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THE REISSNER - SAGOCI PROBLEM FOR LAYERED
ORTHOTROPIC ELASTIC MEDIA

B. ROGOWSKI (LODZ)

The problem of the torsional displacements of an elastic medium consisting of or-
thotropic layers, produced by a rigid circular disc attached to the surface is considered.
The mixed boundary value problem is reduced to the Fredholm integral equation. The

latter is solved by an iterative method, the solution being proved to converge to a unique

continuous function.

1. INTRODUCTION

The problem of torsion is considered in the context of linear elasticity.
The elastic body consists of multiple layers bonded to each other and to the
underlying medium (substrate). The layers and the medium are assumed to
be orthotropic and homogeneous. The torsion is produced by a rigid circular
disc attached to the top layer and twisted through a small angle. With
these assumptions the problem is solved by means of integral transforms. In
the axisymmetric case, cylindrical polar coordinates are employed, and the
Hankel transform is used. Using Noble’s method, the mixed boundary value
problem is reduced to the Fredholm integral equation, which can be solved
by an iterative solution process. The solution can reach any desired degree
of accuracy. The problems of convergence of the series as well as existence
and uniqueness of solution have been considered.

The ”Reissner - Sagoci” pmblem [1], was theoretlca]ly analyzed in cases
of isotropic (SNEDDON [2], CoLiins [3]) and GLADWELL [4}), transversely
isotropic (RocowskKI [5)), orthotropic (TANG [6]) and non-homogeneous
(Kassir [7], HassaN [8] and SELVADURAI, SINGH and VRBIK [9]) media.
This paper presents-the effects of the layered structure and orthotropic con-
stituents on this torsion problem.

\
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2. BASIC EQUATIONS

In cylindrical coordinates (r/,8,2’) the relations between the non-zero
stress components ¢’y 0}, and displacement v’ in the §-direction, in the
case of axial symmetry, are

av' v v’
where G, and G, are the shear moduli for the planes perpendicular and
parallel to the z-axis, respectively.

Substituting Eds. (2.1) into equation of equilibrium

00,9 aagz
(2:2) o T oy + 7! ore =0
one obtains , .
8% 1 g 0%’
{0 1 ov v o _
(23) * (31"2 o r'2) tom 0.

where the positive constant s = /G,/G, is a measure of orthotropy and
s = 1 represents an isotropic solid. Introduce dimensionless variables r, z, v,

(2.4) r =ar, Z = az, v = av,

where a is assumed as a unit of length.

The general solution of Eq. (2.3) may be obtained by the application of
Hankel integral transforms. Then the displacement » may be expressed in
the form '

(25) wrzy= [ [A©)et + BOe ] hgr)de ,

where J; denotes the Bessel function of the first kind and first order, §
is the Hankel transform parameter and A(£) and B(£) are arbitrary func-
tions which should be determined by a.ssummg a.ppropna.te boundary and
continuity conditions.

The corresponding stresses are

cun(rz) = Gos [ €[4 - B ] Jl(gr)ds,

(2.6) .

': O'ro(f', 2)

N (=4
i [A(s)ef” ¥ B(a)e-*f”] Jz(ef--)de
For a doma.m which extends to infinity in the z~dlrection, the regulanty
condition requires A(§) = e
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3. LAYERED HALF-SPACE

The elastic half-space, z > 0, has one or more layers which are or-
thotropic, perfectly bonded to each other and to the substrate. We use
the notation in which the numerical superscript of a dependent variable de-
notes the number of the corresponding layer with 1 denoting the top layer.
Quantities in the substrate are denoted by the superscript s. Parameters
and other quantities are denoted by corresponding subscripts. The continu-
ity conditions for this problem are

_ ) (r,z,) = ‘+1(r, z), i = 1,
(3-1) a(r’ Z, = s+1(,r, 2-',) i = 1
where N denotes the number of layers, 2 is the z coordinate of the inter-
face between the ith and (i + 1) th layer, and the conditions (3.1) hold for
all values of the coordinate r. Index N; + 1 denotes the quantities in the
substrate. The dimensionless layer thicknesses are given by

(3.2) hi =2z — 7., i=1,2,...,Ng,

where zp is zero.

