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ANALYSIS OF DYNAMIC INTERACTION BETWEEN
THE CONTINUOUS STRING AND MOVING OSCILLATOR

R.BOGACZ and T. SZOLC (WARSZAWA)

The paper presents the analysis of dynamic interaction between a discrete oscillator of
two degrees of freedom and a finite continuous string suspended on rigid and visco-elastic
concentirated supports. This oscillator moves along the string with a constant sub-critical
or super-critical speed. Dynamic transverse displacements of the string as well as the
contact force between the oscillator and the string are determined using the d’Alembert
solutions of the wave motion equnaiions. Such approach leads to a system of algebraic and
ordinary differential equations with a “shifted” argument which are solved numerically
in an appropriate sequence. JFrom the performed comparison of numerical results for
the sub-critical oscillator speeds with analogous results obtained by means of the finite
element method it follows, that the method based on the d’Alembert solutions in the form
of travelling waves seems to be more accurate. Moreover, the approach proposed in the
paper is numerically very efficient which makes it advantageous for investigations of more
complex systems.

1. INTRODUCTION

The problem of dynamic interaction between continuous strings and
moving oscillators belongs to the wide group of vibration phenomena of
one-dimensional continuous media under moving loads [1]. These phenom-
ena can be often observed in practice in the cases of rope drives, fast fu-
nicular or cable railways, ski lift installations, vibrations of bridges as well
as in the case of vibrations of wires, rods, strips and other structures dur-
ing technological processes of rolling and drawing. Because of their great
practical importance, these vibrations have been considered so far by many
anthors applying theoretical, numerical and experimental approaches and
using various methods, in which the usual objects of considerations were in-
finite and finite strings and beams, [1-11]. One of the most typical examples
of the phenomenon mentioned above are transverse vibrations of the cate-
nary suspensions excited by pantographs of electric locomotives. Then, for
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analytical and numerical investigations, the catenary suspension is modelled
by a set of finite continuous strings, but the pantograph is represented by
a moving dynamic oscillator of two or three degrees of freedom [8-11]. Vi-
bration analyses of such systems were performed in [10] using the separated
variable solutions together with the Ritz method, or in [8, 9, 11], where
the finite element method was used. Both the approaches lead to solutions
in the form of a series of standing harmonic waves of frequencies equal to
successive natural frequencies of the considered system. In order to obtain
results which would be more or less reliable from the physical viewpoint, the
mentioned methods make it necessary to take into account at least the first
. 200-300 eigenmodes of vibrations without securing the required numerical
accuracy. This is particularly true in cases of greater frequencies of exter-
nal excitation and for speeds of the moving load approaching the transverse
wave propagation velocity in the string. Moreover, because of the discretized
mechanical models of many degrees of {reedom applied, these methods are
also troublesome from the viewpoint of computer effort.

In order to avoid the difficulties mentioned above, in the paper an alter- -
native approach is proposed. For the considered string system excited by the
moving oscillator the d’Alembert solutions of the string motion equations
are sought in the form of travelling waves. This method was applied in [7]
for the analysis of transverse vibrations of a continuous finite string excited
by a moving force.

2. ASSUMPTIONS

The subject of considerations of the paper are transverse vibrations of a
continuous finite homogeneous string suspended at its ends on rigid sup-
ports, and in the middle of its length — by means of the concentrated
visco-elastic support, Fig.1. This support consists of lumped mass my,
two massless springs of stiffnesses k; and kg, and of two viscous dampers of
constant coefficients ¢; and e;. This string is excited to transverse “small”?
vibrations by the moving dynamic oscillator of two degrees of freedom. This
oscillator moves along the string in the positive direction of the spatial co-
ordinate axis # with constant velocity #. The oscillator lumped mass mq
slides along the string. However, the lumped mass my is connected with the
moving base and the mass my by means of springs of stiffnesses r; and rq,
respectively, as well as by means of viscous dampers of constant coefficients
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dy and d;. On the mass m; an arbitrary force F'(t) is imposed, where t
denotes time. Moreover, the oscillator can be also excited kinematically by
the moving base motion @,(t) perpendicular to the # axis, Fig. 1. The iden-
tical mechanical system was also investigated in [8], where the finite element

method was used. : ‘
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FiG. 1. Finite continuous string excited by the moving oscillator.

