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EQUATIONS OF THE FIBRE COMPOSITE PLATES

R. SWITKA (BYDGOSZCZ)

The paper is concerned with elastic fibre-composite plates. For the fibre composite
the concept of two-phase medium presented in the works of Holnicki-Szule was used. For
% the plate the hypothesis of Kirchhoff - Love is applied. The displacement equations of the
" plates loaded in-plane and transversely are developed, in which the coupling between the
“disk state” and the “plate state” can be observed. The bending of the fibre composite
plate is presented in more detail.

1. INTRODUCTION

Mechanical properties of many structural materials can efficiently be jm-
proved by fibre reinforcement. The obtained conglomerate in which fibres
are disposed in the base material in a regular way is called fibre compos-
ite. Our considerations are adressed mainly to modern plastics and alloys,
reinforced with glass, carbon and steel fibres. A further improvement of
the properties of the fibre composite may consist in introducing to it some
desirable states of distortion. An example of this may be a pre-tensioned
prestressed concrete slab. Another kind of distortions, not necessarily de-
sirable, are thermal distortions. This issue will be taken into account in the
present work. .

Fibre composites are materials in which mechanical properties can be
formed in a very wide range and in a very simple manner by an appropriate
choice of the component materials. In virtue of this one can think that fibre
composites will play a more and more significant role in material engineering.

Fibre reinforced elastic media were the subject of many works. In the
majority of these works, fibre composite is treated as a homogeneous and
anisotropic medium [1, 2, 3, 5, 6, 7, 13, 20]. The problem of determination
of the anisotropic constant was left open [5], or resulted from some addi-
tional considerations, in general the simplified ones [6, 7, 13] or eventually,
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was solved via experimental tests. For instance, in the work [1] reference
is made to the experimental data, while the monograph [2] is, among other
things, devoted to laboratory tests on properties of various fibre compos-
ites. Recently, experimental investigations, covering the inelastic range, are
intensively developed also in Poland [4, 12, 16, 21].

A particular example of application of the engineering methods to deter-
mine the constants of orthotropy of two-way reinforced slabs calculated due
to the phase Ia are different formulae given in [11, 15].

Another view on the mechanics of fibre composite can be found in the
papers of HOLNICKI-SzULC [8, 9, 10], in which fibre composite is a particular
case of two-phase media. A similar approach is presented by MARKS in [14].
The Holnicki-Szulc’s concept of fibre composite has been developed further
by OLeINICZAK {17, 18, 19], who worked out theoretical foundations and
computer programs for viscoelastic disks reinforced with viscoelastic fibres,
taking into account prestressing. '

The aforenamed works are concerned with the plane state of stress. The
present work is devoted to elastic plates {including "shallow shells”) made
of fibre composite. We will here consider the coupling between the "disk
state” and the "plate state”. More details will be given on fibre composite
plates in bending.

2. ASSUMPTIONS

According to the concept of two-phase medium (in general, of multi-phase
medium) presented by HoLKICKI-SzuLc [10], the model of one continuum
embedded into the other is assumed. As an example of this we can indicate a
continuous medium (phase I) in which a "dense” lattice structure (phase II)
was embedded. By applying a continuous description of the two phases in
such a composite, we get an idealized continuous two-phase medium which
has the property that two material points belonging to the phases I and
11, respectively, correspond to the same, common, geometric point of the
domain occupied by the body. This yields a model of Voigt-type, i.e. a
parallel connection of both phases, hence ' ‘

(2.1) g = qu +at, _eI =el=¢
where ¢ and ¢ are the stress and the strain tensors in the composite, respec-.

tively, of and ¢! - stress and strain tensors.in the phase I, o'l and ¢!l — stress
and strain tensors in the phase IL.. ..
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For each phase the following constitutive equation may be assumed
(2'2) ol = AI(GI—- :I) ) UH = AII(JI_ gII) .

Here A! and AIl are the constitutive tensors (in general, constitutive opera-
tors) of the phases I and I, respectively, whilst t Land ¢! denote distortions.

The distortions ¢ do not generally satisfy the continuity equa,tlons of strains.
The relations inverse to (2.2) can be written as

(2.3) eI — BI(UI-l- 8.1) , GH = BII(0,H+ S,II) ,

Q

withB= A-1, g= A¢, t=Ba.

The described above model of two-phase medium can naturally be em-
ployed to the fibre composite, which has been outlined in the work [10]. The
phase I of the fibre composite is a filling base material (matrix), the fibres
constitute the phase II. The loss in material of the phase I due to a portion
of the volume filled by the phase II is neglected.

Considering a fibre composite plate we take the following assumptions:

1. The plate is made of a matrix and of any number of fibre families
(wires, reinforcement bars). Each fibre family is placed in a plane parallel
to the middle plane of the plate, The fibres of a given family have a common
constant direction and are uniformly and "densely” distributed.

2. The materials of the phases are linearly elastic.

3. The influence of the stress o33 on strains is neglected, which implies
the following constitutive equations for the matrix

s [ = )i )+ vle- B8]

(2.4)

£ij "}l;j [(1 +v)(oi+ 0i3) — v(s+ 3)%’] » 57=1,2,
e =¢grr, 8= 0k, E, v — elastic constants of the matrix.