The displacement v and stress 0,4 are needed in order to apply the con-
tinuity conditions (3.1) at the interfaces z = z;. These are written in terms
of the two unknown functions A;(£) and B;(¢) and material parameters G
and s; for each ¢ th layer. For a substrate these are written in terms of
the one unknown function B(£) = A,(¢) and material parameters G¢ and
8s. The application of the continuity conditions (3.1) can be simplified by
proper ordering of the calculations. The idea is to eliminate the unknown
functions of £ in the layers and to write the surface values of the physical
quantities directly in terms of the function A,(£). This yields the recurrence
formulae

1
AN:(‘E) = 3 (1 - MN,)e‘zNa(*"a‘i"N,)E As(f) )
1
B (€) = 5(1 T e W
(3.3)
1 i zilsigr s i (ot
Ai(g) = +[-‘ i(sig1~8i)¢ A +1(E)+ 'u’ i(8ip1+30)€ B+1(£)

B. — 1 +“‘ "‘zs(-’|+1 3-)6 B P’ zl(3l+1+“)€ A
1i=1,2,...,N; -1,
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where

(34) : o
Hi = G;+13i+1/G;3i = G:rgl/G;rg, Garg = Varaz y 1= 1,2,...,N;.

Then the boundary conditions on the boundary plane of a layered half-space
can be used to determine one remaining function A,(£). '

4. THE REISSNER — SAGOCI PROBLEM

Consider the axisymmetric torsional problem, where the layered half-
_space is twisted by means of a rigid circular disc of radius ' = a (r = 1)
attached to the boundary plane z = 0.

The boundary conditions are

(4.1) v=¢r (0<r<1), g3=0(r>1) on 2=0,

where ¢ is the constant twist angle.

4.1. The case of a single layer (N} = 1)

Equations (2.5), (2.6) and (3.3) now show that boundary conditions (4.1)
will be satisfied if

f {1 —2#1 e—lsatn )l + H_g‘u’le—zl(a,—n)f] A,,({)Jl(ﬁr)df = ¢r (1‘ <1),
0
(4.2)

[e[Fgttenteme - LB a4 nnde =0 (r> 1)
0

Let us now use Noble’s formula [10],

(4.3) [._sz_ﬂl_e—n(aﬁm)f + #},e—m(n—ukl A,(€)

2 |
= = [ 9(t)sin(£t)dt
W b/
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and reduce Eqs. (4.2) to the Fredholm integral equation for the unknown
‘ auxiliary function 8(z)

1
(44) o)+ 1 [ Mz, 0060 =260, e 0,1],
: 0

“where

(45)  M(z,6)=2 / [ﬁ———l + ie’zl’lt+1}
-
: o

-1

[cos(x + &)t — cos(z — {)t] dt .
This integral may be expanded into power series of 2y 3;, since

n
(4.6) (‘"’”ﬁ ‘fie”l’l*ﬂ) Z( =1t (# +1) e~

1 n=1
and

:.(4.7) f e~ 2t feos(z + )t — cos(z — &)i] dt
0

1 s+ €32\ z—€£\\ 7"
- 2nz181 [(1 + (2nz131) ) B (1 + (2nz1.91) ) ]
(g P (=g

(2n2131)2m+1 ’

m=]1

with the series (4.7) converging absolutely and uniformly for any values
z,£ € [0,1] provided that 28y = A!sy/a > 1. Thus

'_<4 ) M(a,6)= 3 (-t ACmED (4 gom_(,_gyom] |

e (2131)2m+1

where 7(2m + 1) denotes the convergent series

n) = E(-nmt (m) L, p o= 2m+l,
= (1-2"7)({(p), for g — oo,
= "'C(p), for m = 0,
= 0, for py = 1,

and where ((p) is the Riemann zeta function [11], defired as

C(p)—z —

n=1
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The limiting values of p; correspond to the cases in which the interface
2 = z is fixed to a rigid foundation (py — o00) or is stress-free (1 = 0)."
If the layer has both faces free of stress, then it will not be in equilibrium -
and will be able to rotate as a rigid body with v = ¢r everywhere. We
suppose that, in this case, the layer is restrained against such a rotation
by means of a couple applied at infinity. It is interesting to note that in-
the problem of equal average shear moduli (s#; = 1) the exact solution .
#(z) = 2¢x is obtained, since the kernel M(zx,¢) vanishes. The analysis of
the single layer problem by expansion in power series of z8; restricts the
range of applicability of the obtained solution to these cases in which '

(411) 2181 = (h;/a) \/G%/G; >1.

