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SOLUTION FOR AN IRREGULAR PERTURBATION PROBLEM
OF VISCOPLASTIC SPIIERICAL CONTAINER
UNDER INTERNAL PRESSURE

W. WOINO (WARSZAWA)

An irregnlar perturbation problem around a quasi-static solution for a motion of
a thick-walled spherical container made from viscoplastic material and subjected to a
time-dependent internal pressure is dealt with. Only the first perturbations are taken into
account. A practically important case of a power excess stress function above the static
yield stress is considered. '

1. INTRODUCTION

Theoretical analysis of a dynamic problem for a structure made of a
viscoplastic material is fraught with difficulties since, apart from a few ex-
ceptions, a nonlinear initial-boundary value problem must be solved. In
the applications of the viscoplasticity theory these difficulties have to some
extent been overcome by introducing various simplifying assumptions and
approximations discussed in [4]. One of the techniques to solve approxi-
mately a viscoplastic problem is the perturbation method.

Perturbation procedure around a plastic solution was proposed in [6,10]
in order to solve the motion of a thick-walled sphere made of a viscoplastic
material described by PERZYNA’S constitutive relationship [5]. The motion
was caused either by an ideal impulse or by a time-independent internal
pressure. In both cases solutions for a power function of the stress excess was
found by using a modified Linstedt—Poincaré method [4]. ThlS modification
was presented in detail in [10].

A concept of perturbation around a plastic solution was also employed
successfully in [7] and [8] where motions of a single span built-in viscoplastic
beam and of a clamped circular plate under an ideal impulse were consid-
ered. To obtain a solution with separated variables the material properties
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were described with the help of a homogeneous constitutive relationship of
a viscous type, and the perturbation solutions themselves were arrived at by
using the Rayleigh—Schrédinger method. A perturbation problem similar to
that solved in [7] was presented in [9]. However, the beam had properties
described by a Perzyna’s nonhomogeneous constitutive equation. In order
to obtain, as before, a solution with separated variables, Galerkin’s weighted
method was used followed by a perturbation technique of a generalized av-
eraging. '

In the present paper a perturbation solution is presented for a quasi-
static problem of a thick-walled spherical container subjected to a time-de-
pendent internal pressure. The rigid-viscoplastic properties of the material
are described by Perzyna’s constitutive equation with a nonlinear function
of the stress excess above the state of plastic yielding. An approximate
solution to within an accuracy of the first perturbation is constructed by us-
ing the method of matched asymptotic expansions. A practically important
case of a power function of the stress excess is considered together with a
linearly decreasing pressure.

2. THE PROBLEM AND ITS REDUCTION TO.THE INITIAL VALUE PROBLEM

Consider a thick-walled spherical container made of a strain tate sensitive
incompressible rigid-perfectly plastic material whaég properties are formu-
lated by Perzyna. The aim is to describe a motion of this structure under
an internal pressure under the assumptlon that strains remain small.

Let us denote by r, a, b the current, inner and outer radii, 1espect1ve]y,
and by t the time. The radial strésses are denoted by o, the circumferential
ones by oy and o,,, the internal pressure by p. Due to the spherical symmetry
of both the container and its loading, the stresses ¢, and oy = o, are the
principal ones. The radial displacement, its rate and the mass density are
denoted by w, v and p, respectively.

With the above notation, the problem is formulated by the incompress-
ibility equation

du v
2.1 e} 2~ =0
(21) or + r ’
the motion equation
a i
(2.2) Ir 4 9Zr—Te _ ,20
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the constitutive relationship

(23) 2T (%),

snd the kinematic formula

du
ot
Let the initial conditions be the following:

(2.4) v.

(2.5) v(r,0) = 0, u(r,0) =0, a<r<h,
and the boundary conditions take the form:
(2.6) or(a,t) = —p(t), o (b,1)=0, 0Lt

where #; is an instant of time at which the container ceases to move any
more. If the motion continues, f;. corresponds to a time instant for which
- an assumption of small displacements is no longer valid,

In Eq.(2.3) k stands for the yield stress in pure shear, v is a constant
responsible for the viscosity of material and &(*) represents the stress excess
function above the static yield stress; (0) = 0. The value of y together with
~ the form of the function ${*) are determined by means of suitable tests on
dynamic behaviour of materials

The system of Egs.(2.1)-(2.4) together with the conditions (2.5) and
(2.6) constitutes an initial-boundary value problem for the sought functions
o(r, 1), u(r,t), or(r, 1), and a,(r,1).

Since the solution of the incompressibility Eq.(2.1) can be obained inde-
pendently of the remaining equations in the form with separated variables r
and ¢, the above formulated initial-boundary value problem can be reduced
(see [10]) to the initial value problem for the ordinary differential equations

b
d Tatv, \ d
(2.7) ea(l— ")‘;Ta + 2\/3k/d§“1 ([-ﬁai) —T"i = p(t) - 23kl gy,
a

du,
dt
with respect to the radial displacement rate v,(t) = v(ci,t) and the radial
displacement u,(t)} = u(a,t) of points at the inner surface of the container
in the presence of the conditions

(2.8)

= Y,

(2.9) - (0= v,0 =0,  u(0) = ugo =0,
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where

a
(2.10) n= "E ..