3. FORMULATION OF THE PROBLEM

For “small” transverse vibrations of the string occurring in one plane
classical wave equations are applied as the equations of motion

32ﬁ,‘(§,t) _ 32’&;(:}:‘, t) _

(3.1) 502 b= =0, i=172,

where Ty denotes the tensile force in the string, jt is the string mass density
and subscripts ¢ denote parts of the string on the left and right-hand side of
the visco-elastic support, respectively, Fig. 1. Let us introduce the following
dimensionless quantities:

at l; #i(%,t) W;(t)

E
(3.2) T = E;’ T= T_;, A = I‘;W 'u,:(w,‘?') = a, w.'f(r) = u,

and
1=1,2, i=9,1,2,
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]
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where a = \/To /i, I; are lengths of the two parts of the string, Fig. 1, @;(t),
4§ = 0,1,2, are the support and oscillator mass displacements, and I, [m]
and u, {m] are arbitrary values.

Upon an introduction of the moving spatial coordinate axis £ = ¢ — vr
together with (3.2) one obtains the motion equations (3.1) in the following
form:

Pulyr) _, 0®u(6r) (- 02)9@_@ =0, i=12

33) —z 3Eor 9e2

The above equations are solved under homogeneous initial conditions

’Ui(f, T) =0, —"‘""—auié(’f_"r) =0, =12,
3.4 .
SO m =0, duir)

which means that no motion of the system is assumed before the oscillator
approaches the siring. Equations (3.3) are solved also under the following
boundary conditions:

0, j=0,1,2, for =0,

u (€,7)=0 for ¢ = —vr,
uz(é,7)=0 for £=M+ Az —or,

[Mo 0] o (1) + { Ch2 —Cz] wo (7)
0 0%, (1) —Cz Cy | Uz (€,7)
K12 —K» wo(r) | _

¥ [“Kz K> ] [’”2(5,1’) -

u_1(E,‘r) = ug(€,7) for £ = A — o7,

0

dua(€,7)  Sua(,7) )
T (Z5 - e

(35) P(r)=T (6ﬁj§§, ) _ aﬁ"{gg’r)) v ()= 8(87),

[M] 0 l {51 (T) + { Dm “Dg] I:‘u.}l (T)]
0 My |, (1) —Dy D | [ (7)

Ris —Ry wy(7) B F(r) o -
+[‘Rz R2][w2(f)]—[—f’(r)}’ for £=0, j=12,
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Mo 0 1) {50 (1‘) 012 —Cz 0 ’u‘Jo (T)

{(ij)] 0 Mz 0 | |W;(r)|+|{-Cy Ca+ Dy Dy |ty (r)
0 0 M| (1) 0 —D; D1z ] [y (7)
K2 - 0 wo(T)| - 0
+ =Ky Ko+ Ry —Ba| |wor)| = |T (3u2é§, ) _ 3u16(’§,1')) )
0 ~Ry Rz | [wn(7) F(r)
for £€=0 andfor 7= % , le.  for £=X ~vr =0,
Here

A
j=1 for ()('r<?1 and j=2 for %l<1_<)\11-)t2’

M=ZFE k=g 1,2
m,
2 2
Crz = (o teally 02)13, C: = cols , K= (bt Bo)ly -i: k2)ls, K, = ?la )
a1, ams a‘mg a?my,
l ' 2 2
Dys = Ml)_s, Dy = M, R = (r:-:rz)ls’ R, = ’;213 ’
am; ams a mg . a M,
I, _
Tp = Tnazm,’ T = To(1 = 2%),
‘ = : A
F(1) = (F(t) + mwe(t) + dywe(£)) aznisu, ,

m, [kg] is an arbitrary value, superscripts ~ and “ denote the parts of
the j-th string segment located in front and behind the moving oscillator, .
respectively. The last boundary condition (3.5)s corresponds to the time
instant when the oscillator approaches the visco-elastic support,

Solutions of the equations of motion (3.3) are sought in the general form
of the d’Alembert solutions,

(3.6) uil€,7) = filr—Toi—E—vTHb0:) + gi(T—Toi+EFvT—E50), i=1,2.