The "ratio test” for convergence is satisfied by the series (4.8) and it will be
absolutely and uniformly convergent provided that the inequality (4.11) is
satisfied. ¥f this is true, then we assume a solution of equation (4.4) having
the form |

(4.12) 6(z) = ¢ {2:!: + i an(a:)/(zlsl)"] )

a=1

and find by iteration that

(4.13) O(z) = 2¢= [1 + 3ﬁ?£?31)3 - 301:2211)5 (522 +3)+.. ] .

Higher order approximations can be obtained by continuing the iterative
process. The zeroth-order approximation of #(z) is 6p(z) = 24z, and
the next n th approximation of 6(z) obtained in this manner is correct
to 0[(2131)~(®*+3)]. An appropriate choice of the order of approximation
will thus give a prescribed accuracy to the solution.

Before attempting to use the method, the following assertions have to be
proved:

(i) With n — oo, the sequence of functions (4.12) converges to a conti-
nuous function of z;
(i) The limit function obtained satisfies the integral equation (4.4) with
the kernel (4.8), and
(iii) The solution thus obtained is the only continuous function whjch
satisfies the equation.



00(:3)

91(.1:)

92(3)

On(z)

it follows that

(4.15)

But from Eqg. (4.8)

(4.16)

|n(2m + 1) <
[7(2m+1)| < C(3)

(4.17)

‘M(ﬂ:, ‘f)l =
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2¢z ,
1

2@;_% j Mz, £)Bo(€)dE ,
0

1
2¢.f,.,-__j_; j Mz, £)0:(6)dt
v 0

1
20~ = [ M(z,€)001(6)dE
]

1
Boy1 () = 260 — % j Mz, £)0a(€)dE
1)
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4.1.1. Convergence of the successive approzimations. From the sequence

On making use of the following inequalities, result and notation:

m -

+1 for pl 2 1!

for 0< <1

1

m=1

> G =
(2131)2m+1‘“

2131(238% — 1)’

g —1

7181 > 1,

((3)

(4.18)

" w(u + Dasi (st - 1)
the relation (4.16) yields

>0 =
=4 o r2181(23s3 - 1)

~|M(z,8)| < 6 < oo.

had 2m+ 1 (- 2m
Z(—l)m(z(lsl)::n.}‘)l (1' +f) 22m( E)
m+1
P

>0
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Therefore

1
(4.19) = [ 1M, 0 < 8.
0
Now, from Eq. (4.15) the following formula is easily obtained:
1 2
1
(4.20) (Op41 — 0,)° = = (f M(z, )6, — Gﬂ_l)df) .
0

Application of the Schwarz inequality to Eq. (4.20) yields

1
(4.21) (Bnss — 8a)* < 8 [ 180 = O00)Pd.
1)

Since #p = 2¢z is taken as the initial approximation, then from the second
of Egs. (4.14), and applying the Schwarz inequality again, we have

1 &
(422) (-6 = of [M(z, £)26¢] de < 447" oj g,

where £; tends to unity.
Hence, both Eqs.(4.21) and (4.22) can be used to obtain

1 &2 &1
(4.23) (02— 61)% < 8% [ |0y — 0o|2de < 4¢%(62)? [ dE; | £%dE,
/ [«]

where £; tends also to unity.
Similarly, the following sequence are determined:

& & &
(4.24) (8 — 6a)° < 462 (8%)° [ dts [ dt j €2,
0 0 (1]
;atc.
Finally,
Eu+1 fn 52 51
(4.25)  (Bups — 0,)? < 4g2(62)rH f de, / s ... f dé f 24t .
1] [¢] 0 0

. (product of (n+ 1) integrals)
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But
| (4.26) ?ldﬁn f dbn .. 7(161 / £2dt = W for £nq1 = 1.