Further, the spatial distributions of the displacements and their rates are
dependent on v, and u, according to the formulae

(2.11) o(rt) = ,(2)2%(0,
(2.12) () = (g—)zua(t),

and, finally, the radial and the circumferential stresses are given by

Oy p(t) Tr_ _
2.1 —— =
(213) == le— ' yasc,

o p(t) o {34y,
2.14 ¥ = 7'
(2.14) J3F 1- x/-kl- -!-A+C'+!i5 ( o )
where A and C are expressed by

o
(2.15) A = nix r ln 77!
b 1—19

1 1 [ V3atu, \ dr . V3 av,

(2.16) _C—f@('yr")r—l f@(w?’)r'

3. LIMITING QUASI-STATIC PROBLEM

Denote by f an arbitrarily chosen function from among »(r,t), u(r,1),
Va(7, 1), ua(r,t), op{r,t), o,(r,t) that describe the motion in the formu-
lated dynamic problem. Let f¢ be a counterpart of f taken from the set
of functions v%(r, 1}, ©%(r, t), v3(r, 1), ul(r, 1), 02(r,t), 65(r, 1) that describe
the motion when the mass density of the material is negligibly small, i.e.
o — 0. To obtain the limiting problem for ¢ — 0, ¢ in the Eqs. (2.1)-(2.6)
must vanish and the functions f are replaced by their limiting counterparts
f9. As a consequence, the motion equation (2.2} becomes an equilibrium
equation '

a
3.1 s £ =90
( ) or + ?
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and the remaining Eqs. (2.1), (2.3), (2.4), together with the initial conditions

(2.5) and boundary conditions (2.6}, remain unchanged. Thus, the problem
is reduced to a quasi-static one which -~ as before — is expressed by

b
2,0 .
(3.2) 2\/5!:]45'1 (—\/—3;-%?-'1) d?? = p(t) - 2V3kInnt,

dul
dt

=2

(3-3)

H

(3.4) v(0)=v5 =0,  ug(0) = vgo =0,

in the variables: displacement rate v2(¢) and displacement u2(#). These can
be also obtained by transformation of the relations (2.7)-(2.9) to the limiting
case, i.e. for p = 0. In addition, let us notice that the form of the relations
(2.11)—(2.16) remains unchanged during the limiting procedure. Finally, let
us add that the value

(3.5) ps = 2v3klng™!

appearing in (3.2) denotes the pressure at which in the quasi-static process
the full yielding of a rigid-ideally plastic container takes place.

A particular property of the discussed limiting case is its singularity (ir-
regularity) consisting in that the ordinary differential equation (2.7) becomes
an algebraic equation (3.2) in v2(¢). Thus, the obtained rate v2(t) cannot,
in general, satisfy the condition (3.4); and, for the same reason, the rate dis-
tribution v%(r,t} determined from (2.11) cannot satisfy the initial condition
(2.5)1. As a consequence, while formulating a quasi-static problem the con-
dition (2.5); (and therefore also (3.4);} has to be rejected as an initial one.
If not rejected, it must be treated as a constraint on an admissible class of
functions p(¢) of the applied load process. On specifying the Eq. (3.2) for an
initial instant ¢ = 0 and then using (3.4); we can conclude, in the presence
of the property of the excess function #~'(0) = 0, that an admissible class
of the pressure functions must be constrained by the condition p(0} = p,.

With sufliciently small value of g a sclution of a quasi-static problem is
known to play an essential role since it is close to the exact solution of a
dynamic problem except for a small time interval in the vicinity of an initial
time instant. In this so-called limiting layer the exact solution changes
rapidly to obtain the properties imposed by the inifial conditions. The
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smaller the mass density, the thinner the limiting layer and the solutions
are closer to each other. Thus, apart from the quasi-static solution, the
knowledge of a selution near the exact one is also necessary in the limiting
layer.

The quasi-static solution plays also another important role, namely, it
allows to choose such comparative values while reducing the problem to a
nondimensional form which enable us to apply successfully a suitable per-
turbation technique for the considered problem.

To learn the basic properties of a quasi-static solution let us first note
that, determining the rate v2(¢) from (3.2), we can directly solve the initial
value problem (3.3}, (3.4)2 and obtain

(3.6) ud)) = [oB(e)de.

The largest strain intensity in the wall of the container at an arbitrary
instant ¢ is given by(!)

(37) &= [
' 0

Due to the fact that the deformation process is purely dissipative, v2 > 0,
and due to the properties of the stress excess function, &~1(x) > 0, hence
the left-hand side of the relation (3.2) is always non-negative. That is we
conclude that the motion takes place when p(t) > p, and, as seen from (3.6)
and (3.7), both functions u2(#) and £2,(t) are increasing.

