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SHRINKAGE STRESSES IN DRIED MATERIALS

8J. KOWALSKI G. MUSIELAK and A. RYBICKI (POZNAN)

The aim of the paper is to analyse the shrinkage stresses in isotropic material when
they do not exceed its strength. The model established in author’s previous work is used
for describing the problem undertaken. The model relates stresses with strains, moisture
content and temperature. The state of dried material is described by a system of five
differential equations with double coupling. Their solution must satisfy additionally the
compatibility relations. The problem of convectively dried plate is solved as an example,
The evolution of both the moisture content and the shrinkage stresses distributions as
well as the deformation of the plate during drying process were determined. The finite
difference method and the method of separation of variables were used and good agreement
of the results obtained on the basis of these two methods were stated. They are presented
on graphs.

1. NOTATION

z,y, z [m]
¢ [5]

Ur, Uy, Uz [m]

position coordinates,
time,
components of the displacement vector,

A[N/m? bulk modulus for the porous solid,
M [N/m?] shear modulus for the porous solid,
fo [1] porosity ratio,
i [N/m?] total stress tensor,
pm [Nfm?] true pore pressure,
b [N/kg] body force,
€i,j [N/m?] strain tensor,
T [°K] absolute temperature,
# [deg] relative temperature,
© [1] specific moisture content,
oy [J/m? deg] temperature coefficient of the moisture potential,
¢e [J/m®] moisture content of the moisture potential,

oy [deg™] coefficient of the linear thermal expansion,
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ae [1] coefficient of the linear humidity expansion,

o [kg s/m?]  coefficient of the convective mass exchange,

¢i [W/m® k] heat flux,

7 [kg/s m?] moisture flux,

u [J/kg] moisture potential demsity,
Ar [W/m° K] thermal conductivity,
Am {kg s/m®] moisture conductivity,
po [kg/m®] bulk mass density of the porous body {dry body).

2. INTRODUCTION

A change of body shape due to shrinkage accompanies most drying pro-
cesses of moist porous materials. This change may induce shrinkage stresses
which, like thermal stresses, are caused by internal deformations occurring
in the material because of a non-uniform distribution of the moisture con-
tent. Their existence is therefore independent of the external mechanical
forces,

In fact, three reasons for internal stresses to arise in dried materials can
be distinguished. They are: nonuniform distribution of moisture content,
nonuniform distribution of temperature and mechanical field due to external
forces (if they exist).

The non-uniformity of moisture content distribution increases along with
the rate of drying process, since the evaporation of moisture from the bound-
ary surface proceeds faster than the flow of moisture from the interior out to
the surface of the dried material. For this reason the shrinkage of material
close to the boundary is considerably larger than that in the remaining part,
and the shrinkage stresses are first to arise there. The shrinkage stresses at
the boundary often exceed the limit values of strength of the material so
that the surface cracks or even cracks within the material can occur. These
affect the quality of the dried products or even make them useless.

The premise of this work is to analyse the shrinkage stresses in dried
material when they do not exceed its strength. Only the elastic strains of
dried material are allowed in the present considerations. The model given by
KOWALSKI [5,6] is used for describing the problem undertaken. The model
relates stresses to the strains, moisture content and temperature. The state
of dried material is described by a system of five differential equations with
double couplings. Their solutions must additionally satisfy the compatibility
relations. The couplings mean that a change of one of the three fields, i.e.
strains, moisture content and temperature, causes changes in the remaining
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fields. The coupling effect between temperature and moisture is found to be
most significant, particularly when the dried medium undergoes a sudden
change in surface temperature while the surface moisture concentration is
kept constant (see e.g. [13, 14]).

Other models of drying presented in the literature up to now (see e.g.
[2, 3, 9, 16] did not take into consideration the deformability of the dried
material and its influence on the drying process.

In particular, the conditions of existence of shrinkage stresses in dried
materials are analysed, and numerical illustration of applicability of the
drying model given in [5] to evaluation of stresses presented in this paper is
given. The problem of convective dried plate is solved as an example. To
focus our attention mainly on the shrinkage stresses due to changes of the
moisture content, the considerations are limited to the constant drying rate
period in which the temperature of the dried material is constant and equal
to the wet-bulb temperature. The evolution of shrinkage stresses distribu-
tion, the moisture potential distribution, and the deformation of the plate
are investigated. The results are presented on graphs.

3. THE ESSENCE OF SHRINKAGE STRESSES

To explain the essence of the shrinkage stresses let us consider wetting
of a thin porous rod (Fig.1). An increase of the moisture content in the rod
causes its elongation. If the dry rod of length /; elongates freely to lo + Alp
due to wetting, then the drying process will cause its return to the primary
length ly. No stresses will appear during wetting and drying of the free rod.
The length of free elongation Alg is proportional to moisture content © and
to initial length Iy (see, for instance, [4] p.280).