0
Therefore, the relation (4.25) can be rewritten as

1
(n+3)

(4.27) (041 — 0,) < 84%(52)+1
which implies that

sn+l
(4.28) [0ns1 — 8,] < zﬁqsmm.
Define the following infinite series:
(4.29)
p(z) = bo(z) + [01() — Oo(2)] + [02(2) — 62(2)] + [03() — Ba(2)] + ...
The (n+1) st partial sum of Eq. (4.29) is evidently 8,(2). This information

and the inequalities (4.28) and 6y(z) < 2¢ enable us to arrive at the following
result

(4.30)
O,(z) = 00+2(ak —6_1) < 2\/‘452 \/(k—z)' for all of z € [0,1]

k=1

since |8,(z)| = 0,(z). Hence, 8,(z) is found to be smaller than the conver-
gent series

(4.31) 2v/2 qsz m

In view of this result, 8,(z) is umformly convergent and the limit exists

(4.32) Jim 6,(z) = ¢(=).

4.1.2. Proposition. The limit function ¢{z)is a solution of the integral
equation (4.4).

Prool Set

(4.33) ¢(2) = 8 (x) + Ha(a),
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where H,(z) is the remainder following from the truncation of the infinite
series. If we take into account the ineguality (4.30), then it becomes obvious
that

Hy(z) = Y (fr—0k—1) forallof z€l0,1],
k=n+1
(4.34)

H, < 229
| Ha(z)| k;1 ,(—m =

Due to the convergence of the series (4.31), the remainder H,(z) satisfies
the equality
(4.35) lim HZ(z)=0.

n—+00

From Eqs.(4.15) and (4.33) we obtain

o(a) = 2n + = [ Mo, E)p()de
1)
(4.36) = Hu(z)+ = [ Mo, 6)0(€) ~ bus(©))de,
0
1
(¢la) — 260+ - [ M(z,€)(E)de)?

1 2
- (Hn(w) +2 [ M@0 -8 _l(s))des) .
0

It is known from algebra that for any two real numbers, a and b,
(4.37) (a+ b)% < 20% + 20°.
Applying the inequality (4.37) in Eqs. (4.36) we obtain

(438)  (plo) - 292 + = [ M(z,p(€)e)? < 202()

1 2
+f—2 (f M(z,£)(p(¢) -0 -1(5))“’5)
[4]

< 2HX(z) + 267 ] | — s |2dE,
0 .
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where the last inequality is due to the application of Eq. (4.19). Let

(439) 0(2) = Oa1(2) = Homa(0),
then
1
(4.40) f|<p — 8,_1}%dt < supH2_,.
0

Inequality (4.40) can be used in (4.38) to obtain

1
(441)  (po) 260+ 1 [ M@, 0p(O)d6) < 2HX=) + 26 supll]_y.
0

Passing to the limit n — oo and making use of Eq.(4.35), the right-hand side
of inequality {4.41) vanishes. Since the left-hand side cannot be negative,
only the equality sign in (4.41) can hold. Therefore

1
(4.42) ole) =29 — — [ M(z, )0(E)dt
0

which concludes the proof.

4.1.3. Proposition. The function ¢(x) is the only continuous function
which satisfies the integral equation (4.4).

Proof. Let it be assumed that there exists another continuous function
¥(z) different from @(z), which satisfies the integral equation. Suppose the
function 7(z) satisfies the condition

(4.43) |$(z) — 22| < g < oo.