Assume that the pressure function in the range [0, ;] is continuous and
such that p(t) > p,. If®) £,:(t1) < €p, the range of validity of the solution
for the quasi-static problem (3.2), (3.3), (3.4); terminates at the instant ¢;.
If, to the contrary, £,; > €p, the terminating time instant 9 < t1 must be
assumed in order to remain within the small deformation theory; 2 has to

(The largest strain is calculated from the formula
1 2 2 % _ o2 00, -3
gi=g [(s,. —ep) + (6o —€8)” + (e0 —er) ] = 3a ug(t)r ",
for r = a, e2(t) =ei(a, ).

(e, in this inequality denotes an admissible intensity of plastic strain (for the small
deformation theory)
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satisly the equation
te

(3.8 er=2ul () =3 [ o206y ae.

0

In the above cases both final rates v{(#;) and v%(i%) cannot vanish.
The motion of the viscoplastic container in the quasi-static situation
ceases at such an instant tg’t < t; that — starting from the zero instant — the

equation

(3.9) p(i3) = ps =0,
and the inequality
(3.10) &% (1) < e

are satisfied for the first time, i.e. when the internal pressure becomes equal
to the full yielding pressure in the container. When the inequality (3.10)
is not satisfied, the terminating instant is 2. In this case, in the range of
validity of the solution of the problem (3.2), (3.3) and (3.4),, i.e. [0, t2], the
container continues to move. '

Let us notice that the relationship (3.2) differentiated with respect to
time yields the expression

b
(3.10) 6k @_2_/ [qs-‘ (ﬁa2ug)]’dr _dp

v dt yr3 i dt’
where _ :
(3.12) o1 V3a2u?\]’ _do ()
) yr3 T dz mﬂ\/i,fug ’

is a positive, decreasing function. From this it follows that the derivatives
of the rate v¢ and the pressure p have the same signs and their extremum
values — if present — must appear at the same time instant t° such that

dp

rr M

t=t2

(3.13)

Since the function $~1(x) increases monotonically with its argument, Eq.(3.2)
shows that —if the rate does not reach its maximum value — its largest value
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v, occurs at the same instant 2 as the maximum value p, = p(t2) takes

place.

Consider now a particularly important practical case of a power function
of the stress excess $(x) = (*)® with a natural n. For such a function
Eq. (3.2) takes the form

2kn e\ (V3 0 "
(3.14) ﬁ (1 -—- ’r]n) (an) = P(t) — DPs»

from which the rate

(3.15) ﬂg(t) — _}_‘31 (;/183_;12(11)_—”3%’3)))

can be determined. After substituting it into (3.6), the displacement

(3.16) up(t) = "“f (;f:n_(i_—) /(P(i) ps)* di

is arrived at.
Finally, using (3.7) the strain intensity is found to be equal to

Y
(3.17) g = 1V3 (m) f(])(t) ps)" dt.

Moreover, let the function p(#) in the interval [0, ¢;] decrease linearly
according to the expression

(3.18) p(t) = (1+4h) (1 - %) Pss

where h > 0 describes the pressure excess above p, at an initial time. If so,
the formulae (3.15)—(3.17) take the form

oy 2 [ V3P ' L — lin
(3.19) ”a(t)_ﬁ(zkn(r—n%)) [’ (HJ)’»‘:]

Ofpy _ - ety V37, n
(3.20) Uy (1) = \/_(1 + h)(n+1) (21»71 ( "?%))

< {hm _ [h —(1+ h)%] i }
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. ~ ﬁ7tl '\/'?Tpa "
(3.21)  g5(0) = (1+h)n+1) (2kn (1 - "‘?%))

X {hn+1 - [h -(1+ h)%]nﬂ}.

From the equation (3. 19) it is readily seen that the displacement rate
attains its largest value v2, at an initial time,

(3.22) 00, = o2(0 )—%(~ﬁp—h)

2%kn (1 - )
This rate becomes zero, according to (3.9), when
h
0 _
(3.23) iy = pn htl

To this instant of time corresponds the strain intensity

0 0y _ V3vh V30, " ntl
(29 el = A M (-zkn(l—n%)) .