(3.1) Alp = ag O Iy,

where ag is the coefficient of the linear humidity expansion (analogy to the
coefficient of the linear thermal expansion), and @ = p,,/po is the specific
moisture content (ratio of partial moisture density p, to partial density of
dry body po).

If the distance of the free elongation of the rod was limited to the value
Aly < Al (see Fig.1), then stress ¢ would arise. Its value, assuming elastic
deformations, would be

(3.2) a-_-,Eélﬂ_"..A_Il.

L 7’
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F1G. 1. Deformation of a wetted rod.

where E denotes Young’s modulus. Tn the course of drying process the
moisture content of the rod decreases and the stress o tends to vanish. It
vanishes entirely when ag Oy = Al;.

It was an example of stresses arising in a body during its wetting (or
drying) caused by limited freedom of its expansion (or contraction).

8

Fia, 2. Example of a moisture content distribution © and stress distribution o in a
dried plate,

Another reason for the stresses to arise is a nonuniform distribution of the
moisture content in the body. A simple example of symmetrically drying
plate (Fig.2) is a good illustration of this phenomenon. For the sake of
clarity, we assume that we analyse the constant drying rate period in which
the temper_atilre of 'd_ried material is kept constant in the whole body. Let
us imagine that the plate consists of many very thin separate layers. If
these layers were deformed independly, without any interaction between
them, then the shape and the size of the plate would be determined by the
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moisture content distribution because of the fact that the change of size is
proportional to the moisture content

(3.3) . l(z) = tu + Igae G(z)

However, the individual (imagined) layers are not free and mutually inde-
pendent, and some forces of interaction between them exist. This induces a
field of internal stresses which can produce cracks in the material, especially
at the surface of the drying body where the strongest shrinkage occurs.

4. CONDITIONS OF ARISING OF SHRINKAGE STRESSES

The physical relation between the stress tensor ¢;; and the strain tensor
£i;, relative temperature # and relative moisture content (0 — ©,.) is [5]

(4.1) 0i; = 2Meij + [Aerk — 19 9 — 70 (0 — 0,)] &yj,

where 75 = ag (2M + 34), 7o = ae (2M 4+ 3A) and oy, ag are the
coefficients of the linear thermal and humidity expansion, respectively. M
and A are the mechanical constants of the medium, and @, is the reference
moisture content.

We shall use the relation (4.1) written in the inverse form

(4.2) Eij = 2M'O‘,’j + {A’G‘kk +ag V+ ag (@ - 9,.)] 0ijy

where

oM' =1/(2M),  A'=-A/[2M(2M + 34)].

If there were no stresses in a dried material, then the strains would depend
on the temperature and the moisture content only

(4.3) ¢i; = lag 9 + ag (O — 0;)] §;.
The strains have to fulfil the compatibility relations [11}
(4.4) Eij + Extij — Eik1 — Ejtik = 0,

where comma denotes the differentiation with respect to the spatial coordi-
nate. ’

Substituting Eq.(4.3) to Eq.(4.4) we get

{4.5) ag [P pibi; + 9 55660 — 9 jibix — 9 ixb51)
t+ag [© kibi; + O i — © j16i — O 41:651] = 0.
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Since ay and ag are generally independent of each other, Eq.(4.5) holds
if the expressions in square brackets are equal to zero. This is of course
a sufficient condition to satisfy Eq.(4.5), but not necessary. The equations
obtained in this way will be satisfied if

(4.6) 9 =0, 0, =0.
Linear functions

9

ap + a1z + @y + @32,
(4.7) .
0 = by+biz+ by + baz,

are the solutions of (4.6), with a; and b; being some arbitrary constants.
Thus if ¥ and © are linear functions of spatial coordinates z,y,z and the
deformations of the body are not limited {the body is free), then the compat-
ibility relations will be fulfilled without existence of stresses. But, generally,
the fields of both the temperature and the moisture content do not satisfy
the linearity conditions (4.7). The internal stresses arise in such a case. The
strains produced by the stresses, together with the strains caused by the
temperature and the moisture content fields, have to satisfy the compatibil-
ity conditions (4.4). Of course, both functions ¥ and ® must be bounded in
an infinite space.

It implies certain constraints on the coefficients a; and b; in formulae
(4.7).

