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DYNAMIC PLASTIC BEHAVIOUR OF OVERHANGING CIRCULAR
PLATE WITH VARIOUS SUPPORT CONDITIONS

YA-PUZHAO, T.X. YU and J. FANG (BEIJIING)

This paper considers the problem of dynamic plastic response of a rigid, perfectly plas-
tic circular plate with overhang subjected to rectangular pressure pulse. The complete
analytical solution is obtained by using the yield condition of Tresca. This problem is
of particular interest because it contains the simply supported and the built-in circular
plates as two limiting cases, and is likely to represent more accurately real support con-
ditions occurring in practice. This theory may be considered as a general approach to
the problem of a circular plate satisfying various boundary conditions and subjected to
dynamic pressure.

NoTATION

H plate thickness,
H(t) Heaviside unit step function,

mwe mass per unit plate area,
2
o %
M;, My radial and circumferential bending moments per unit length,
go static collapse load,
g uniformly distributed pressure per unit area,
@, transverse shear force per unit length of plate,
r radial coordinate of plate,
R radius of the supporting circle,
t; response time,
t
'T' 3
T duration of pulse,

w transverse deflection,
« Wmax

-

m
@ ratio of the radius of plate to that of the supporting circle,
R2
n
[
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@ circumferential coordinate,
Ky, Ko Tadial and circumferential curvatures,

o9  yield stress,
« 8

O 20

1. INTRODUCTION

The study of the existing literature on the dynamic plastic deformation
of circular plates reveals that most of the papers were concerned with ei-
ther simply supported or clamped plates. HOPKINS and PRAGER [1] studied
the dynamic response of simply supported plate to a rectangular pressure
pulse. The plate is made of rigid-perfectly plastic material, which is as-
sumed to obey the Tresca yield condition and the associated flow rule. In
Ref. [2] WANG and HOPKINS investigated the behaviour of a circular plate
with transverse velocity imparted to the entire plate except at the built-in
outer edge where the velocity is zero. PERZYNA [3] examined the influence
of a pulse of arbitrary shape by developing further the theory of [1] to show
that for a given impuse the character of the pressure-time function has little
influence on the final shape of the plate. FLORENCE [4] solved the problem
of a clamped circular plate loaded by a central rectangular pulse. JONES [5]
considered the simultaneous influence of membrance forces and bending mo-
ments of a simply supported circular plate subjected to impulsive loading,.
In Ref.[7], ZHAO and HSUEH analyzed the influence of a damping medium
on the large dynamic plastic deflection of a simply supported circular plate
subjected to rectangular pressure pulse. Based on the energy equltbrium, Yvu
and CHEN [10] developed a new procedure called Membrane Factor Method
to analyze the dynamic plastic response of simply supported circular plates
with finite deflections under impulsive loading.

The problem treated in this paper is the response of a circular plate with
overhang (Fig.1) subjected to a rectangular pressure pulse. The plate is
of radius aR, simply supported on circle of radius R and the pressure is
uniformly distributed over the area interior to the circle of support. The
plate is made of rigid-perfectly plastic material, which is assumed to obey
the Tresca yield condition and the associated flow rule.
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Fi1G. 1. Circular piate with overhang.

The objective of the present paper is an attempt to link the two distinct
boundary conditions (i.e. simply supported or built-in) and it is believed
that this theoretical analysis should facilitate the interpretation and under-
standing of the dynamic characteristics of the plates having complex support
conditions.

2. EQUATIONS OF MOTION AND YIELD CONDITION

Assume the Tresca yield condition to be satisfied; the corresponding yield
locus, drawn in the (Mpy, M,) plane, is shown in Fig. 2.

A My

8 A

Fi1G. 2. Tresca yield condition.

The two limiting cases of a circular plate with overhang are the simply
supported plate (o = 1), and the built-in plate (o sufficiently large, namely
a > 2.718). During deformation the plate is divided into some regions in
each of which certain plastic regime exists defined by the vertex or side of
the Tresca yield hexagon (Fig.2). The correct form of the static collapse
load may be expressed by the following equation [5):

1 2
(2.1) 'q-——?:logn=1+§10ga,
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where 7 = goR?/{6My), go and Mp are the static collapse load and the fully
plastic bending moment per unit length of the circular plate of thickness H,
respectively.