From the above relationship it follows that, in order to satisfty the in-
equality (3.10) at a given h, the instant ¢, at whu.h the pressure drops to
zero must satisfy the condition

LanEr) (VN
I e e e

Under this condition the motion ceases to continue at the instant t‘} and the
final displacement, not violating the range of infinitesimal strains, is found
to be

t ‘ V3p "
3.26 wl, =0 (%) = 1o s p(n+1)
629 ur=ut(f) V3(L+R)(n+1) \ 26n (1 57)

v2(0)t)
nt+1l"

If, to the contrary, at a given h the instant #; does not satisfy the in-
equality (3.25), then £3,(t$) > ¢, and the range of validity of the solution
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(3.19), (8.20) is bounded by an instant 2, satisfying the Eq. (3.8),

1
=N ntl
t ep(1+h)(n+1) V3ps
3.27) %=1 {p—|pntlo 2
( . ) 1+h ! V3t an(lun%)

/ . T :
. 40 P 0
‘“tf 1—(1—-—0—"""6‘"‘) <tf’
Eo- |1
(u(_f)

To obtain (3.27), the relationship (3.24) was used. Substituting (3.27) into
(3.19) and (3.20) and making use of (3.22) and (3.24), the final rate

(3.28) 0 = 40 (10) = 2(0) (1 - —0-5-"-5-) ;‘,
() @

ai \*f
and the final displacement

'U'O(O)f.‘o e
(3.29) wl_ =l () = = ! 4 Iy
( ) n+41 521, (t?)

are obtained. _

In what follows, for the convenience of introducing the dimensionless
magnitudes, the larger of the rates v9,, v9, in the quasi-static process will
be denoted by v, and the corresponding time instant by ¢%,; the final
instant of the range of validity of the solution will be denoted by 1, and the

final displacement - by u?,.

4. NONDIMENSIONAL FORM OF THE PROBLEM

To express the problem (2.1 )-(2.6) in a nondimensional form, the refer-
ence magnitudes for the independent variables r, ¢, for the sought variables
v, 4, Op, 0y and for the pressure p should be introduced. Since the prob-
lem has already been reduced to the equations (2.13), (2.14) in the stress
components and to the initial value problem (2.7)—(2.9), the nondimensional
form of only ¢, v,, 1, — and, as seen in (2.11) and (2.12}) — of v, u as well as
p must be determined. As follows from Sec. 3, the comparative magnitudes
for t, v,, u, should be 3, v%,,, u?,., respectively. The pressure p will be
compared with the pressure p, corresponding to the quasi-static yielding
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of the considered container. Selection of the remaining magnitudes can be
virtually arbitrary. However, as follows from the formulae (2.11)-(2.14), it
appears convenient to assume a and V3'k as comparative magnitudes for
the radius @ and the stress components g,, o, Tespectively.

The following nondimensional independent variables

. T i
(4.1) =1, =
a’ Q°

nondimensional dependent variables

v g
4.2 P = u* = — * = ot = —2
(4.2) ve. ul, ’ VLY ¢ V3k’

and the nondimensional pressure

vy = P
4.3 ")y = ———F—
(43) (¥ 23 knn-1
are introduced.
Let us note that from (4.2} 2 we obtain the nondimensional variables

(2] /)
* __ a * a
(4.4) 'v(l - ) ’ ua - 0 ?
vam uak

that are necessary to reduce the initial value problem (2.7)—(2.9) to its nondi-
mensional form.

With the use of the above quantities the initial-boundary value problem
can be written down as

= NG

@n N @4(}2),

(4.8) 0;1:: = ¥,

(4.9) v* (r*,0) = 0, w* (r*,0) = 0, 1< <yt

(410) o (L) =-2" (gt o (n7Lt) =0, 0<E <,
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where
0a (1 - "7) vam
4.11 —,
(411) p=
0 0 ;0
(4.12) 5= V3ven . v= Zambi :
Ya u?
ak

are positive-valued nondimensional parameters.
The relationships (2.11), (2.12) take a simple form

vg (7, 1)

(4.13) ’ * (r*’ t*) = 2 .
(4.14) w(r*,t*) = -——(—T-ﬁ-l,

and the formulae (2.13)-(2.16) can be rewritten in the form

w«—1

(4.15) o = —2p*(1") -T—l—_gln 17+ A )+ C (7505, 6),
(4.16)  af=1-2p" (2" )——nﬂlnn"li-fl(r ¥
e+ (525),

*=

(4.17) —-A(r ;n)=Ine* n-}-—nnlnn L

(4.18) —C’(r suns i, 6) = f@" ( ;‘3) dr”

r*

Finally, the initial value problem (2.7)-(2.9) assumes the form

—1

)
1 -1 ’U; dr* — (Y * _
(4.19) ﬁdt* —?_—llqu (51"?) T op () -1 w(0)=

(4.20) ' ¢ = pyt 1,{0) = 0.
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In the case of a power function of the stress excess @(x) = (*)*, the
integrals in (4.18) and (4.19) are equal to
n—-1

B —1 _E;_ dr* _ E *—% xS 1 *;ll-
(4.21) qus (‘51-*3) — = 3 (TR —a%) sRuE,
r*
n-1 d
1 — = 2o g¥)srern
(4.22) f@( )T*—S(ln)ﬁva.
1
Denoting
3
nl—gqn 1
(4.23) U =3 -1 o=,
the relationship (4.18) takes the form
(4.24) C{r*5v5:m0) = e, B (v 7, n)’u;l?,
in which
3
1 N Ing™ | ,_s 3 (7’*—1 - 7?) (1 - 7?;)
(4.25) EB(T ,n,n)_- 1*“:-'7?—% {7‘ — N — 1—1] .