5. MODEL DESCRIBING SHRINKAGE STRESSES

Let us now construct the model which can be used for describing the
shrinkage stresses arising during drying of moist porous materials. The
model is discussed in detail in KowALSKI [5] and [6]. Its linear version is a
sum of partial stresses in the porous matrix (skeleton) and in the fluid,

(5.1) Tij = Oaij + amﬁija

where @, ;; is the partial stress in porous matrix and o, = ~pn f, means the
partial pore pressure, whereas p,, is the true pore pressure and f, denotes
the porosity ratio.

To calculate the distribution of shrinkage stresses we must first deter-
mine the deformation, the temperature and the moisture content fields. In
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absence of phase transitions inside the dried material, that is when the evap-
oration of the moisture proceeds on the boundary surface as it is during the
constant drying rate period, the fields mentioned above can be determined
on the basis of the following system of equations [5]:

mechanical equilibrium equations:

(5.2) oiji+po(1+0) h; 20, po = const;
heat balance equation:

(5.3) eoT + T(vs ékk — c0®) = —qr;
moisture mass balance equation:

(54) po© = — ks
heat transport equation:

(6.5) ¢ = —ArT;;

moisture mass transport equation:

(5.6) M = —Amt;
physical relations for stresses (4.1):

(5.7) 0i; = 2Mei; + [Aekk — 19 9 — 70(0© ~ ©;)] 8ij3
physical relation for moisture potential u:

(5.8) p=[es 9 — 7o exx + co (0 — 0,)] /po;
geometrical relations:

(5.9) g5 = (ui; + u5:)/2.

The above set of equations can be reduced to five equations: three dis-
placement equations, heat transfer equation, and mass transfer equation (see
15,6)).

Usually it is convenient to determine the self-stresses by means of the
stress equations which can be derived by substitution of the physical rela-
tions (4.2) into the compatibility relations (4.4). Assuming the body forces
to be of minor importance in our consideration, we obtain

A4+ M) 2M + 34

(5.10) Vzd,'j + - 3A 1 oM Okk,ij + 2M [ M+ A v? 'l[) 6,']' -+ 1[)’,-:;] =0,
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where

(5.11) 1/] = Qg ? + ag (9 - 97-).

These equations have to be supplemented with the equilibrium equations
(5.2) (without body forces), and with the boundary conditions

(5.12) Oij nj = Pi.
The set of stress equations will be complete if the heat and mass transfer

equations (5.3)—(5.6) as well as the physical relation for the matrix dilatation
resulting from Eq.(5.7), i.e.

1
(5.13) €k = 53T 3A Mk + 3¢,

and the physical relation (5.8) are added to the system mentioned above.
To render the solutions of these equations unique, the boundary conditions
describing heat and mass transfer and the initial conditions for the temper-
ature and the moisture content must be given.

Fach drying process consists of some stages (preheating, constant drying
rate period, decreasing drying rate period), and for each stage of drying
different model should be nsed. It is a consequence of the fact that each stage
of drying is governed by a different mechanism of heat and mass transfer
(see [6]). We shall not discuss all models here, but rather restrict ourselves
to an example of shrinkage stresses in a convectively dried plate during the
constant drying rate period.

6. SHRINKAGE STRESSES IN A PLATE DRIED BY CONVECTION

To fix our attention on shrinkage stresses caused by the moisture content
changes only, we confine our considerations to constant drying rate period
in which the temperature is constant in the whole body and equal to the
wet-bulb temperature. Thermal stresses are absent in this stage of drying.

Let us consider a plate of constant thickness 2h and of arbitrary shape
in z,y plane (Fig.3). The plate is free of loading, what means that there
are no external forces involving stresses. The moisture content distribution
is a function of coordinate z and time ¢, i.e. © = ©(z,t). This implies the
stress components to be as follows:

Ozz = Oyy = f(Z,t),

(6.1)

Oz = Ogy =0z =0y, =0
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FiG. 3. The considered plate resting or an impermeable surface.

The stresses have to fulfill:

equilibrium conditions

(6.2) Tij = 0;
boundary conditions
(6.3) oijn; = pi = 0;

compatibility relations (5.10) which for the one-dimensional problem is
. reduced to

(6.4) @ 2M

s [oee + r0 30 = 01)] = 0.

In the above equation 1 was eliminated through Eq.(5.11) under the
assumption that ¥ = const (constant drying rate period). It is easy to see
that stress components (6.1) satisfy the equilibrium conditions (6.2).

