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ON DYNAMIC PROPERTIES OF TWO MODELS OF BEAM ON
NONLINEAR FOUNDATION SUBJECTED TO MOVING LOAD(*)

A. GRZYB (KRAKOW)

The subjects of consideration are the infinite Bernoulli — Euler and Timoshenko models
of 2 beam resting on a nonlinear visco-elastic foundation. The beams are subjected to
a distributed inertialess loading constant in a given sector and moving with a constant
velocity. Nonlinearity of the foundation was assumed in the form of a piece-wise lincar
characteristic of elasticity. Results obtained for the Bernoulli - Euler beam have been
compared to the corresponding results obtained for a Timoshenko beam. The considered
problems may find some applications in modern transportation systems,

1. INTRODUCTION

The subjects of consideration are infinite Bernoulli- Euler and Timo-
shenko models of a beam resting on inertialess nonlinear visco-elastic founda-
tion. The beams are subjected to a distributed inertialess loading, constant
in a given sector and moving with a constant velocity. Stationary vibrations
of beams in coordinates connected with the moving load are described by
parabolic or hyperbolic differential equations of fourth order. Nonlinearity
of the foundation was assumed in the form of a piece-wise linear characteris-
tic of elasticity. To determinate the solutions, the approximate method has
been applied using the analytical solutions of Linear approximations. The
results obtained for the Bernoulli -~ Euler beam have been compared to the
corresponding results for a Timoshenko beam.

The analytical solution for the linear case and load described by a Heavi-
side function was obtained in {1]. An extensive survey of papers devoted
to this type of problems can be found in a few papers, e.g. in [3]. An
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approximate procedure, like that used in [2] and [4], is proposed for the
solution of this problem.

2. DIFFERENTIAL EQUATIONS OF MOTION OF THE BEAMS AND
FORMULAE FOR BENDING MOMENTS AND SHEAR FORCES

‘The motion of the Timoshenko beam written in the fixed Cartesian co-
ordinate system 0%, in which 0%; is the axis of the beam and the 0F-axis
is directed downwards, is described by the partial differential equations

2 2
nAG(a y ﬁf) O 4 p=o,

922 9% o2
@1) : 0% Sy 0% 3y
—_— — - 2——— —_ — —
EI@E% + kAG (35:1 'gb) or ETe) Na.’il +m=0,

with the following notation:
displacement in ¥ direction,
angle of rotation of the beam due to pure shear,
flexural rigidity,
the Timoshenko shear coeflicient,
cross-sectional area with moment of inertia I,
constant linear density,
constant tensile force,
time, _

m = m(%;,t) external continuously distributed loading moment,

p=p(z1,t)  external continuously distributed load,

r = (I/A)%5,

The motion of the Bernoulli - Euler beam is described by the partial differ-
ential equation

-~ B B E E‘@—ﬂ:’.

(2.2) Er _c?"_y - N—5+to7
'_ 0z} oz " o

It is assumed that
P=7py—Po and mzm,,—mo,

where p,, m, — given moving continuously distributed forces and moments,
Po, Mo — loadings resulting from the reaction of the beam foundation.
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The assumed nonlinear characteristics of the foundation are

dy
Po = Gyt ”Bt+pﬂ’

0y
ot
where ¢, ¢, by, by — coefficients of elasticity and damping of the linear
characteristic of foundation, p§, m§ — nonlinear terms.

Introducing the Cartesian coordinate system 0zyy related to the moving
load by

(2.3)

my cm'¢ + by + mﬁ,

i=yv and Ty =z + oL,

where v denotes the constant velocity of the loading motion, under the
assumption that the solutions are stationary in the rectangular coordinate
systems Ox1y connected with the loading front, the equations of motion of
the beam (2.1) are as follows

d’y dy dy dy
AG( )—gvzd_ﬁ_+p"—cpy+bpva—p3=0,

dz? ~ dzy
d? d? d
(2.4) EI ¢+ AG(:E1 qb)-grzvz}%—-f\rd{-i—mv emth
dy

+bm’0'&-m: — My = 0,

while the equation of motion of the beam (2.2) takes the form

diy d3y 2 d? y dy
(25) EIE*-Z + bm'vﬁ + (Q'v - cm) bpva;l—-

dm* dm,
+epy — E"I'Po =Py — doy

Furthermore, like in [1], new dimensionless variables are introduced
z=xfr and u=yly,

where y, > 0 is a given value, and the followmg dlmensmnless coefﬁ(:lents
are introduced:

= (v/r)(e/ c,,)“""
Vi = (kAG[cp)*3/r, . Va = (EA[c;)*%/r,
b = 0.5b,(cp0)°5, B = 0.5by(cy0)"%%/r2,
§ = N/(r), C = enf(ric). _
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Similarly, the dimensionless loadings can be expressed as follows:

Py = Pu/Ps My = Maf(pst)
P = Po/Ps g = mp/(par),
in which
Ps = Cplls.
Assuming
| mg =0,

eliminating 1 from the equations of the Timoshenko beam (2.4) and denoting

(") = d/dx, we obtain

@7) (V2= VAV - V) — 2V [BVE = V) +b(V? - V)] u”

[V 14 4B+ C) - (S+ O - V] o

-2V [b(vf +C)+ B] o+ (VE+ Q)+ (V- Vs —2BVp
HVE + OBy = =V, + (V2 — V)i, — 2BV, + (VI + O

The equation of the Bernoulli - Euler beam (2.5) takes the form

(2.8)  V2u® 42V Bu" + (VIS —Cyu -2V tut P~y = Py— 1),

Dividing both sides of Eq.(2.7) by (Vi + C) we obtain for ¥ — oo

(2.9) (—%)Vz @42V Bu" (V- S -Cy" -2Vbu'+utpp = pu—

By comparing Eqs.(2.8) with (2.9), it can be proved that for V2 < V7

1- =1,
7

and under the assumption (2.6), Eq.(2.9), resulting from the equations of
Timoshenko beam, becomes identical with the Bernoulli - Euler beam equa-
tion (2.8).

Bending moments and shear forces in a Timoshenko beam are descmbed
by the formulae

dy

M=-EJ-—  and —r;AG’( ),
d:l:l 1
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while in the case of a Bernoulli .- Fuler beam, these formulae are

d*y dM dy
M—-—EIE;?“ and T_d_zl N'&;l"—‘m.

For the dimensionless variables ¢ and u, the dimensionless moments and
forces are introduced

(2.10) M=M/My and T=T/T,

where
My = pr,rz and To = pr,r.

Then for the case of a Timoshenko beam, formulae (2.10) take the form
M= [(V2- V' — V' +u =5y + 7] Vi 2,
T~ 4,
where # = (r/y,)¥ is expressed by the formula
§={DV" -2V [B(V? - V2) + (V2 - V)] u" + [V*(1 + 10B)
—VA(VE = 8) = Vi| ' + 2BV (B, — B — w) + (V2 = V)55 — 5}
X [1‘/12(V12 + C)] o
For the Bernoulli - Euler beam formulae (2.10) take the form
M= —u”:
T = [-V2u" - 2VBu" + (S + C)' — in,| V2.

The expressions presented enable us to calculate the bending moment and
shear force for a known solution u = u(x).

3. SOLUTIONS FOR THE LINEAR CASE AND ANALYSIS OF NONLINEAR
EQUATIONS OF BEAMS

When condition (2.6) is fulfilled, Eqs.(2.7) and {2.8) can be written as
follows

(3.1) Flu(2)] + flu(z)] = gm [Mo(2)] + gp [Pu(=)],
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where F, f, gm and g, denote the differential operators F, gm, gp — linear,
and f — nonlinear. Operator f has the form

flul = g» [ﬁa(“a u)] .
For a Timoshenko beam we obtain the equation
Flu(z)] = D(V¥)u® — 2V[B(V? - V2) + b(VZ - V)]u"
HVHVE+14+ 4B+ C)~ (S + CWE - V"
~2V[6(V} + C) + Bl + (Vi + C)u,
Im [Mo(2)] = ~Viimy,
gy [Po(2)] = (VZ - Vi)p, — 2BV P, + (Vi + C)po,
DV = (V- VP)(V2 - V3).
For a Bernoulli - Euler beam, the equation has the form