As a solution of Eq.(4.4), ¥(z) satisfies also

1

(4.44) P(z) = 24z — % f M=, §)¢(£)dE.
0

Consequently,

(445) ()= a(z) = 7 [ M(2,6)(0n-r(6) ~ VEE.
0
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If the Schwarz inequality is applied to Eq.(4.45), then

(4.46) [$(2) - n(@) < 8% [ |- O P

Substituting n = 1 in the inequality (4.46), we have

1 £1
(4 @) -a@P <8 [1p-20ePde <0 [ ag,
0 0

where £; tends to unity.
Similarly, for n = 2, we have

1 &2 &
(448) (o) - 0a(o) < 8° [ 19— 6P de < 20t [ a [t
0 1] 1]

where, again, £; tends to unity.
Therefore, in general

(4.49) l¥(2) — 8a(2)|? < qzaz"%.
Hence g

(4.50) W(z) - Ou(z)| < oy

Thus, 5 ‘
(4.51) Jim, 19() = 6u(2)] < Jim_ o],

From our previous discussion it follows that the right-hand side of (4.51)
tends to zero. Therefore

(4.52) $(x) = lim 6u(z) = ¢(a)

proving the uniqueness of the solution to Eq.(4.4).

In conclusion, the use of the successive approximations method is justified
because it converges to a continuous function which is the only function that
satisfies the integral equation.

The total torque applied to the half-space is

1 1
(4.53) T = ——211'&3-/1‘20'39d1‘ = SG;slasft()(t)dt,
0 0
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and Eq. (4.13) shows that it can be written in the form

_ 16G1s10%¢ 7(3) 7(5) 7%(3)
(454) T = - 3 ! 3n(211)° Su(ms)®  On(zs)® |

In the limiting cases we observe the following significant results
1. Let py = Gig/Grrg = 1, in Eq.(4.54). Then

16 1 .3
(4.55) T = ——qi‘;ﬂ = To.
2. Let p3 — oo in Eq.(4.54). Then
_ (3 _ _ 305) ¢*(3)
(4.56) T =T [1 + dr(z181)°  167(z181)° + 1672(281) LA

3. Let it — 0 in Eq.(4.54). Then
(4.57) T =T [1 S (BN o ) B o ) B ] .

Ir(z18)  5n(z181)%  In2(zs1)®

The solutions (4.55) to (4.57) correspond to the three cases: 1. A single layer
and substrate with G}, = G, (in particular, a homogeneous orthotropic
half-space); 2. The layer fixed to a rigid foundation; 3. The layer stress-free
on the lower surface z = z;. If G1 = G = G is assumed, i.e. for isotropic
material, s; = 1 Eq.(4.56) and (4.57) agree with GLADWELL’S results [4].

4.2. The case of multilayered half-space

When more than one layer is present , the kernel M (z, §) of the Fredholm
integral equation (4.4) has the form

(4.58) M(z,£) =2 f cos(e + fl)i-f E:)S(w =0ty

where f(t) = —B1(t)/A1(t) and the functions A;(t) and By(#) are defined by
Eqgs.(3.3). It is convenient to use the new variable t* = 2tz18; (superscript *
is omitted below). Then, the following recurrence formulae for the function
F(t/22181) result from the application of Eqs.(3.3):

(4.59) ft/2n8) = —Kl—et, for single layer (N; = 1)
1

ot 1 + fo(t)

—— . N >2,
T+mf(t)’ 7
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where

(160) fift) = e, fiy= TG ne g5y,
[}

14 ntfi-f'l (t)
and where the parameters x; and b; are defined as follows:
(4.61) k=BTl hisihsy, i=1,2,... N,

i+ 1
The integral (4.58) may be expanded in powers of z;s;, since {12}

21131 0_/ 1+ f(t1/2zl.91) [cos ((32:;;;”)

—cos( zlsi)t)] di = Z( l)mzﬂzm(_z;;g%m

m=1

=+ 6™ ~ (= - ™,

(4.62)  M(z,8) =

with the convergent integrals

(4.63) I =

1
(2m)! h/ 1+ f(t/?zlsl)dt m=12,.