Consequently, for the power function of the excess the formulae (4.15)
and (4.16) for the stress components are given by

(4.26) o= -2p*(t" )-—-—-——-;]ug-?-htn + A(r"; )w-anB(r";n,n)v;?la',

*

421)  oh=1-2" (" )————"mn +A (")

1
—an B(T IR 3 nn T o '”Z%,

1- ?]n

and the initial value problem (4.19), (4.20) is expressed by

d *
(4.28) ﬁdt* Faguin = p* () -1, v3(0) = 0,
(4.29) ZT:: = vy, ur(0) = 0.
On denoting pX. = p*(t2*), the following two parameters appear:
2
gya*(i —n) (3 Iny~! )
4-30 ﬁ = m - 1 ¥
30 Vi \ni-gi) BV

(4.31) ap, = pp -1,
which results from (3.15}, (4.11), (4.12) and (4.23).
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5. PERTURBATION SOLUTION

Let us observe that, on the basis of the relations (4.11) or (4.30), when
¢ — 0 the dimensionless parameter § — 0. With the assumed values of
the remaining magnitudes, such a g can always be found that makes the
parameter # sufficiently small.

Assume that in Eqgs. (4.28)1, (4.29);, the parameter 8 is small and the
Temaining parameters a,, v are not. As stated in Sec.3, the inital pertur--
bation problem (4.28), (4.29) with respect to § becomes irregular and in
order to solve it one of the singular perturbation theory techniques must be
employed (see, e.g.[3] or {5]).

In this paper the method of matched asymptotic expansions will be em-
ployed. It consists of four stages: solution of an outer problem, i.e. con-
struction of an expansion valid after a certain short lapse of time measured
from an initial time, solution of an inner problem, i.e. the determination
of an expansion in the neighbourhood of the initial time, making these two
expansions matched and, finally, composition of these two solutions into
one, the so-called uniformly valid asymptotic expansion in the whole time
interval under consideration, see e.g. [2] or[4].

5.1. Outer problem

Outer problem is obtained from the initial value problem (4 28), (4.29)
as a limiting case for
(5.1) 8 -0, t* — steady time,

with simultaneous rejection of the initial conditions (4.28)2 and (4.29);. The
asymptotic expa,nsions with respect to the small parameter g for the outer

solutions 'v"‘o 0 are assumed to have the form
(5.2) T»‘i"(t"‘;ﬁ) = VR (") + B8R () + -,
(6.3) w (t*50) = wig () + Buid () +---.

Substituting the expansions (5.2), (5.3) into the Eqs. (4.28), and (4.29); and
equating the expressions of the same order with respect to § we obtain the
relations

(5.4) an '”:g "
dud
dt*

t

p* (t*) — 1,

(5'5) VUaD (t )
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for the zero perturbations v, u*9, and the relations

(5.6) ';’U;o Vai - dtt J
dug

(5'7) dt‘:‘ = Vva.l (t )?

for the first perturbations v, u*%.

From the relations (5.4)-(5.7) the general solution follows,

| 1 L3 * n
(5.8) vg = pe [*(¢*) - 1]%,

(59  wd = Dot— f () - 1T de,
* n? L. n—1) @
(510) a? = —@[p (t )“ ]2( 1) df* ,
n2
(5.11) W = Dy - . azn [( “(1%) — 1)2%—1 — (5*(0) - 1)2n-1] :

in which two constants Dy and D) appear to be determined later on by
matching the expansions.

5.2. Inner problem

In order to determine an expansion for a limiting layer, we must first
make it larger by extensional transformation of the time ¢* in the initial
problem,

(5.12) | r=

that follows from the analysis of the orders of smallness of the terms entering
the Eqgs. (4.28)1, (4.29)1. After this transformation the inner problem takes
the form

d*z 1

(5.13) ﬁ dr + anv*ln = P* (ﬂT) -1, v;i(o) =0,
d *i . .
(5.14) = = Bl W)=,

where new notation for the sought functions is introduced, namely v* =
vi(87), wi = u(B7). Similarly as in the case of an outer problem, the
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asymptotic expansion with respect to the small parameter § has a power
series form

V¥ (1) + Bz (r) +
Wi (7) + Bt (1) + - -.

(5.15) vy (13 )
(5.16) uy' (73 5)

These expansions are substituted into the relations (5.13), (5.14) and the
process of an inner limiting transition follows, '

(5.17) g —0, 7 — steady time.