Functions f; and g;, ¢ = 1, 2, represent transverse waves propagating in the
string towards the right and left, respectively, Fig. 1, as a result of interac-
tion with the moving oscillator. These functions are continuous and equal
to zero for negative arguments. Similarly as in [7], they are determined
by the boundary conditions and the assumed initial conditions. In argu-
ments of these functions ro; denote dimensionless time shifts after which,
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at the beginning of the process, a front of perturbation arrives to the first
cross-section £o; of the i-th string segment, i = 1, 2. If the oscillator moves
with a speed smaller than the transverse wave propagation velocity, i.e.
with the so-called “sub-critical speed” & < ¢ (or v < 1), then the front of
perturbation propagates as a transverse wave. However, for the so-called
“guper-critical speed” of the oscillator when % > e (or v > 1), the front
of perturbation propagates with the oscillator. Consequently, forms of the
d’Alembert solutions for sub- and super-critical speeds of the oscillator are
different, and thus it is necessary to solve this problem separately for these
two characteristic cases.

3.1, The sub-criticgl case (v < 1}

In this case the front of perturbation in the string propagates with the
transverse wave propagation velocity a, and interaction with the moving os-
cillator is a source of two travelling waves of different lengths. The “shorter”
wave propagates in front of the oscillator towards the right, but the “longer”
wave propagates behind the oscillator towards the left, Fig. 1. Thus, for the
considered case, the d’Alembert solutions are assumed in the following form:

wm(€,7)= filr —or = O+ q(r +vr +§)
(3.7) for —wr < €< A — o,
ug(é,7) = fa(r —or = )+ gar + 07 + £ — 2X1)
for A -vr<E<AtA—or.

By substituting (3.7) into (3.5) and denoting in each equation the largest
argument by z, one obtains the following system of algebraic and ordinary
differential equations with a “shifted” argument for functions f; and g,
i=1,2:

92(2’) = "'f2(z "_ 2A2)1
01(2) = = fi(z = 2X1) + fa(z — 221) + g2z — 2M4),

+2M7\
M1+ o2 0 ,,(z )
(3.8) l 1+v) 2} I\ TT+o
L0 M) HO
. z+ 22
Dup(1+0)  ~Dy(1+9) | [uf (T;’?)

“Dy(1+9) @R+ D)+ ]| g
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R f; ( (z + 2A1n))

:(Z + 2/\1"‘?))

]

~Daf1 - 0)ff (T2 + 20m) - Rafy (A2t 2A1m))

f(2) = —q1(2),

’: ] { (z)] [012 ~Cy ] {w{)(z)]
f2(2) Cy 2T +C2 ] | f5(2)
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—K; K, f(2) 2T fi(2) — C294(2) — Kag2(2) |’
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JE
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—Ry Ry | | fil2)

_Z (1w
F(l_v)—i—Dg(1+'u),grJ (1 2 2)\177)
, 2 i+
2To(1 = 0)11(2) ~ My(1 + v)?g" ( Uz-z,\m)
1+
+Rag; (1 i 2)‘1"?)

: 1-w \ 1-— ’
—-Dy(1— v)g; (1+vz— 2A1n) - Rag; (1 T :z - 2)\11])




368 R. BOGACZ and T.SZOLC

where A
ji=1, =0 for 0<'r<-fvl,

A A
ji=2 n=1 for —5<T<A1—:l,

and for z corresponding to 7 = Ay /v we obtain

M, 0 0 wi’(z + )\1) lDlz -D, 0 1 _wi(z + /\1).1
0 My 0 fiz) |+[-D2 D:+Co+2T ~Cy fi(2)
0 0 My wg(z + Al) 0 —~Cy Cla ] _w{,(z + Al)_

Rqg —Rs 0 i’u‘..!,¥1(;2,' + Al)-
+ |-Ry Ra+ Ko —K; Ja(7)
0 —Kg Klg ] ‘w(,(z + Al)_