Boundary conditions (6.3) are fulfilled approximately in a sense of Saint-
Venant’s principle. It means that some local values of stresses exist in di-
rections z and y but the resultant force and the resultant moment involved
by the stresses are equal to zero,

h A

(6.5) fcrm dz=0 and fa,,,,z dz =0
—h =h
The following form of integral is obtained on the basis of Eq.(6.4)
2M
oM+ A

where ¢; and ¢; are constants which have to fulfill conditions (6.5). After
their estimation, we can rewrite Eq. (6. 6) as follows:

oM [
oM+ A 79A+M

(6.6) Oz = Oyy = —(0-0,)=c12+ c;,

3z

(6.7) Opp =0y =2777— oh3

(©- 9)+ Ne+ Me]
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where

No =v»

h
M
- 0,)dz,
A+M]h(9 0, )dz

(6.7')

Me =19

1
M
T { (© - ©,)2dz.

Strain components can be calculated by means of relations (4.2),

e o AtM (1. 3z
Saz =S = (M + 34) [2hN ot 2h3M9] ’
2M(A + M)
(6.8) enr = 5o - sir i@~ 0~ MM + A)(2M + 34)
1 3z
(2hN9 + 2h3Me) !

Epy = Exz = Eyz = 0.

The components of the displacement vector referred to the origin of the
coardinate system (without regarding the motion of the plate as a rigid
body) are:

A+M 1
Y = M(2M 1 34) [2hN9 * o Me] ®
A+M |1 32
(69) Uy = M_(ém [QhNe + == Oh3 MG] ¥,
2M(A + M)
e = 2M + A .[ (6 = On)dz — 37 + A) (23 + 34)

(zth tom Me) + e(2,9,1).
Function ¢(z,y,t) describes the deflection of the middle plane (z = G) of
the plate caused by an asymmetrical moisture content distribution across
the plate thickness. Quantity Mg is responsible here for the asymmetrical
deformations, as it disappears when the moisture content distribution ©(z, 1)
is symmetrical. For that reason c(z,y,t) has to be dependent on Meg.
Making use of the known solution of the problem of symmetric bending
of a circular plate by uniformly distributed moments acting on its edge (see
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e.g.[7]), we write

3(A + M)
AR3M(2M + 34)

(6.9 : e(z,y,t) = - Me(z? + 4.

Note that if the moisture content distribution is symmetrical, that means
if ©(z,t) = ©(~2,t), the quantity Me = 0 but No # 0. Inversely, if
moisture content distribution is antisymmetric, ie. ©(z,7) = —0(-z,1),
then Mo # 0 but Ng = 0. For linear moisture distribution 0(z,t) =
a(t) 4+ b(t)z the stresses disappear but the strains remain different from zero.

The distribution of the moisture content across the plate thickness is
determined on the basis of the mass balance equation (5.4) and the mass
transport equations (5.6), in which the gradient of moisture potential p is
replaced by the one calculated from formula (5.8) with the dilatation

(A + M)2M — A) 32
M(ZM + 3A)(2M + A) [_N *+ ons ]

(6.10)epk = == (0—0,)+

2M+A 2h

The last formula is determined on the basis of Eq.(6.8). After the pre-
scribed operations we arrive at the diffusion equation of the form

520
(6.11) O=K— 375"
with the coeflicient
Ap 7%
’ _— ees— —
(6.119) K= ,0% (cg M+ A

containing material constants responsible also for the deformability of the
porous matrix. The deformation term does not explicitly enter the diffusion
equation in case when the deformation depends only on the moisture content
0. The dilatation coupling effect is thus a constant quantity described here
by parameter 73 /(2M + A). Also temperature does not appear in Eq.(6.11)
since we consider here the constant drying rate period.

Let us consider an example of a plate, one side of which is insulated (im-
permeable background), and the other is dried convectively. The boundary
conditions are

op oy
0z a ”a) ’ 8z

where a,, is the coefficient of convective mass exchange and p, is the po-
tential of drying medium. The moisture potential inside the dried material

(6.12) — Ap—

z=h = Om ('u z=-h = 0,

z=h
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# (see Fq.(5.8)) depends on moisture content ©, temperature ¥ and dilata-
tion £xx. The last one depends in fact on the moisture content (see (6.10})).
Thus, the final moisture potential p is also a function of moisture content
and of temperature (here constamt)

(613)  pop=(co -

(A+ MM - 4)
e yaM v A |2k

N -I- Me]“{—cgt’

Relation (6.13) allows us to express the boundary condition {6.12) by
the moisture content function. The initial condition for the drying process
is formulated as follows:

(6.14) #(2,0) = po,
where pg is determined on the basis of Eq.(6.13) by substituting ©(z,t) =

B©¢(2), i.e. the initial moisture content distribution.
7. NUMERICAL EXAMFLE

We shall consider an infinite plate of thickness 2h! = 0.2m described by
the following data (see [8]):

A = 10%N/m?, M = 6.25-10° [N/m?,
Ay = 3.02.10-%kg-s/m3, ce = 6.6-10° [J/m3],
ag = 24-1078 am = 5-1073 [kg s/m?),

po = 1200 [kg/m3], e = 40 [J/kgl,

po = 100 [J/kg].