For the power expansions this process consists in the procedure of equat-
ing the coefficients of the same powers of small parameter at both sides of the
obtained equations and the initial conditions. A nonlinear initial problem
is thus arrived at,

(5.18) i +a v*"%‘- = p"(0)-1 v*i(O) =0

* dr n “a0 P L a0 ’

(519) ____a:] = 0 ‘t‘.l,*i (0) =0
dr ’ a0 4

for the zeroth perturbations v, uy, and a linear one

dvii oy o iol g W xi
(5.20) —d;_l + =" v = P (0, vg(0) =0,
dugi *i " (Y
(5.21) —d-r— = V¥, ual({)) = 0,

fot the first perturbations v}, w*t, in which

_dp”
T odtt g

(5.22) - pM(0)

The inital value problem can be integrated by separation of variables.
However, the solution 7 = 7(v}) is obtained in the form of a transcendental
function which cannot be inverted in an explicit manner in order to solve the
problem (5.20), (5.21) for the first perturbations. That is why the solution
to the problem (5.18), (5.19) has to be expressed in a parametric form

G2 wen=(T0), ese<,
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¢
_ n " n—1 En—l
(524) 7= (O)-1) 0/—1—5‘16

n—1 1

= -2 @ (0) - 1) [Z Lo tm(-0)f,

=1
(5.25) wi(r) =0,

where the notation #24(¢) = vzi(7(()) is introduced and the transformation
(5.24) in (5.20), (5.21) has also to be performed. On simultaneous using the
solution (5.23), the problem emerges

(5.26) ";”C" S P“(U)T%E, 7(0) = 0,
di (0)—-1 \"d
(527) “"3?1- =V (——-—L-O-—[);-—-C) .&%’ -*t (0) —

for the first perturbations #3(¢) = v23(7(¢)), and 224 (¢) = w (7(C)).
On substituting into (5.26), (5.27) the derivative —c-l% determined from
(5.24), we can tackle the above problem and obtain the relations

(5:29) -:;—p*’w)[ @ -1y (10 / e /1 it dx,

2n~1
T

1-—§E

(29) =) - 1! /

2n—1 1
= v (' (0) - 1" [Z . c2“-1+1n(1—o]

i=1
5.8. Maitching of ezpansions

To maitch the zeroth perturbations let us use Prandtl’s criterion which

requires the following limits to be equal: )

B 0 . * : *( . *7
5.30 lim v/ = lim v lim u*y = lim %,
( ) 40 a0 o al» #*0 al) 00 al

Let us at the same time observe that the integral in the formula {5.24) tends
to infinity when its upper limit tends to unity. Thus we have

(5.31) lim ¥ = hm1 T

T=00
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The criterion (5.30); is reduced to the condition

(5.32) - Jim o8 = lim o2,

which — as can be readily verified by using (5.8), (5.23) — is already fulfilled.
Let us now proceed to satisfy the criterion (5.30);. To this end let us

notice that from the relation (5.9) it follows that its left-hand side is equal

to the constant Dg. From the relation (5.25) we conclude that its right-hand

side vanishes. To satisfy the discussed criterion we must assume that Dg =0

which reduces (5.9) to the formula

.t*
%) __ L £ — n
(5.33) we = f [p"(€) ~ 1" dé.

To determine the constant Dy, that appears in the first perturbation
of the expansion for the displacement, we must match two-term expan-
sions. Experience shows that, in general, matching of multi-term expan-
sions is much more difficult than the matching of single-term expansions.
Van Dyke’s [4] principle is here widely used as a relatively simple one. It
is postulated that a p-term inner expansion of an r-term outer expansion
should be equal to an r-term outer expansion of a p-ferm inner expansion.

However, to employ this method of matching, as well as each of other
matchings proposed by a number of authors, it is necessary to make inner
expansions to be the functions of the time 7. In our case the expansions are
functions of a time-like parameter {. To make use of the quoted principle,
a function 7 = 7{() should be found, inverse to the function (5.24}, and
inserted into the relations (5.23), (5.28), (5.29). However, except for n =
1 the function (5.24) is transcendental and its exact inversion is clearly
impossible. The case n = 1 is much less interesting since the initial value
problem (4.28), (4.29) reduces to a linear one having a closed-form solution.
Nevertheless, the case n = 1 can play an instructive role and will be dealt
with below.

Thus, to determine Dy we make use of the matching rule with p =r = 2.
At n = 1 the relation (5.24) yields an inversion

(5.34) (=1~-exp(-uT),

which, after substituting into the perturbation (5.33), (5.11), (5.29), enables
us — in the light of the relation (5.25) — to express the displacement as follows:
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¢ two-term outer expansion with * = gr

Br
0o = al_nof () =11 6+ D1 = 507 (87) - 2'0))]

*
¢ two-term inner expansion with r = —

=BG O-1) (1-e (Ca) - as),

o two-term inner expansion of the two-term outer expansion
i v
() = 8[Z0r©@ -+ 1],
a1
e two-term outer expansion of the two-term inner expansion
' N0 p v
%2 — e K — L — - H —-
(v7) = 0@ = ) = p 5 () - 1).
e Finally, on comparing the last two expansions we get the relation
v ok
Di=—f=5{p(0)-1), =n=L
1

In the next section it will be shown that in our problem the lack of
knowledge of D; for » # 1 does not make it impossible to construct — both
for the displacement and for its rate — a two-term combined asymptotic
expansion uniformly valid in the whole range of the solution sought.