The fundamental dynamic equation of the plate can be written as

rQr

/ [~ g(r, £) + mi] r dr,
0

(2.2) . (rM;) — M,

provided the rotary inertia effect and the membrane force-are disregarded.
Meanwhile, let

(2.3) ko= =", ko= —=1b'

3=

be the radial and circumferential curvature rates, respectively.

gltl 4

-~ ¥

FiG. 3. Rectangular pressure pulse.

The rectangular pressure pulse illustrated in Fig. 3 can be described by
(2.4) o(t) = g[H(1) - H(t = T)],

where H(t) and T are the Heaviside unit step function and the duration of
pulse, respectively.

3. MECHANISMS OF DEFORMATION AND SOLUTION

The plastic deformation is such that the plate middle surface is divided
into three regions, each of them being in a different plastic regime. For
simplicity, the present paper considers only the moderate load; for such a
load the position of these regions does not vary with time. The flow rule
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results are required only for the plastic regimes AB and BC, which can be
expressed as

AB: 0 S .[VIr S Mg, Mg = Mg, k,.= 0,
(3.1) Regime

BC: -Mo<M, <0, My—M, =My, Fo>0

The various mechanical quantities within all the regions must satisfy the
appropriate relations (3.1), and certain continuity or discontinuity relations
at the boundaries between any two regions mentioned above. The condition
of continuity we used here is that the displacement, velocity and radial
moment are continuous in r and £. In addition, let the plate be flat and at
rest at ¢t = 0, then

w(r,0) = 0  (for the whole plate),
(3.2) .
w(r,0) = 0  (for the whole plate).

Symmetry demands that at the centre of the plate
(3.3) M, = My = M,.

For 0 < r < R it may be shown that there exists a circle r = r; at which
the radial moment M, (r1,t) = 0. The relevant plastic regime for 0 < r <y
is AB, its associated flow rule requires

W = Wo +Ar,

where Wy is the velocity of the centre of the plate, A is an undetermined
constant.

The plastic regime for r; < r < R is BC and its velocity profile satisfies
the equation

W (r,£) = Blog (%) :

where P is an integration constant to be determined by the condition of
continuity at r = rq.
Once both A and B are determined, the motion of the plate can be
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described by
[ r B Wﬂv TE [05 Tl]s
r1 (1 4+ log H)
R
. log—
(3.4) w{r,f)={ — T 7 Wo, r € [r1, R],
14 log—
* Tl
Waol{r—-R)
_R /;,( : I% , r e (R, aR],
(1108

It is obvious that if @ = 1, we have r; = R, and relations (3.4) are
immediately reduced to the velocity profile of a simply supported circular
plate; on the other hand, if « is sufficiently large (a > 2.718}, relations (3.4)
are the velocity profile of the built-in circular plate. For a rectangular pulse
of moderate intensity, the motion of the plate is divided into two phases.

1. Puase . 0<t<T

1.1. r €[0,r]
The acceleration profile in this region is

r

T (1 + 1og :—:—)

Substitution of the above relation into Eq.{2.2) yields
mWr
127 (1 + 10g -}i)
L |

The unknown constant C' must be zero since the value of radial moment
at the centre of the plate is bounded; therefore we have

ﬁ; 3
(35) M Mo —— + —6—1"2W0T — mer B
127‘1 (1 + lﬂg ;‘")
1

Wo.

w= {1 —

+C.

3 -
rM, = rMy — gg— + %1—1‘3W0 -

5 re [0, 1"1].

Since M,(ry,t) = 0, thus

(3.6) Wo = 7

1+4+1o E
o 3( _GMO)
1+210g—1-£—m
L |
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1.2. r€[r,R]
According to the D’Alembert’s principle, the shear force per unit length
@ satisfies the equation

,
2rrQ, + Triq — mf?ﬂ'ﬂi) dr = 0.
0

This gives
R
i 2 1+ 3log —
2 2
(37) rQr = "‘gf‘"— -+ ng‘J"l ™
2 6 R
1+log —
1
2100 B 29 B
mW, r*log i log - a2
+ > + -
1+ log -
L
In view of Eqs.(2.2), (3.1); and (3.7), it is found that
7 1+3log—
IR Sl
" 1+1log = 1
1
2 R 9
+ mWoR [.Z_ (1+log—) - (1+1 g_@)
14log — r "
LB}
e e Brog T Thiop
5 log . log 1 log 7"1]

1.3. r€[R,aR]
Similarly, the transverse shear force per unit length may be determined
by the application of D’Alembert’ principle. Thus

aR
2rrQ, +m f 2rrid dr = 0.