Equation (6.11) with boundary conditions {6.12) and initial condition
(6.14) is solved by means of the variable separation method. We represent
the function © in the form of a series,

N
(7.1) (©-0,)=)0; (z1)+ 6 (2).

=1

Any function 9;(2,1) for 0 < i < N fulfills the uniform conditions

o _
(72) ——Am&— z=h amﬂ'L=h:
A
(7.3) —3—2 i~ 0,
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and function @¢(z) fulfills conditions (6.12). Function ©;(z,t), according to
the variable separation method, is assumed in the form

(7.4) | 0i(z,1) = di(2)u(2),

where

(7.5) %i(t) = Ciexp(—«it),

(7.6) d),(z) = X;sin(w;z) + Y; cos(w;z),
(7.7) wi = K/

and x; is an arbitrary constant.
Knowing the form of function ¢(z), it is possible to calculate Ng and
Mg from Eq.(6.7")

M 1
(7.8) Neg = YO AT T —Y; sin{w;h),
M 3X;[1
(7.9) Me = ‘Yem w‘z [h3 m(w,h) COS(Wlh)]

Introducing these into relations for the potential p and its gradient, and
then into condition (7.2) and (7.3), we obtain the system of equations en-
abling the evaluation of values w;, X;,Y;:

Casin{w;h) , Cscos(w;h)
(7.10) X; [C’lw; cos{w;h) + 3 W -3 e |
+Cy sin(wik) + 354 j:;‘(‘;"'h) - 3% °°S(f°‘h)]
+Y; [—-Clw,- sin{w;h) + M + Cy cos(w,h)] =0,

(7.11) X; [K1w,- cos(wih) + 3 K, sin(w;h) 3 K, cos(w,-h)]

R3WE T Ry
+Y; [Kqw; sin(w;h)] = 0.

Here Cy,Cq,C3,C4, Ky, K3 are combinations of material constants.
Equations (7.10) and (7.11) can be treated as linear equations for un-
knowns X;,Y; with parameter w;. The principal determinant of this system
of equations must be equal to zero if the solution should not be trivial. This
requirement gives the equation for calculating w;. Making use of the Newton
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method we have calculated 60 values of w;. Quantities X; and Y; are related
to each other as follows:

(7.12) Xi = Y f(wi),

where f(w;) is a function of w;. The initial condition (6.14) was used to de-
termine 60 unknowns Y;. These quantities were calculated by collocational
fulfilling of (6.14) in 60 points & € [k, k],4 = 1,...,60 by the potential
(6.13) together with Eq.(7.1). The elimination method of Gauss was em-
ployed to solve the system of 60 equations. Thus we obtain a full set of
quantities X;,Y; and w; for i = 1,...,60.

The relative moisture content (© — ©,) can be obtained from relation
(7.1) and Eqs.(7.4)-(7.7) for any time and any point of the plate. Next we
can calculate stresses, moisture potential and strains using relations from
Sets.6. The results are shown in figures placed below.

Figure 4 shows the moisture potential distribution in the plate at some
instants of time. At the beginning the potential is equal to the initial value
po = 100. In the course of the drying process its value decreases to the
potential of drying medium p, = 40. The potential distribution can be

" qualitatively identified with the moisture content distribution due to linear
relation between them (see Eq.(6.13)).

1

pfTfkgl

-7

at
z{m]

FIG. 4. The moisture potential distribution in the plate.

The stress distributions in the plate at some instants of time are shown
in Fig.5. It is easy to see that maximal values of stresses occur close to
the boundary surface at the initial stage of drying, i.e. when the moisture
content distribution in the plate is mostly nonuniform. When the moisture
content distribution tends to be uniform, the stresses decrease. Stresses
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close to the plate surfaces are extensional while inside the plate they are
compressive. It is interesting that near the isolated surface of the plate,
where the moisture content is the greatest, extensional stresses are also
found. Tt is the result of bending of the plate due to strong contraction
near the evaporation boundary. This is seen in Fig.6 where the shape of
the plate at the tenth minute of drying is shown. The shape was calculated
using relation (6.9). The values of displacement in Fig.6 are enlarged 300
times.

Figure 7 illustrates the stress distribution in the plate calculated by
means of the finite difference method (denoted by o) and the method of
separation of variables (denoted by x) at time ¢ = 2 minutes. A good
agreement of the results has been established.
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