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MATHEMATICAL MODEL OF AN OVERRUNNING MECHANISM
IN A NEW ONE-WAY CLUTCH

S.C. BURGESS, T.A. STOLARSKI and 5. KARP (UXBRIDGE)

.+ This paper presents a mathematical model of an overrunning mechanism in a new one-
" way clutch, called a collapsible-band clutch. The operation of the clutch is explained in
general terms, and then the governing equations of the mechanism kinematics are derived.
The model is used to calculate critical dimensions in the mechanism and to estimate
bending stresses that take place during overrunning.

NoTaron

relative rotation of clutch halves,

angular tooth pitch,

inner radius of teeth of outer clutch half,

outer radius of teeth of outer ¢lutch half,

angular length of land,

number of teeth in outer clutch,

depth of tooth,

reference point where AR(m) =1,

radial component of reference point displacement,
angular component of reference point displacement,
radius of spiral curve,

local radius of curvature of spiral curve,

bending stress,

elastic modulus of band material,

maximum distance from neutral axis.
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Remaining symbols are defined where they occur in the text and on the
accompanying figures.

1. InTRODUCTION

One-way or overrunning clutches transmit torque in one direction of ro-
tation and overrun in the opposite direction. They are used in applications
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such as drive trains, conveyers and indexing mechanisms. A simple overrun-
ning clutch, called a collapsible-band clutch (Fig.1), was designed at Brunel -
University in 1985 [1]. The clutch comprises three plastic moulded parts .
and is suitable for light applications.

In the non-driving direction of rotation, an overrunning clutch disen-
gages the transmission by means of an overrunning mechanism, The over-
runhing mechanism in the collapsible-band clutch involves the collapsing
of a toothed-band. The band is displaced in a complex manner in accord- :
ance with the geometrical constraints imposed by the two relatively rotating :
clutch halves. _

The design of the collapsible-band clutch was optimised by developing :
and using a mathematical model of the mechanism kinematics. This paper °
describes the overrunning mechanism, derives the equations which model it |
and gives some examples of results produced from the model. :

2. THE OVERRUNNING MECHANISM

For overrunning to take place the band has to be displaced from its tooth-
-engaged position (Fig.1) so that the outer clutch half can rotate relatively
anticlockwise to the inner clutch half. In the engaged position the band
assumes its free moulded shape, however, its arcuate configuration and the -
use of thermoplastic material make it resiliently collapsible. This enables

Outer cluleh half
Toothed-bond

Innar.clutch haif. -

Fi6. 1. Collapsibleband ‘cluteh. "7 7
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the teeth of the band to ride under the teeth of the outer clutch half in
* the non-driving direction of rotation with little frictional torque. Typically,
~ drag is less than 0.5% of drive torque capacity [1].

" 2.1. The displacement cycle

- For each relative rotation of the two clutch halves, ¢ equal to one tooth
pitch, P, the band collapses and expands through a radial distance AR = t.
From Fig.2 it can be seen that the band is not displaced uniformly but
. that the displacement, AR = t is firstly completed at the front end of the
: band before propagating anticlockwise to the end of the band. The first
“tooth is fully deflected as soon as the relative rotation of ¢ = P has been
~achieved (Fig.2b) and this first part of the cycle is termed the collapsing

a 4,-<P

FIG. 2. Progressive stages of the displacement cycle.




52 $.C.BURGESS, T.A.STOLARSKI and 5. KARP

phase.. After the collapsing phase the displacement, AR = t, propagates
rapidly through the band without any further relative rotation (Figs.2c and
2d). This happens because once the first tooth has passed under its opposing
tooth in the outer clutch half, a vital constraining force is removed and
the band releases strain energy, acquired during inward displacement, in
snapping back to the position tooth-engagement (Fig.2d). This second part
of the displacement cycle is termed the expanding phase. _

