both of its gradient terms (which contain pressure and bulk

()Let F be any function with all first and second derivatives in £ C R®. Let S bea
surface in £ which can be oriented by a unit normal vector m at each point of § with n
continuous over S. Let ¢ be the contour of 5 and T be a unit vector tangent at each point
of ¢ and continuous over ¢. The Stokes theorem, applied to function G = VI, provides

fVF-‘rdI://(curi VF)ndo =0.
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viscosity). Accordingly, we replace Eq.(2.2) with

(2.2) ] L dr, =0, v=1,2,3.
[+

where v = (71, 72, T3) i8 a unit vector tangent to the closed contour ¢ and the
integrand £ is composed of three terms of the original equation (convective;
viscous; buoyancy).

Having formulated the problem in terms of primitive variables, we set
simple and physically straightforward boundary conditions for velocity and
temperature. We assume the velocity vector to vanish at the boudary 8302
while temperature remains constant. There is no equally good justification
in physical terms for the boundary conditions for other variables. Therefore,
we have chosen them as compatibility conditions, assuring that all equations
would be satisfied at the boundary. Accordingly, conditions for density are
set to satisfy Eq.(2.4) while values of viscosity and thermal conductivity
are taken from appropriate tables of gas properties, as corresponding to the
boundary value of temperature. Hence, boundary conditions for all variables
are of the Dirichlet type.

Equations (2.1)-(2.4) are norlinear and coupled, therefore requiring some
iteration. To limit the memory storage we chose to use a full-scale itera-
tive method. In our double-loop iterative scheme the convection problem
is split into two partial problems denoted as T (for temperature) and N-S
(for Navier—Stokes). In each (outer) iteration the last solution of one sub-
problem (obtained through inner iterations) serves as data for the other
subproblem, and iterations are continued until a satisfactory convergence
is obtained. Since the method for solving the Navier—Stokes problem has
been presented in some detail in an earlier work (SzoMczYNsKA and PE-
rRADZYNSKI [30]) while the procedure for solving the full convection problem
was only briefly outlined elsewhere (SEOMCzYNSKA [31]), this paper stresses
the temperature problem.

Sequence of computation in k-th iteration for the full convection problem:
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3. DiSCRETIZATION AND THE NUMERICAL PROCEDURE

We solve the outlined problem by means of as iterative finite-difference
method. The governing equations are normalized and expressed in the con-
servation form, particularly recommended for problems with variable density
(e-q. RoAcHE [26]). They are then integrated over a cylindrical control vol-
ume Vg bounded by a pair of planes z = z;, 2 = Zzi41, & pair of cylindrical
surfaces 7 = rj, 7 = 731, and a pair of planes ¢ = ¢x, ¢ = Pr41. From the
Gauss theorem it follows that the equation of energy, integrated over Vg,
becomes '

K oT |
(3.1) f (p’u*‘T ~ Pe 5;;) pdo = Qns

Ve

where Pe = (c,ppusLs)/ ks — the Peclet number, Qn,(i,j) = Q /(e Thppus LY)
— the source nondimensional heat rate supplied to the control volume, n =
(ny, n2,n3) — a unit vector normal to the boundary oVx, Ly, v, pby Th, K5 —
characteristic (dimensional) quantities.

To account for the cylindrical symmetry Eq.(3.1) must be expressed in
cylindrical coordinates (r,#, z). Considering appropriate relations between
the Cartesian and the cylindrical coordinate systems under axial symmetry
(8-/8¢ = 0, v# = 0), we express the integrand in Eq.(3.1) as

ar ar
{(n1 cos ¢ + ng sin d:) pu+ napv}T———_ {(nl cos ¢ + nz sin ¢)—— 3 + ng—— 57 }