5.4. Combinalion of expansions

As stated before, the outer expansion is not valid in the vicinity of an
initial instant and outside this interval it is the inner expansion that is not
valid. To obtain such an expansion that remains valid in the whole time
interval under consideration, let us create the following compositions [4]:

for the displacement rate

(5.35) v = w0 ot = (01) = 00 o — (o),

and for the displacement

(5.36) W = w0 (uzo)i =0 oyt - (u:")g.
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Due to the equality

(5.37) () = (uz)’,

and the matching procedure for p = r, both methods of creating composed
expansions are equivalent.

Let us first find, with the use of (5.35);, a one-term composed expansion
for the rates. To this end, replace in (5.8) t* by 87 and expand the result
with respect to the parameter 8. Preserving the first term only, we get

(539) (wg) = (F9=1,

1257

which, in the light of the perturbation (5.8) and (5.23), yields an expansion

(539) ,U:c = (p* (t*) - l)n + (]J*(D) — 1()1’1 _ (p*((]) - l)n'
Qi 429 Oy
As to the displacement, the relation (5.36); appears more convenient
to be used since, as seen from (5.25), a one-term outer expansion of the
zeroth displacement perturbation is equal to zero. As a consequence, in the
presence of (5.33) the conclusion is that

(5.40) u = g = f " (6) ~ 11" de.

~ The formulae (5.12), (5.24), (5.39) and (5.40) constitute a very simple
parametric form of the asymptotic solution to the initial value problem
(4.28), (4.29) when f — 0.

Let us now compose the two-term expansions. For rates, from the formu-
lae (5.8) and (5.10) we create a two-term expansion (5.2) with simultaneous
substitution of Ar in place of the time t*. Next, we expand the resulting
expression with respect to 8 confining ourselves to two terms only. We get

(5.41) (v*") ( (Z"l)
+B2(0) = 170 [ - 270 -

Making use of the formulae (5.23) and (5.29) we create a two-term inner
expansion that, together with the two-term outer expansion and the recent
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result (5.41), is inserted into (5.35);. As a result, a two-term composed rate
" expansion is arrived at in the form

(5.42) = (E’:_!f&*.i.:_l)” : (p*(gl— IC)“ _ (p*(?)z),: 1)“

n2
+6 (-z@r(f’* () - 1D (1)

L AORE () [r——(p © - 1]

€
' O[2e0- 1 1-0 f e [ i e

The same procedure is used in the case of the displacements, Two-term
outer expansion is made (cf. Sec.5.3) by substituting the perturbations
(5.33) and (5.11) and replacing the time #* by the product Sr. Next, the
result is expanded with respect to the parameter 8 which yields a two-term
inner expansion of the two-term outer expansion in the form

(5.43) (59) =8 [pr+ 2 - 1]

Further on, by substituting the formulae (5.25), (5.29) into (5.16), a two-term
inner expansion is obtained. Finally, we substitute the last result together
- with the created two-term expansions into (5.36) and obtain the composed
expansion sought

L]

o

(5.44)  wr =

z:lt
S

(€~ 1 de + (~D1 - 2" (0) ~ 1°r

2
+Dl—2"—1a2n [ %) = 1 = (7 (0) — 177
2n—1
v ((0) — 1P [ > -2,11—_%@2“—" +1n (1~ C)D :
n . =1 .

To emphasize that (5.44) is independent of Dy, this constant is purpose-
fully left to make us sce its cancelling. The expansions (5.42) and (5.44) are
the first improvement on the asymptotic solution (5.39) and (5.40) for small
values of 3.
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6. EXAMPLE

To demonstrate the practical usefulness of the obtained solution, let us
assume that the container is made of mild steel with & = 147.15MPa, p =
7800kgm 3, n = 5 and v = 40.4. In addition, let @ = 0.1 m and the diameter
ratio be 17 = 0.6. Assume the pressure to decrease linearly according to the
formula (3.18) and to vanish at {; = 0.0008s. Under such type of pressure
the basic comparative magnitudes v2,,, ul,, (] can be reasonably assumed
as constants v3,, ul,, t‘}, defined by the formulae (3.22), (3.26) and (3.27),
respectively. Thus, in the formulae (4.1)g, (4.2)1,2 and (4.4) we put
(6'1) vgm = Ugﬂ.’ ugk = ’ngf, t?ﬂ' = t?’
while a manner of introduction of the remaining nondimensional variables
remains unchanged.