Hence
a9 s - me [RE o2 pony e
R (1 + log E) 3 2

1
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It may be shown, using Egs.(3.1); and (2.2) and being aware of the
boundary condition M,(aR,t) = 0 that

mWy [(acR)3 log( T )

r
(3.10) Mr = Mglog a_R- +

R (1 +log E) 3 aR
™
r3 —(aR)® o?R? ( r ) Rr? — o®R3
——g "3 e/t 4 '

1.4. The velocity and displacement solution in phase I
Since it is required that the radial moments should be continuous at

r = R, thus
o= Moo e (€ ()
’ @ R (1 + log -1-:“) o
1

—(aR)® o?R? (L) Rr? — a?R3
9 7 oe\ar) Y1 |
Combining Eqs. (3.6) and (3.11), we can obtain the dimensionless equation

in ry, viz

(3.11) M,

2 £ o’ - 1-o°
(3.12) Y T 2log € {)\'r) £2] l 3 >—logé - 4 - 9
1 A
+%-(_3 - 20)10g0£} = '6'108 (%) - ':;1(1 - &%),
where
qR?

1 q
- A= — An =
¢ R’ g n= 6My

As a nonlinear equation, (3.12) can be solved numerically. Once 7y is
determined by Eq.(3.12) for the applied pulse, the acceleration field of the
plate is given by Eq.(3.6).

Using Eqgs.(3.4) and the initial condition (3.2}, it may be shown that the
velocity distribution of the whole plate is given by

“1°g'5""2 6 M,
___H_____?_n_( -

3 t: TE[O,T]’
1-210g§ rf) !

(313) (1) = 105 K

ceem ()"
1-210g m
e (-
m

? e [Tl, R]a

€ {R, aR)].

1 GMO)
{ - log
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Integrating Eqgs. (3.13) with respect to time we obtain

-1
gl — - 1( 6Mo

_ T 2
1-2logé m TE )t r € [0, ],
R

log —
(3.14) w(rd)=4q _"°5 1 ( _%) 2
1—2log£m r2 & € [, R),
LY
*_,,R___l( mﬁ_f‘ﬁ'ﬂ)tz
[ I1-logtm 1 r? ’ r €[, ak].

The analysis of phase I is complete.

2. PHASEIL T <t<ty
In this phase g(t) = 0, so the acceleration of the centre of the plate is

i 12Mp 1 -logé
(3.15) Wo = mr? 1—2logf
Integrating Eq.(8.15) once and twice with respect to time, we obtain
. I-logé¢ 2 ( 6 My )
. t = —_—— T — -~
(3.16) Wy (1) 1_210g£m q 72 i,
_ _ ~logf 1 6Mo
(3.17) Wol(t) = T_f@_& [ T - T) - 2 ] ,

where the constants of integration have been evaluated from the require-
ments that Wy and Wo are contmuous att =T,
The plate will come to rest when W (ty) = 0. Hence,

(3.18) ty = AptT.

The permanent deflection at the centre of the plate is given by

' ©_ 1-logé¢ qT? 2
(3.19) Wmax = m"‘g m [AT]E 1] .
It may be shown, using Egs. (3.5) and (3.6), that
2 1-log¢ 6M,
_ M S A —logl ( ) )
(3.20) oo~ T3 7T 3T 2l0ge \I7 2

Thus, the above analysis is correct if

12M0
51

(3:21) g < (1-2logé)
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i.e.
(3.22) Ang? < 2(1 - 21og §).

Ifg>(1-2logf)— M , then the yield condition given by Egs. (3.1) will

be violated and some alterna,twe yield condition must be sought.
The analysis of phase II is complete.

4. DIsCUSSION

The relation between the two dimensionless parameters, « and 7, in
Eq.(2.1) is illustrated in Fig.4. When the suddenly applied pressure pulse
exceeds the static collapse load, the plate will move along the direction of
the applied pulse.

7
20
1.88
1
]
]
i
]
15 b ;
1
1
1
H
L0 . |
10 20 2 <

Fic. 4. p ~ a curve,

The dimensionless parameter £ is of central importance in the present
paper since it determines the boundary of different regions. To show explic-
itly the validity of the present method, let us consider again the problem
- studied by Hopkins and PRAGER in 1954 [1]. Equation (3.12} will always
give £ = 1.0 when o = 1 and X < 2.0, and inequality (3.31) holds true if
o = 1.0; the other formulae are reduced to the well-known relations.