F(z 4 M) + Dagh(2) + Raga(2)
= | 2T f{(2) — Mag}(z) — (D2 + C2)g2(2) — (R2 + Kz)gz(z)
C295(2) + K292(z)

Superscripts” and ¥ denote respectively the “shorter” and “longer” waves
generated directly by the oscillator. However, functions f; and g; without
these superscripts describe the waves reflected from the supports. The above
system of equations is solved numerically in the presented order, where
for the differential equations (3.8)s 56,7 the Newmark method is used. By
solving Eqs. (3.8) together with (3.7) one obtains, for a considered time span,
the dynami¢ response of the system in the form of transverse deflections
of arbitrary cross-sections of the string, displacements of the support and
oscillator masses as well as the dynamic contact force between the string
and the oscillator.

3.2. The super-critical case (v > 1)

If the oscillator speed is greater than the transverse wave propagation
velocity a, there are no perturbations in the string in front of the oscillator,
and behind it two waves of different lengths propagate in two directions.
The “shorter” wave propagates towards the right and the “longer” wave
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FiG. 2. Waves generated by the oscillator moving with the super-critical speed.

propagates towards the left, Fig. 2. Thus, in this case we assume the unde-
flected string in front of the oscillator and a zero deflection of its contact
point with the string. Hence, for #;(£,7) =0, § = 1, 2, and wy(r) = 0, the
boundary condition {3.5)7 reduces to the simplified relations

M, ‘:51 (T) + D12 11..?1 (T) + R12’U)1(T) o= F(T),

(3.9) .
Dyun (7} + Rawn(r) = P(7).

As it was mentioned above, the front of perturbation in the string propagates
with the velocity equal to the oscillator speed #, and for the “super-critical
case” the d’Alembert solutions of Egs.(3.3) are assumed in the following
form:

u(é,7) = it ~vr =+ a(r + o7+ §)
; for —oT < €< A — T,

(310)  wal,7) = fo (r—w—ng (1 - %)) |
| +gz(‘r+vr+£—l\1(1+%))
for /\1—?;:1'<£</\1-|—,\2—-'v1'.

Substitution of solutions (3.10) into (3.5) and (3.9) leads to the following
relations for functions f; and ¢;, 1 =1, 2:

0 for o7 < Ay +Ag,

A+ Az
E v

(3.11)  g2(2) = { —f2(2Xa ~ 2) for <TL A+ Mg,

—--fg(z - 2)2) for T> A1+ Aq,
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(3.11)

{cont.]

where

here

g1(z) =4

ACER.
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( 0 for vr < Ay,
2 1
hen-a+ 5 (- x (143))
: 1 A
'H‘.h (z—Al (1+;)) for ? <T<A1,
1
hG-20+ 5 (22 (147))
+9g2 (z - XA (1 + %)) for 7> A1,
1 -
P for wr <> X,
2Tg(1+ 'v) 14 v pr
F]
0 for or> 2)\,-,
=1

P

1+ = P(x) = D2(1 + v)wi(s) + Rown(x),

1

K=

]

149

My(1+ v w{(x) + D12(1 + v)wi(k) + Rigwi(x) = F(x),

( 1
v for o7 < Z,\;,
“ 2T6(1 — ») v—1 Faor
fJ(Z) = 4 .
J
0 for vr >y A,
\ =1
Z+ 1M (1 - -1—)
P 22 | = P(x) = Dafv ~ Dwi(x) + Raws (x),

v—1
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(3.11) _ztah (1 - %)

[cont.] B v—1

Mi(v — 1)*w{(x) + Diz(v — Dwi(x) + Rizwi(x) = F(x),

’

and ]\
i=1, =0 for 0<‘r<?1,
i=2, n=1 for -/\—1<T<£"1:ﬁ,
fi(z) = —q1(2),
" /\1 /\1
My 0 Wy (z + ——) Ciz -0 'w’o (z + -—-)
_ v + v
00 fé!(z) —Cg 2T + 02 fé(z)
L[ He Ka] [ (54 ﬂ) [ Caile) + Kaga(z)
~K; K, () ¥ — Cag3(2) - Kaga(2) |
where