As follows from (3.18) and (4.3), the pressure function assumes now the
form

(6.2) pr() = 1+ h(1—1t%),

which, in view of (4.30) and (4.31), yields the expressions for the dimension-
less parameters

(6.3) ¥

oya?(1— ) (1 +h) (g hhnrl)“_
(6.4) a, = h.

6khty Ingy—1 n - n'f;

Finally, using (3.22), (3.23) and (3.24), we can ~ for a parameter v defined
by (4.12); - find a simple solution

(65) v=n+1.

The expressions (6.3)—(6.5) represent a set of parameters that appears in
the initial value problems (4.28) and (4.29).

The values of the small parameter 8 as dependent on the inner radius a for
the pressure excesses h = (1, 0.5) and the radii ratios 7 = (0.2, 0.4, 0.6, 0.8)
are shown in Fig. 1. A conclusion may be drawn that in the considered range
of i, for ¢ = 0.1 m and the value h = 1, the values f are significantly lower,
B < 0.04. Similar conclusion remains true for A = 0.5, when 8 < (.0025.
In particular, as it directly follows from (6.3), for the value h = (0.5, 0.8)
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Fic. 1. Small parameter as a function of the inner radius for selected radii ratios
and pressure excesses,

we have, respectively, 8 = (0.0007, 0.0054). The ratios 3/h are definitely
small, 8/h = (0.0014, 0.0067}.

Making use of the values from (6.2)-(6.5) in the Eqgs. (4.28), (4.29) and
remembering the assumed data, the initial value problem is formulated as

d *
(6.6) BIE bt = W1-t),  (0)=
d *®
(6.7) —L = 6o, us(0) = 0

with the parameter 8 significantly smaller than the excess h. Under these
conditions the presented perturbation solution can be successfully used.
From the practical point of view, the solution will be limited to an asymp-
totic one (5.39), (5.40) and (5.24). Surprisingly simple relationships are
found to describe the motion:

(6.8) vie = (1-t* ) +€ -1,
(6.9) we o= 1-(1-1)°, ,
(6.10) ro= p Ec‘* F 30+ (1 - c)} .

To test their applicability, let us compare the results with the numerical
solution of the problem (6.6), (6.7).
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The diagrams of the rates v; and displacements u for two typical pres-
sure excesses h = (0.5, 0.8) are drawn in Fig.2. The curves following from
the numerical solution are denoted by vj,, w,,, while the perturbation
method provides the curves v}, uy. It is readily seen that the compared
curves are similar and show good quantitative agreement. Moreover, the
rate values obtained from the asymptotic solution, initially lower than the
numerical ones, starting from a certain instant begin to coincide (within the
scale of the figure). In the case of displacements the situation is reversed:
asymptotic values are larger than the numerical ones over the whole range.

Let us finally notice that the largest differences in rates occur near the
maximum values, and the largest differences in displacements take place near
the terminal values. These differences grow as the pressure excess increases
from 0.5 to 0.8.

The curves showing the maximum rates and final displacements as func-
tions of the pressure excess are shown in Fig.3. The numerical results are
denoted by v, and u},, the asymptotic results are designated by v}, and
u} . Increase in the differences of the maximum rates is rather sensitive to
the increase in h while the sensitivity of the final differences in displacements
is remarkably less pronounced. It is worth emphasizing that the asymptotic
value of the rate constitutes a lower bound on the numerically obtained rate
and that the asymptotic value of the displacement is the upper bound of

the numerical one.
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‘ 7= 0.6 \ -
0.40 ]
0.50 0.60 0.70 0.80 0.90 1.00
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Fic. 3. Maximum rate and final displacement.
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Figures 4 and 5 are complementary to the previous curves; they make it
possible to compare the times ¢, ., {5, at whick the maximum rate occurs
and the times ¢}, &}, of the termination of motion as a function of the
excess h. The duration of maximum rate at the increase of the excess grows
significantly but the increase of the final time of motion is negligible. The
differences of the corresponding instants depend on the excess h in a weak
manner., Lastly, the times obtained from the asymptotic formulae are lower

bounds on the times derived from the numerical solutions.

70.08 1.0t
gt o, tie
o 007 o / 1.00
£ ' 0.69
g 006 /] P
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F1g. 4. Duration of the maximum Fi1G. 5. Final time of the motion.

rate.

7. CONCLUSIONS

The comparison of results presented above allows us to expect that, with
p — 0 the obtained asymptotic solution and the perturbation solution, of
the dynamic problem for a thick-walled rigid-viscoplastic spherical container
made from steel described by Perzyna’s constitutive equation, can also be
applicable to other metals.

The asymptotic solution not only allowed us to describe approximately
the motion, but also to assess such its properties as the maximum rate,
final displacement and duration of the process. However, the fact should
not be overlooked that the simplicity of the solution reduces its practical
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application to small inner radii and the pressure excesses not larger than

one.

The results of the paper suggest that further investigations should be

continued to assess the magnitudes that characterize the dynamic expansion
of a thick-walled sphere with small mass density.

10.
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