Since the clamped circular plate is a limiting case of the circular plate
with overhang, it is easy to understand that its solutions (when the plate is
subjected to a rectangular pulse) can be directly obtained when a is equal
to 2.718. It may be shown that then we have £ = 0.729, which is exactly the
same value as that in the static case [7], cf. Eq.(3.12) with o = 2.718 and
A = 1.0. The curve in Fig. 5 shows the relation between the dimensionless
radius £ and the dimensionless ratio of the applied dynamic load to the
static one. The curve in Fig.5 also shows that the dimensionless radius &
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decreases monotonically from the initial value £ = 0.729 with increasing
dimensionless loading ratic. The velocity profile and the displacement field
can be determined directly from the formulae given in the present paper
once the dimensionless radius £ is determined.

£ 4
10}
0.8
0.6

0.4

0.2

U'u L 'l '} ' 1 L A o
10 2.0 a0 40 A

FiG. 5.

In practice, it is often the case that the plate is neither simply supported
nor clamped and satisfies certain intermediate supporting conditions. The
present theory represents more accurately real conditions enabling us to
select appropriate dimensionless parameter a.

It may be shown by numerical calculation that the critical value between
the medium and high load is 2.62 if @ = 1.3436. If o = 1.6872, then the
corresponding value is 12.09.

The permanent displacement at the center and the total time of response
are two values that are perhaps most important for the practice. In order to
illustrate the influence of @ on Wi,,, and t;, two dimensionless parameters
are introduced here, namely

W,
4.1 * _ (Ymax :
(4.1) v qT?

n

=

Nl

where w* and * are dimensionless permanent displacement at the centre
and the dimensionless time of response, respectively. The variation of w*
and t* with the pressure ratio under certain « is shown in Fig. 6 and Fig. 7,
- respectively. Figures 6 and 7 show that the greater is the value of «, the
smaller are the values of w* and ¢* for the same A. This is true because
larger values of a correspond to more rigid support condition.
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5, CONCLUSIONS

A general method has been developed for the analysis of the dynamic
plastic behaviour of a circular plate having various support conditions. Sim-
ply supported and clamped circular plates are two limiting cases of the
present model. The formulae derived in the present paper are reduced to
the well-known results if the inertia term is disregarded (i.e. the static
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case) or when a = 1.0 (the simply supported plate studied by Hopkins and
Prager). The plastic response of the clamped circular plate subjected to a
rectangular pressure pulse is also studied. The load considered is of a mod-
erate size, the analysis concerning high loads will be published in another

paper.

ACKNOWLEDGEMENT

This study is supported By the National Natural Science Foundation of
the People’s Republic of China and the Doctoral Program Foundation of
Institution of Higher Education.

10.

REFERENCES

. H.G;-HbPKINS and W. PRAGER, On the dynamics of plastic circular plate, ZAMP,

5, 4, 317-330, 1954.

-A.J.WanG and H.G. HOPKINS, On the plastic deformation of built-in circular plates

under impulsive load, J. Mech. Phys. Solids, 3, 1, 22-37, 1954.

. P.PERZYNA, Dynamic load carrying capacity of circular plate, Axch. Mech. Stos.,

10, 5, 635-647, 1958,

. AL FLGRENCE -Clamped circular rigid-plastic plate under central blast loading, Tat.

J. Solids Struct., 2, 319-335, 1966,

N.JoNES, Impulsive loading of a simply supported circular rlgld—p]’astlc plate, J
Appl. Mech., Trans. ASME, 35, 1, 59-65, 1968.

YA-PU ZHAO, On the plastic collapse load of circular plate with overhang [in Chi-
nese], J. Mechanical Strength, 15, 1, 75-76, 1993.

Ya-Pu ZHAO and D.W.HSUEH, The dynamic plastic behaviour of a simply sup-
ported circular plate in demping medium with finite deflections, Applied Math. and
Mech., 12, 10, 935-942, 1991,

R.WANG et al., An introduction to plasticity [in Chinese], Peking University Press,
1982,

M.A.SavE and C.E.MASSORNNET, Plastic analysis and destgn of plates, shells and
disks, North-Holland Publishing Company, 1972.

T.X.Yuand F.L.CHEN, Analysis of the large deflection dynamic response of simply-

supported circular plates by the “Membrane Factor Method”, [in Chinese], Acta
Mech. Sinica, 22, 5, 555-565, 1990,

DEPARTMENT OF MECHANICS
PEKING UNIVERSITY, BEIJING, CHINA.

Received March 22, 1993,