Flu(z)] = V2u® + 2VBu" 4 (V2 - § - C)u" — 2V’ + u,

gm {o(z)] = —Vim,, 9p [Po(2)] = Po-
In a thorough analysis, certain non-linearity has been taken into ac-
count. Taking into consideration the bilinear character of elasticity and

linear damping, the nonlinear characteristic of foundation in the formula
(2.3) takes the form

;. Oy PntEcp(yn ~y) for y <y,
pﬂ_bp3t+{ cpY for y >y,

where y, < 0, £ are given values, and
Pn = Cpn < 0.

Coeflicient ¢ describes the inclination of the piece-wise linear characteristic
of elasticity. For £ = 1 the bilinear character of the curve disappears. Thus
the nonlinear component in Eq.(3.1) is expressed by the formula

(3.2) o= (1= &)(un — w)1(tn — u),
where 1(z) is the Heaviside function, and

Uy = yn/ys-
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Let us assume that
iy =0 and P, = gl(~z),

where go = ¢/p,.
For the linear case we assume pj = 0.
Taking into account that the linear approximation of Eq.{3.1) can be

written in the form

(3-3) Flu(e)] = gm [Ma(2)] + gp [Pu(2)],

the solution u(z) satisfying the boundary conditions of an infinite beam
is obtained by means of the method of Fourier and Laplace transforms and
the convolution theorem. This solution for both types of beams is expressed
by the formula

‘ 4
Uoo(T) = qol(—2) + ) 1(~zsgnn;)bjh;(x),
i=1

where n; = Res;, s; are roots of the characteristic polynomial, and b; are
constants.
Functions A;(z) have the forms:

‘exp(njz) for Ims;=0

or
exp(n;x)cos(k;z)  and exp(n;z) sin(k;z)

for
k; = |Ims;| > 0.

For the moving load of constant value in the given sector 2 €< 245 2 >
po(z) = o{1[—(z — z2)] = 1[-(z - z)}},

the solution ug(z) takes the form

(3.45 10(Z) = Ueo (T — Th) — Uoo(T — Ty).

The approximate solution of the nonlinear equation (3.1) was obtained by
the method applied in [4] to the Bernoulli - Euler beam. This method was
generalized for the case of a Timoshenko beam in [2]. The stationary solution
of nonlinear equation (3.1) is approximated by the successive terms of the
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functional series ux(z), k=0, 1, 2,.... The function ug(z) is described by
Eq.(3.4). To determine the successive functions ux(z), the series of linear
differential equations is used

(3.5) FlAuges(2)] = gp [Bur ()], k=0,1,2,...,

where
Augya(2) = e (z) — uo(2),
9p [Pur(2)] = —flur(2)],
Bur(z) = —F5 [(ur(z), wi(z)] -

Equations (3.5) are similar to Eq.(3.3). The approximation results from
the fact that the form p,i{z) should enable us to apply the known analytical
solutions of a linear differential equation. According to that p,i(x) is taken
in the form of a finite sum of dimensionless moving continuous loadings of
constant values in the given sections. It allows us to use the solutions of
the form (3.4) and to apply the principle of superposition for linear differen-
tial equations (3.3). The solution was estimated according to the following
criterion

L k(@) w(@) <o k=012,

where £ > 0 is considered as the permissible error.

4, RESULTS OF THE NUMERICAL ANALYSIS

The influence of nonlinearity and the velocity of the moving load, for cho-
sen parameters characterizing the dynamical system, on the displacements,
bending moments and shear forces in beams has been considered.