0 for wr <Ay,

. 1 A
o — -—-2Tfi’ (r\l (1 — ;) - Z) for —”1— <7< /\1,

sorg (s (1- 1))

Determination of the dynamic response of the system reduces to successive
solution of Eqs. (3.11) together with Eqs. (3.10) in 2 way similar to that used
in the sub-critical case.

e,

or T > AL

4, NUMERICAL EXAMPLES

Numerical calculations were performed for the following parameters of
the system described above:

li =l =100[m], 7T, =10000[N],
#=089[kg/m), k= ky = 1454 [N/m],
c1=¢ =0, ry =0, r2 = 2800 [N/m], my = 20 [kg].

The constant force F'(t) = Fo = 90 [N] was applied to the oscillator, and the
kinematic external excitation (1) was neglected.
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4.1. Results for the sub-critical case v < 1)

In this case the system was investigated for mg = 0, mp = 16 fkg), di =
40[Ns/m], d3 = 25[Ns/m] and for three values of the oscillator speed v =
0.40, 0.75 and v = 0.95. The results for v = 0.75 are presented in Figs.3a
and 3b. Fig.3a shows deflections of the string for successive time instants
1-9, i.e. before (1-6) and after (7-9) the oscillator has left the string. In this
figure one can observe transverse wave generation by the oscillator and wave
reflections from the supports. However, in Fig. 3b there'is shown the history
of the string deflection at its instantaneous contact point with the oscillator
mass as well as the history of the dynamic contact force P between the string
and the oscillator. These histories are presented in the string length domain,
which for constant v corresponds also to the time domain. At the beginning
of the process, i.e. before the oscillator has reached the visco-elastic support,
the string deflections and the contact force history are rather of a quasi-static
character. The contact force for { < 100{m] is almost constant and equal
to the constant external excitation force Fg. An approach of the oscillator
on the visco-elastic support (! — 100 [m]) causes rapid changes of the string
deflection and a “peaky” increase of the contact force. Then, for I > 100 [m]
the system is excited to transient vibrations, and when the oscillator reaches
the rigid support, i.e. for { — 200[m], the great peak values of the contact
force occur. '

For the remaining values of v analogous results were obtained. String
deflections for successive time instants 1-9 for v = 0.40 and v = 0.95 are
presented in Figs. 4a and 4b, respectively. From the three investigated values
of v, the smallest string deflections and local gradients of deflections were
obtained for v = 0.40. The case v = 0.95, however, is characterized by
the greatest values of the string deflections and local deflection gradients.
This fact is also confirmed by string deflections at the point of instantaneous
contact with the oscillator, which are shown in Figs. 5a and 5b. However, the
influence of the oscillator speed v is particularly essential for the contact force
history. For v = 0.95 greater peak values were obtained than for v = 0.75.
For v = 0.40, during “slower travel” along the string, the oscillator meets the
waves reflected from the visco-elastic support and from the right-hand rigid
support closer to its “starting point”, i.e. the left-hand rigid support. First
time the oscillator meets the wave reflected from the visco-elastic support at
about 1/3 of the string length, Figs. 4a and 5a. However, for » = 0.75 and
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v = 0.95, during very fast motion with speeds close to the critical speed, the
oscillator meets the waves reflected from the visco-elastic support and from
the right-hand rigid support very close to them, just before approaching
these supports, Figs.3, 4b and 5b. As it follows from Figs.3b and 5b, for
v = 0.75 and v = 0.95 only the waves reflected from the right-hand rigid
support essentially influence the contact force values. However, the waves
reflected from the visco-elastic support considerably perturb the contact
“force history only for v = 0.49, Fig. ba.