where u and v denote v” and v?, respectively. To complete the integration
over Vs we notice that for surfaces (I) » = comst : ny = cos¢, ny =
sing, ng = 0, o = rdpdz; (I1) ¢ = const: ny = —sing,nz = cos ¢, ng =
0, 80 = drdz; and (III) z = const : ny =0, ng =0, ng = 1, do = rdrds.
Hence
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Since under axial symmetry 8T/9¢ = 0, Eq. (3.2) reduces to the following
two-dimensional equation in domain 234 being a half-plane of the z-axial
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cross-section of domain 2
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A similar procedure applied to equations of continuity and motion (see
StoMczyNskA and PERADZYNSKI [30] for derivation) provides
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V(i,j) =7 ('rj -+ ""J'+1) (Tj+1 - Tj) (z;+1 — z,-), Re = (pbubLb) /m — the Rey-
nolds number.
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Since ¢ is the borderline of the mesh (i,7) — denoted as (i,7) for its
left-bottom corner — vectors S* and P* (g = r,z) appearing in Eq. (3.5) are
not computed in the node (7, ) but in points «, 3,7, § which are centers of
four faces bounding the mesh. Hence a = (4, j+1/2), 8= (1 +1/2,j + 1),
v = (i4+1,541/2),8 = (i+1/2, j). Intervals of integration in Egs. (3.6)—(3.9)
are modified accordingly.

The half-discretized equations (3.3), (3.4), (3.5) have been derived from
Egs.(2.3), (2.1) and (2.2') without considering how the variables are defined
on the grid, what their profiles are between nodes and how the boundary
conditions are set. To arrive at the final discretization formulae, by ap-
plying the mean-value theorem to integrals in Egs.(3.3), (3.4), (3.5) all of
these need to be specified. Figure 1 presents the two-dimensional domain
234 covered by the grid. Velocity, density and viscosity are defined over
the set of grid-nodes (points (¢,7), ¢ = 0,...,m+1; j=0,...,n+1)
therefore setting the boundary conditions is straightforward for these vari-
ables. Temperature and thermal conductivity are defined in mesh centers
(points (1 +1/2, 7+ 1/2), i=0,...,m; j=0,...,n). To set the Dirichlet
boundary conditions for temperature (and thermal conductivity), additional
temperature nodes are located on the boundary. Using two grids staggered
with respect to each other for defining two main variables (T and v) helps to

z
m+1 ? n n n I3 L3 - - n L] “ :1
m
i+2 = E] - L] 3 L - L] = = Ll
i+l - X -
i = l ? L] n L ] L ] 1 ]
j_1 L] ] " n ® ]
1 e e SH . - = —t— 15
T ; » r
0 12 j-1 i j+1 j+2 n n+1

Fia. 1. Domain Q2 - covered by the grid. T and k are defined in z-points, %, v, p and 3
are defined in m-points.
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develop discrete equivalents of all partial differential equations for the same
mesh (i, ) without unnecessary interpolation. The discretized equation of
continuity provides a relationship among variables (p and v) defined in four
nodes bounding the mesh (7, j), while the equation of energy links five cen-
ters of adjacent meshes providing a five-point formula for 759 ;41/2, and
the equation of motion — due to the linear integration over the mesh contour
~ links twelve nodes (cf. Fig. 1).

Before making assumptions about the between-node profiles of particu-
lar variables it is necessary to consider the fact that two of the differential
equations are of the convection-diffusion type. The appearance of the first
and second derivative in the convection-diffusion equation limits the stabil-
ity of a numerical solution based on the central-difference representation of
all derivatives (i.e. on the linear between-node profile of all variables ap-
pearing in the convective term) to low values of the cell Reynolds number
(R. < 2) (RoacHE {26], FrRoMM [6]). In practical computation this limita-
tion is often found troublesome gince it results in requiring the grid to be
very fine. To overcome this difficulty COURANT et al. [5] developed a nu-
merical scheme (upwind) free of the cell-Reynolds-number limitation, but,
at the cost of reducing accuracy in representing the derivatives from the
gsecond to the first order. Subsequently, the upwind scheme has been often
criticized for introducing artificial viscosity and therefore producing unreal-
istic numerical results. However, multiple versions of this scheme are very
popular owing to their simplicity and effectiveness in problems with high val-
ues of R, where the central-difference approach fails. Proponents of upwind
schemes point to their positive features among which are the transportive
property (ROACHE [26]) and a representation of the convection term which
accounts for convection being an asymmetric phenomenon (PATANKAR [20]).
Both these features are lacking in the central-difference approach although
it produces second-order accurate representations of all derivatives,