" The complex nature of the band displacements is due to the band having
two degrees of freedom. The band is constrained circumferentially at the -
front end only, therefore when the band is displaced radially inwards, during
the collapsing phase and part of the expanding phase, there is also angular -
displacement in the anticlockwise direction (Figs.2a, 2b and 2c). Likewise,
when the band moves radially outwards, during the expanding there is an-
gular displacement in the clockwise direction (Fig.2c). It is necessary to be
able to predict the displacements that take place so that the clutch can be -
designed to have the correct clearances. In particular, there has to be ade-
quate clearance in the slot of the inner clutch half to allow the band enough -
freedom to expand (Fig.2c). In addition, bending stresses can be estimated
from the known displacements. ' :

3. THE GOVERNING EQUATIONS OF BAND DISPLACEMENTS

The band is modelled by a spiral curve which passes-thrbugh a set of |
reference points as shown in Figs.3a and 3b. The reference points are lo-

FiG. 3. Displaced band modelled by a single spiral curve.
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cated behind each band tooth tip at the back of the land area. This is
convenient because the band maintains contact with the inner perimeter of
“the outer clutch half through the majority of these points during the whole
overrunning cycle. Therefore the reference points are boundary points whose
co-ordinates can be defined partly by the geometrical profile of the teeth of
the outer clutch half. _

The instantaneous profile of the displaced band is constructed relative to
the spiral curve by assuming that no significant distortion takes place across
the section of the band. This assumption is justified due to the slenderness
of the band which always has a depth of section much less than 10% of its
radius of curvature.

Each reference point has a radial component of displacement, AR and
an angular component of displacement, A8 and these relative displacements
determine the corresponding new shape of the spiral curve and toothed-
band. The radial displacement, AR can be defined by the geometry of the
instantaneous locus of the spiral curve (Fig.4).

FIG. 4. Instantaneous locus of spiral curve. o undisplaced position of reference point,
o displaced position of reference point.
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3.1. Readial displacement, AR

Because there is no angular displacement at the first tooth, the radius of
the spiral curve at the first reference point is only dependent on ¢:

_ Rysin{ea)
R,(QS, 1) — sin(ﬁ) N
Here
o = sin-l (RIsm(P - 2L)) ,
. T
z = \/R3+R}—2RoRicos(P -2L),
ﬁ = T—0a-— ¢ )
Thus )

_ RoRjpsin(P — 2L)
B.($,1)= z sin( ) )

The radial displacement of the first reference point is

AR(¢,1) = Ro — R,(¢,1).

Thus

(3.1 AR($,1) = Fo (1 — Rysin(P — 2L)) .

z sin(3)

The radial displacements of the remaining reference points which are
displaced in the anticlockwise direction (as in Fig.4) are

R,(¢,1) sin(5)

AR(¢,n) = Ro - sin(m — B — Ab(¢,n))
Thus
(31)2 AR(¢5 n) = RO (1 - o sin?; S_inﬂ(li_Aifqz, n))) ’

The radial displacements of the remaining reference points which are
displaced in the clockwise direction are

Rs(¢a J) SiIl(‘ﬂ' - ﬂ)
sin(8 — Af(¢,n))’

where j is the number of the last reference poiht to be displaced in the
clockwise direction.

(3.1)s AR($,n) = Ro -
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Because both AR(¢,n) and A#(¢,n) are unknown in Eqs.(3.1); and
(3.1)a, it is necessary to define the coordinates of the reference points in a
second way. By assuming that the length of the spiral curve remains constant
throughout the overrunning cycle, the angular displacement of each point,
AB($,n), can be equated with the angle of the spiral curve up to that point,
(¢, n), and the average radial displacement up to that point, ARav(¢,n).
The band can be assumed to remain at a constant length because the forces
and direct strains that occur along its length are insignificant.

In order to equate the angular displacement to the average radial dis-
placement, it is necessary to determine the average radius of the spiral curve
through sections of its length. This can be done by assuming the spiral curve
to have a constant gradient (rate of change of curvature) between individ-
ual reference points. This assumption means that the trapezoidal rule of
integration will determine the average radius of the spiral curve and the
average radial displacement. The assumption is justified because the width
of strip between points is relatively small and because the gradient of the
spiral is very shallow. In addition, the change of section in the band close to
the reference points would tend to create a point of discontinuity at those
descrete points.