The inverse of the denominator in the integrands of I, may be represented
as follows:

(4.64) . - i sucye bt
' 1+ f(-) ~ et 4 o F(Y)
Ky N
= + ancke_d"t, for t>t>»1,
et + Ky —
where

k k
[T -x3y), di=1+) b,

cp =
=2 i=2
k

Fk(t) = HG'_l(t)G,'(t),
=2

(4.65) Gi(t) = (Q+ke™)?, Gy(t) = 1+ koglt)e ¥,

Ki—1ebi-1t 4 g(1) bt L Kitet
ilt) = ; = s
Gi(t) 1+ bt 1 Ki lg(t) 9(t) 14 ket

i = 3,4...k.
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If the above formulae are taken into account, then it becomes immediately
obvious that

1
(466) |1 70

The right-hand side of the inequality is the result of solution of the case of |
a single layer with the lower face free of stress. Since

1
< .
—et-1

1 T ¢m 4
. — [ el = =1,2,....
(4.67) (2m)!oje*- T4 (2m+1), m=1,2,
then the integrals I,, are bounded: |I,| < ((2m + 1). For arbitrary values
of the layer thicknesses and the material constants, the improper integrals
I,, cannot be calculated analytically. They can be evaluated by choosing
prescribed finite values of t,t = tp and separating the infinite range into
two subranges 0 < t < #p and #p < t < oo. If ?p is chosen sufficiently
large (o >» 1) then the integrands of I, may be represented, for t > tp, by
their asymptotic expansions appearing in Eqs.(4.64). Then, two integrals

are easily evaluated

Nt
(4.68)  In =n(2m+ 1)+ I + D Kpepe™ 5

k=2
2m tgm.—n
xS —f ____ m=19,...
s (2m — n)ldpt! ’
where
1 1
4.69 I*:--jt%*( S )dt
(4.69) ™ (2m)! ) 1+ f(t/22181) e+ r
N | T ——
=Zchk 1 i dt, m=1,2,....

k=2 (2m)! o Fk(t) ’

The integrands of I, are found to be bounded and well-behaved in all
cases, and no particuler problems arise in the numerical integration pro-
cedure over the range 0 < t < t9. An appropriate choice of fp will thus
give a prescribed accuracy to the solution. The parameters needed for series
(4.68) to converge as m — 00 are determined by tody > 1. The series
appearing in Eqs.(4.62) is convergent provided that the inequality (4.11)
is satisfied. On the other hand, since the elasticity solutions were derived
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using small angle approximations, it must be ensured that ¢ < ¢, where
¢ is a predetermined angle below which the rotations are considered to be
*small”. Thus a lower bound can be assumed for the ratio of boundary layer
thickness to disc radius.

If we analyse Eqs.(4.64) and {4.65), then it becomes immediately obvi-
ous that if in a sequence of N; layers the (i + 1)-th layer is infinitely rigid
(ki+1 = —1 and &; — 1) or infinitely deformable (x;4; — 1 and x; — —1)
in comparison to the i th layer, the solution yields the result for a layered
slab with ¢ layers and the face 2 = z of the layer either rigidly attached
to a rigid foundation, or free. In such cases the underlying layers do not
influence the solution.

On the other hand, for the case of equal average shear moduli of ¢ th
and (¢ + 1) th layers is x; = 0, and two formally dissimilar layers may be
replaced by one layer with the effective thickness b;y, + b;. For N; layers
with equal average shear moduli, the I, integrals assume the form

n(2m 1)

(4.70) In= St m=12,..,
N

for py, # 1 and 0 for uy, = 1, where 7 is defined by Eqs.(4.9) and pp;. In
this case the condition (4.11) can be replaced by z181dy, > 1.
The integrals I, may also be written in the form

N;
471)  In=g@m+1)+ 3 spepdy CH
k=2

A comparison of the kernels obtained here for N; layers, Eq.(4.62), with
those for a single layer in Eq.(4.8) shows that integrals I,, replace the func-
tions 7. In conclusion, the torsional compliances of multilayered structure
may be determined from Eq.(4.54) in which functions 5(2m + 1) should be
replaced by I, integrals. The term ”compliance” denotes the ratio of the
twist angle to the torque. Due to the convergence of the integrals I, the
proofs of convergence of the series as well as the existence and uniqueness
of the solution result in general case from our previous analysis of a single
layer bonded to a substrate.
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