In Figs.1-3 for a Bernoulli- Euler beam, and in Figs.4-6 for a Timo-
shenko beam, are presented the functions of dimensionless displacements,
u(z), bending moments M(z) and shear forces T(z), determined numeri-
cally for the linear (lin) and nonlinear n — I cases. For the curves shown in
Figs. 1-6, the following parameters have been assumed

V=13, V=45 V3 =190,
=2 b=102
4.1 qo ] 9
(#1) e = —150, sp=B=C=5=0,
E 0, iy, = —0.35 and ¢ =0.02.
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Figures 7-9 demonstrate the comparison between the functions of dis-
placements ug(2), bending moments Mo(x) and shear forces Tp(z) deter-
mined for the Bernoulli- Euler and Timoshenko beam in linear cases. In
Iigs. 10-12 the comparison is shown between the functions of dimensionless
displacements u(z); bending moments M(z) and shear forces T'(z) for the
nonlinear cases. For the curves shown in Figs. 7-12, the following parameters
have been assumed:

(4.2) V=16  and u,=-05.

The remaining parameters are the same as those in Eqgs. (4.1).

Timoshenko and Berhoulli-Euier beams

——Tim
- B’ E

T INEDZA
\

/‘”’\/

X -
3 o .,..// -\\ // \\/f\v

o
1

-35@8 -399 -258 -289 -154 -180 -50 a 5 148

»
Fi1G. 7.
g Timoshenks and Bernoulli<Euler beams
= o ‘ —Tim
)
- A
. 3 ,‘ ‘I
) \ N/ [\‘ \ 4
xg ——— /’\ / i [\ Pty \ / N [
IEO' T 1 Y4 B h \'l)(:'
2 J' 3 " ‘n -| " ’
. : \ ‘l' v
o Sob
= V
b

-350 -328 -258 -2080 -1858 -1¢B -5 B 59 . 108

»
Fic. 8.



§ Timoshenko armd Berrmoulli:-Euler beams -
® —Tim
A |--BE
Vaa 1LE
~2 ) ' \‘- \ e s ~
X8 P \“//\ A /\v f\ AN /\
S H b —~ \ / AR
2 \ It
o v
S v
T

-35¢0 -38@¢ -258 -200 -i50 -188 -58 [} 5¢ 1ed

b4
Fic. 9.
Timoshermko and Berrmoculli-Euler beams
N —Tim
o , ---B-E
. N A
3 1Y 1\
X
3 / \
= / \/’\v’ﬁm""“‘
vy NV
-35¢0 -30¢ -25¢ -208 -158 -1€@8 -50 ] Sg  1pg
x
Fia. 16,
g Timosherko and Bernoulli-Euler beams
= —Tim
; ---B-E
Fa iy !\
f ‘ A " .‘ f\
(AN +
~3 A ~, ¥ ) J
52 \_—/\\A A i N f:.\\j \ /\‘-/}\‘
B .&. v \ ’ ‘/“‘ \H : V l‘\ / ll ': w"
4 L N " ! i
. ] . B My
S — N \
g

-35¢0 -3P@ -258 -20d -15¢ -18d -58 5] 2¥4] 128
x :

' Fia. 11.

{a48]



ON DYNAMIC PROPERTIES OF TWO MODELS OF BEAM 349

Timoshenka and Bernoulli-Euler beams
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Critical dimensionless velocity for a Bernoulli - Euler beam is described

by formula
Ver = (2V2 + § + C)*5.

For the parameters given by Eqgs.(4.1) and (4.2}, this velocity is

Vo = 13.416.

5. CONCLUDING REMARKS

The comparison of the numerical results obtained enables us to state
that, for the set of dynamical parameters under consideration, the dynami-
cal displacements, bending moments and shear forces determined for the
Bernoulli - Euler beam are close to those of the Timoshenko beam. Dif-
ferences appear principally in the wave-lengths in front of the load. The
influence of nonlinearity is manifested by increasing amplitudes of dynamic
parameters of motion: in front of the load for smaller velocities, and behind
the load for greater values of velocity of the moving load.

The method presented takes into account nonlinearities of the founda-
tion and enables us to invesiigate the influence of parameters of the me-
chanical system on the wave propagation in a beam under moving load.
The knowledge of the properties of solution enables us to control the system
and minimize the noise generation. The considered problems concerning the
mechanical models may find applications in modern transportation systems.
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