3.2. Angular displacement A8

Figure 5 shows the angular displacement (5,, —8,,) of a circular arc which
is displaced radially inwards into a spiral curve of shallow gradient. The
angular length of arc (6, ~ 8,,) can be defined by equating the separate arc
lengths, : :

Gy
Ro(6n — 6) = f R(6)do.
8,
Thus

oy, by
Ro(0, — 61) = / R(6)dd — f #(9)d0 = 0.
8 fn

The integrals can be replaced by defining the average radius of the spiral
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F1G. 5. Loeal radius of curvature of reference point. # displaced position of reference
point.

curve between (8, — 6;) and between (4, — 8,):

f R(B)dﬂ f R(B)dﬂ
Rav (9 - 91) faw (9 -8,
thus
(Ro -_ RAv)(ﬁﬂ —_ 01) — Rf(gn - 9,;) =0,
and
i _ (Bo— Rav)(bn - 61)
(6n ) = I

In the case of the spiral curve passing through n reference pcmts (Fig.3b), -
the equation can be written in the following way:

ARAV (¢$ n)9(¢1 n)

Ao(('b, ﬂ) - RI
where
0(¢’$ n) = ‘(E“JVQH y
k=n—1
AR($,m)av = %{AR(«&, +2 3 AR($k)+AR(, n)},
k=2
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Thus, the angular displacement of each reference point is

. & k=n~1
(32) Ab(¢,n) = ;—; {&R(ﬁb, 1)+2 ) AR(¢,k)+ AR(9, n)} .
4 k=2

4. SOLUTION OF EQUATIONS
4.1. Displacements

The two sets of governing equations for AR and A# cannot be solved
simultaneously by direct substitution because Eqs.(3.1)2 and (3.1)3 are tran-
scendental equations. Therefore the equations are solved by the method
of successive substitution. By substituting Eqs.(3.2) into Egs.(3.1);, and
(3.1)3, implicit equations are formed such that

AR(#,n) = f{AR(¢,n)}.

The equation is solved by successively substituting the answer on the
left-hand side of the equation into the right-hand side. By starting with a
first approximation of AR(¢,n); = 0 the iterative-substitution procedure
typically converges to 0.05% accuracy after five iterations.

For a particular value of ¢ there is a set of (N — 1) displacements. It is
necessary to solve the governing equations starting at n = 1 and progressing
up to n = N — 1 because the solutions of each reference point requires the
solution all preceding points.

The governing equations are solved by a computer program which re-
quests the values of the geometrical variables, Ry, L, N,t and the value or
set of values of ¢. The relative rotation ¢ is an independent variable and de-
termines the instance in the cycle at which the shape of the band is framed.
However, when ¢ = P the band is in the expanding phase and during this
period ¢ is no longer an independent variable. During the expanding phase
the tooth number, m, at which the maximum deflection AR = ¢ is occurring,
determines the position of the band. Therefore, when ¢ = P, m becomes an
independent variable and the computer program requests a value or set of
values of m between m =1 and m = N - 1.
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4.2. Bending stresses

The solution of band displacements can be used to estimate the bending
stress distribution around the band. By finding the local radius of curvature
of the spiral curve at each reference point the bending stress can be estimated
in the following way:

(4.1) o5 = Ey (Rc(—;ﬁ _ -Rl—u) :

Centre of clulch

~ Loeal cenlre of curveture
of spiral curve

FIG. 6. Circular arc displaced inwards into a spiral curve.

The local radius of curvature of each reference point, R.(¢,n) can be
estimated by inscribing an arc which passes through the reference point, as
well as the preceding and succeeding points (Fig.6): .

a

Re(,n) = 2 sm(E/2)

where a is directly known from the posmon of reference pomts n and n-— 1

E = tan™ (_d—'b) Y s e
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b is directly known from the position of reference points, n and n 4 1,

b+t —al
- 2b !