The results concerning deflection of the string at its contact point with
the oscillator and the contact force P for » = 0.40 and v = 0.95 were
compared with analogous results obtained in [8] for the identical mechanical
system, where the string was represented by the finite element model. The
forms of respective curves in [8] are similar to those in Fig. 5, but in cases of
the local extreme values significant differences take place — reaching about
20 — 60%. Using the proposed wave method, greater absolute peak values
are obtained, in particular for v = 0.95. This fact can be explained by an
application of the modal transformation method for the finite element model.
This leads to superposition of the harmonic standing waves in the siring
which results in numerical “smoothing out” of all the resultant peak values.
Analogous differences of the results appeared in [7], where the proposed
wave method was compared with the Fourier method for an identical string
excited by a moving force. Moreover, as it follows from (8], in order to obtain
a solution, which was convergent and more or less reliable from the physical
viewpoint, for the considered case it was necessary to take into account
at least 200 eigenmodes of vibrations. On the other hand, for v = 0.95
the “sharpest” peak of the string deflection at its contact point with the
oscillator was obtained for 10 eigenmodes taken into account, while further
increase in number of the eigenmodes did not improve the accuracy of the
solution. From the performed comparison it follows that the resuits obtained
_ using the wave method proposed in the paper seem to be more accurate than
the analogous results following from the finite element approach.

4.2. Results for the super-critical case (v > 1)

This case is not of practical importance: but it can be used for theoretical
purposes in order to demonstrate possibilities of the wave method applied.
In the super-critical case numerical calculations were performed for mo =
10 [kg], m2 = 0 and for d; = dp = 0. Figure 6 presents the string deflection
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curves for successive time instants 1-9, i.e. before and after the oscillator
leaves the string, for v = 1.1, Fig.6a, and for v = 1.6, Fig.6b. Greater
string deflections as well as greater local deflection gradients take place for
v = 1.1, i.e. for the oscillator speed closer to the critical speed v = 1. Similar
effects were obtained in the sub-critical case for v = 0.95, Fig.4b, and for
» = 0.75, Fig.3a. But the histories of the dynamic contact force P are of
a completely different character than those in the sub-critical case, Fig.7.
Since for v > 1 there is no deflection at the contact point of the string with
the oscillator, motion of the oscillator mass my reduces to vibrations of the
system of one degree of freedom excited by the constant force Fy. Thus, for
dy = dy = 0 histories of the contact force in Fig.7 have sinusoidal forms of
the mean value F and of amplitudes equal to Fp, which is in agreement with
the fundamental theory of vibrations [2]. Certainly, the number of vibration
cycles of these histories depends on the physical time period of the oscillator
travel along the string. Number of these cycles for v = 1.1 is greater (about
2.6 cycles, Fig. 7a) than for v = 1.6 (about 1.8 cycles, Fig. 7b).
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F1G. 7. Dynamic contact force between the string and the oscillator for v = 1.1 (a) and
for » = 1.6 (b).
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5. FINAL REMARKS

In the paper the one-dimensional elastic wave propagation theory was
applied to the transverse vibration analysis of the finite string excited by
the moving dynamic oscillator of two degrees of freedom. The wave motion
equations for the string were solved using the d’Alembert solutions. Deter-
mination of these solutions by the boundary conditions led to appropriate
systems of algebraic and ordinary differential equations with a “shifted”
argument. Successive solution of these equations enables us to obtain the
dynamic response of the system for various oscillator speeds, i.e. both for
smaller (sub-critical} and for greater (super-critical) values than the trans-
verse wave propagation velocity in the string.

From the results of calculations performed for sub-critical speeds com-
pared with analogous results obtained using the finite element method it
follows that for the oscillator speed closer to the critical speed, greater dis-
crepancies of results took place - reaching 20—60%. Application of the finite
element method resulted in “smoothing out” of the peak values. Thus, one
can conclude that the wave approach based on the d’Alembert solution ap-
pears to be more reliable.

For the sub-critical speeds, all approaches of the oscillator on the string
supports cause great peak values of the dynamic contact force between the
oscillator and the string. However, for the super-critical speeds the contact
force values depend only on parameters of the oscillator and on its external
excitation. In such a case successive approaches of the oscillator on the
supports do not influence the oscillator-string contact force history.

The method presented in the paper is characterized by a great numerical
efficiency and a clear mathematical description of the wave effects. These ad-
vantages make the proposed approach particularly convenient for dynamic
investigations of more complex systems, first of all for the studies of in-
teraction of the electric locomotive pantograph with the railway catenary
suspension. :
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