The introduction of undesired artificial viscosity is a clearly negative
feature of the upwind scheme. Therefore this scheme should be avoided if the
solution of the problem is obtainable by the use of central differences. The
equation of motion has been discretized in our method by applying central
differences and the solution was obtained for many problems with R, > 2.
When the method was applied to the driven cavity problem, satisfactory
solutions were obtained for R, = 15. This was possible because of a partial
cancellation of terms occurring in the discrete representation of the line
integral of the convective term.
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To show that some terms cancel in the line integral of the convective term of the
equation of motion, we consider a simple example. The line integral is replaced by the
curl operator, its numerical equivalent for integrating over the mesh boundary. Ii is
first assumed that density is constant. Terms resulting from the density being actunally
different form its mean value over the integration contour do nrot undergo cancellation.
For simplicity, a two-dimensional flow in plane Cartesian geometry is considered with
v = (u,v) being the velocity vector, ¥ — the stream function, and w — vorticity. The
convective term and its curl are:

_ _{ uwdufdz +00uldy
e = (vVv= ( wovf/dz +vdv /oy )'

curle = A+DB,
where

A = Ov/8z duldz + dv[dy dv]dz — Bu/Bx Ju8y — Bufdy Buldy,
B = ud%0/3s® +v&v/0zxdy —udufdzdy — v ufdy.

By introducing the stream function and vorticity, i.e. applying the formulae
v =2a¥/3y, v = —9¥[dz, w = Jufdy — dv/dx,

weget A=0, B= —udw/dz —vduwfdy.

In meshes of constant vorticity curl e vanishes. Hence, for variable density, curl ¢
contains only terms due fo deviation of vorticity and density from their respective mean
values over the contour of integration.

The energy equation was discretized following the scheme of PATANKAR

[20]. The finite-difference formula for temperature in the center of the mesh
)i |
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a, B, 7, § denote centers of faces bounding mesh (i,7) (cf. Fig.1). P,
v =a,f3,7,8, are values of the local Peclet number in these points, e.g.

(p)ol 21 2 zi-—-l/?)
Ko ’

(3.15) P, = Pe

In general A is a function of the local Peclet number. Its form de-
pends on how the convective term is approximated by finite differences.
For the central difference representation A = 1 — 0.5|P,|. For the upwind
scheme (A = 1) its value is independent of P,. For the hybrid scheme, using
central differences for P, < 2 and the upwind scheme elsewhere, we have
A(|P,]) = max(0; 1 — 0.5F,|). For Patankar’s power-law scheme, provid-
ing a polynomial approximation of the expected exponential profile of the
convection-propagated variable, A(|P,|) = max{0; (1 — 0.1|P,|)°}.

Nurmerical examples given in this paper were computed using the upwind
option in formulae (3.11)-(3.15). Condition of axial symmetry (87/0r =
0, Ox/dr = 0) is imposed by modifying Eqgs.(3.11) and (3.13) for § = 0.

- Cylinder of radius 7y is considered as the control volume. This results in
setting the radius ratio in Eq.(3.11) equal to 0.5r| and coefficient a3 equal
to zero.

Equation {3.10) is solved in the domain by line SOR. One mesh-block
consists of meshes between two adjacent vertical lines 7 and j+ 1. Sweeps of
ascending and descending orderings of j lines are iterated until satisfactory
convergence is achieved. Local values of density are then calculated from
the equation of state and local values of viscosity and thermal conductivity
found from appropriate tables of properties. Computed T, p and 5 values are
used as data for the N-8 computation. The latter is performed in (224 by a
two-line SOR, method which was designed for this purpose (SroMczZYRsKA
and PERADZYNSKI [30]).

4. NUMERICAL RESULTS

The method discussed in this paper was applied to some problems of
stationary natural convection in a cylindrical cavity heated by a centrally
located cylindrical source supplying heat at a constant rate. Velocity was
assumed to vanish at the boundary and temperature is constant and equal
to 300 K. The height of the cavity was 4 cm and its diameter 3.6 cm in 7 cases
out of 9 considered below. The source was modelled as a small cylinder, its
height being 0.8 cm and its diameter 0.4cm. A 21 X 21 nonhomogeneous
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grid, with vertical lines concentrated in the vicinity of the z-axis, covered
the right half of the z-axial section of the cavity. A rather coarse grid was
chosen to allow for computation on a mini-computer.