¢ is directly known from the position of reference points, n — 1 and n + 1,

d

e = ((22 _ d2)1/2.

The precise value of the bending stress at each point would actually be
slightly higher than the mean value obtained in Eq.(4.1) because the change
in section of the band behind each tooth would lead to an uneven distribution
of stress between points. However, Eq.(4.1) provides an estimate of the stress
value and also indicates the nature of stress distribution through the band
during the displacement cycle.

5. RESULTS

The computer program which solves the governing equations also con-
tains a graphics plotting program [2] so that results can be studied visually
in a convenient way. Figure 2 shows a typical set of results of band dis-
placements. In this example the values of the geometrical variables were:
Rr = 30mm, N = 20, L = 2 degrees and ¢t = l.1mm. In addition,
the requested value of ¢ were: ¢(1) = 0.6 P (Fig.2a), ¢(2)= Pand m =1
(Fig.2b), #(3) = P and m = 10 (Fig.2c), and #(4) = P and m = 0 (Fig.2d).
The results in Fig.2 show typical characteristics of band displacements dur-
ing the displacement cycle. In this example the computer calculated that a
clearance of 3 degrees was required in the slot to allow the band to expand.
This clearance is an important quantity because the indexing angle of the
clutch is equal to the sum of the angular tooth pitch and the slot clearance.
The indexing angle, which is the largest possible transfer angle that is re-
quired for torque take-up, should preferably be small and comparable with
that of a pawl and ratchet clutch. However, it is not necessarily an avan-
tage to have a small tooth pitch because the steeper tooth angle results in
higher frictional torque. Therefore, a compromise has to be made between
the indexing angle and the frictional torque for each application.

The computer program is also used to plot the results of stress distribu-
tion. A typical example of stress distribution during the collapsing phase is
shown in Fig.7. The smaller radial displacement of the back of the band at



 FIG. 8. Stress distribution around band during the ékpa.:zlﬁihg phase. .
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this position resulis in a gradual decrease in the value of stress from point 1
to 19. A typical example of bending stress distribution during the expand-
ing phase is shown in Fig.8. The main feature in this result is the sudden
change in stress that occurs at point number 10. This step in the stress
distribution always takes place at the same position of the maximum dis-
placement, AR(m) = t. This is because as each band tooth just slides past
its corresponding tooth in the outer clutch half, it temporarily loses contact
therefore is able to expand outwards suddenly. The maximum displacement
propagates through the band rapidly and therefore so does the high stress
gradient.

6. CONCLUSIONS

The mathematical model has enabled the collapsible-band clutch to be
optimised by computer-aided design. Collapsible-band clutches have been
manufactured and these have shown that the theoretical predictions of mech-
anism displacements are correct only for slow overrunning speeds. In prac-
tice the band does not continually go through the whole displacement cycle
because overrunning speeds are usually too fast for the band to expand
during continuous cverrunning. The frequency of the displacement cycle
is equal to the rotational frequency multiplied by &V, the number of teeth.
However, the ideal model indicates the maximum displacements that take
place.

In tests, polyacetal has been found to be a suitable material for the
band, and the use of silicon grease has been found to reduce drag. Within a
diameter of 100 mm the collapsible-band can transmit torques up to about
50 Nm. Whilst this is much less than a pawl and ratchet one-way clutch,
the collapsible-band clutch has several advantages. The clutch is quieter
and lighter and the simple design means that the manufacturing cost for
large quantities is very low.

The collapsible-band clutch illustrates how one solid part, made from
a thermoplastic material, can be used as a mechanism. In addition, this
design exercise shows how the use of computers in the design process can
significantly reduce the time and cost of developmeni. The three plastic
parts have to be moulded from tool cavities and it would have been very
expensive and impractical to manufacture a range of components of different
dimensions to study the parameters that affect the performance of the new
one-way clutch.
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