The convergence criteria for both T and N-S partial problems were the
maximal residual and the maximal difference in a node. When the ratio of
each of these to the maximal value of temperature (or velocity in case of the
N-S problem) fell below 107> (or 10~* for the N-S problem), inner iterations
were discontinued. QOuter iterations were assumed to be convergent when
0.8 of the value of the inner criterion was achieved. The number of inner
iterations varied from 30 (a preset maximum) to 1 for the T problem and
from 50 to 1 for T the N-S problem. The number of outer iterations varied
from 29 to 105 among solutions for nine data sets presented in this section.
Temperature was overrelaxed with the factor w = 1.2. No overrelaxation
was used for velocity. The nonlinear term in the momentum equation was
underrelaxed with the factor v = 0.1.

Nine data sets — three for each particular problem — have been considered
to show the effects of change in (1) the source heat-rate, (2) the mean value of
pressure, and (3) the aspect-ratio of the domain. The results of computation
are presented as temperature contours and streamlines.

In the first problem the rate of heat supplied to the cavity was 70 W
(case a), 60 W (case b), and 30 W (case c). The mean value of pressure
(1 ata), and the source and cavity dimensions were the same for all three
cases. Figure 2 shows the temperature contours and Fig.3 the streamlines
in the right half cavity z-axial section. With a decreasing heat-rate (from
70 to 50 W) the maximal value of temperature decreased (from 13.564 to
10.621K), and the maximal value of velocity rose (from 38.1 to 62.5cm/s),
as did the Reynolds number (from 92 to 120) and the Peclet number (from
2.3 to 3.6). A change in streamlines pattern occurs between the 70 W case
— with two vortices, and the 60 W case — with one vortex.

The effect of change in the mean value of pressure — from 1ata (case a)
to 0.75ata (case b) to 0.5ata (case ¢) — is examined for the cavity of the
same dimensions as in the first problem. The cavity is heated by a 60W
source. With the mean value of pressure decreasing (from 1 to 0.5 ata) Tinax
rose (from 12.250 to 12.640K) and vyax decreased (from 45.5 to 21.0cm/s).
The Reynolds number decreased from 102 to 32 and the Peclet number from
2.6 to 0.8. The temperature contours {cf. Fig.4) demonstrate the clearly
diminishing effect of convection. The streamlines comparison (cf. Fig.5)
shows one vortex in the 1ata case and two in the two remaining cases.
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The third comparison involves cavities of different aspect ratios. The
shallow cavity (case a, aspect ratio: a/3) is of 2cm height and 5.4cm in
diameter, The dimensions of the standard cavity (case b, aspect ratio: a)
were given earlier in this section. The tall cavity (case ¢, aspect ratio: 3a)
is 6¢cm high and its diameter is 1.8cm. The source heat-rate (60 W), the
source dimensions {(height = 0.4 cm, diameter = 0.4 cm), and the mean value
of pressure (1ata) are the same for the three cases. Temperature contours
are shown in Fig. 6. Streamlines patterns (cf. Fig. 7) for the shallow and the
standard cavity are topologically similar. In case c there is a characteristic
split of the main vortex observed in many tall cavities with differentially
heated vertical walls.

5. CONCLUSION

The numerical method presented in this paper was designed for a class
of stationary convection flows that rarely become subject to theoretical and
numerical analysis: incompressible but with a substantial variation of den-
sity. Allowing for high density gradients made the Boussinesq approximation
inapplicable. The continuity and the momentum equations were therefore
formulated in terms of primitive variables and pressure was eliminated as
an active variable by applying the Stokes theorem to the momentum equa-
tion. In addition to eliminating pressure, the procedure — which involves
taking a line integral of the momentum equation over a closed contour —
provided some cancellation of terms representing the convective derivative
in the momentum equation. This allowed for applying the numerical scheme
designed for Navier—Stokes equations to problems with a cell Reynolds num-
ber higher than two, without using upwind differencing for the convective
term. Among other attributes of the method, natural boundary conditions
for main variables may be mentioned. Since primitive variables were used
and, at the same time, pressure was eliminated, there was no need for set-
ting boundary conditions for either vorticity or pressure. The continuity
equation has been solved directly in each mesh,

Since the method was designed for a special class of problems, the range
of its applicability is not easily extendable. To deal with compressible
or three-dimensional flows, major modifications of the approach would be
needed. In addition, line integration of the momentum equation over a con-
tour resulted in a 12-point formula for velocity which is rather bulky as
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compared to the standard 5-point formula. Still, for variable-density incom-
pressible flows analyzed in two dimensions the method — based on a novel
treatment of the momentum equation — may provide a convenient alterna-
tive to those methods accounting for variable density which were designed
for compressible flows.
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