4. The hypothesis of Kirchhoff-Love is used. Taking into account the fact
that in the case of the fibre composite, especially of the prestressed one, the
middle plane of a plate is not its neutral layer and, actually, the latter does
not exist (the position of the layer on which the normal stress in a given
cross-section is equal to zero depends upon orientation of the cross-section),
the conclusion from the Kirchhoff-Love’s hypothesis should be written in
the form
(2.5) Ui = W;Ta+ v, i=1,2.
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3. DISPLACEMENT EQUATIONS OF THE PLATE

A part of the type of plates we consider in the sequel is shown in Fig.1.
The plate may be loaded by forces in its plane or in the direction orthogonal
to it. In the case of homogeneous plates, such loadings produce the state of
stress which can be treated as the superposition of the "disk state” and the
* plate state”. For the fibre composite plate, splitting of these two states is
possible, as we shall see later, only in some very special cases.

Fia. 1.

The material of the plate can be reinforced with a number of fibre fam-
ilies. The r-th fibre family being at the distance z, from the middle plane is
displayed in Fig.1. The distance between the fibres is b, - 5] denotes a force
in the single fibre. If the fibres are sufficiently densely distributed, then one
can replace the concentrated forces ST by the continuously distributed line
force ST (see Fig.2), and

(3.1) 8" =

FiaG. 2.
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In the relation (3.1) E, is the elasticity modulus of a typical fibre in the
r-th family, A, is the cross-section of area of the fibre and " is its relative
elongation, while £, indicates distortions.

After such a process which yields the continuous distribution of the phase
II, we can define the stress tensor in this phase as

E.A,
b,

(e~ £ ’)s}".sg ,

(3.2) Sy =

where s! is the ¢-th component of the unit vector s” (cf. Fig.3).

X2
3 .
55 /o, i Srl =1
.
Wi 55 X1
o
Fia. 3.
Relation (2.5) implies
(3.3) € = —w ;23 + Efj .

. 1
with E:"j = E(u;'l',j + u}'—’ﬂ-).
By making use of (3.3) and (2.4) we get for the matrix

Efﬂg

(3.4) gij = RERY

[(1 = v)wi; + vw pebi;)

+1 T3 {(1 - V)E,?j + ve*c‘iij] — 3‘.51' )
where ¢* = u} ;, and

E

{3.5) Oi= 11—t {(1 —v) ggj +re 53'3‘] .

In view of (3.3) and (3.2) we obtain for the fibre phase (family r)

(3.6} €7 = —w gz, sLs] + £y shs],
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and EA,

(3.7) 55 = ——(eky — W2 )S] 7Sk — Sij s
'l"

with

(3.8) 1= P—b‘-‘l— RS

The tensor of internal forces within the plate plane may be defined by
the formula

“"“-—-.»1;—

(3.9) Nij= [ oi;dzs + Z ST
r

W

By utilizing (3.4) and (3.7) we get

' Eh . .
E.A E.A
ek Z -—b—is}"s;s};s}" — Wy Z z’s’s""s‘,’cs, N.,-J-,
r * T

with

h

h (o]
(3.11) Nij= f 3.75.' da:a-i-z S

h

The tensor of moments in the plate is given by

S—l

(3.12) Mij= | o5 daa + Z Shize

ol

which, in virtue of {3.4) and {3.7), may be written in the form
(3.13) M;; = -D{(1 - v)w i T rw k0i]

E. A, 2
—~wk12 zfs{sjs};s}"+sk,2 b z,s”s’"s};s, Mij,

with

(314) _nc/_’[t-jz Oo','j T3 da&':_:, + Z g‘sz,. .
r

1
“F‘-"k"suia-

The equations of equilibrium are written for a plate element (this does
not mean that they will be satisfied in each volume element), taking into




EQUATIONS OF THE FIBRE COMPOSITE PLATES 193
account the large displacements (however, we consistently employ the tensor

of small strains). Thus the equilibrinm equations are defined in a deformed
configuration of the plate, and the inertial forces are included:

Niji +pi — Pfu;dﬂ?a = 0, 4,j=12,

(3.15) Tii+ Njjwij +pa~p [ ides = 0,

1
g"--.wla- u;:r

Using the last equation of (3.15) we can evaluate the transverse forces
T:.. The other three equations lead to the following displacement equation
for the fibre composite plate:

1+u

(3.16)  VIul+ T e+ [2(1 + V)E’\rs 3’1}8}'} "kl

2(1
[h(1+l’)z)\€r SM] Wikt — (EV)PH,-

2(1 + v)
" Eh

(pi— Nij;) =0, i=1,2,

(3.17) w + [3(1 - Vz)EA 2gr "sks;} W ijkl
2 h Tt ol o | 4*®
-1{1-v )"‘Z/\rCrsisjsksl Uj ki

12w
( V)hg (1] ﬂJ h2

[(1 - Vz) ZA s; s}cs,‘| Ui W K
2 6 b G L 1 v
+ (] - )Ezhrg’rsisjsksl W5 Wk + B Nij w,i;
o

11— V2 - h " 1 7 o
Vi + i = o (Pa= Mijij).-

e Viy

+E D
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In the above equations D denotes the flexural rigidy of the plate
. :
po B
12(1 — v)?

and
A=npfly, Np=EfFE, p= Ar/(brh)a G =2z/[h, (€ ("1,1)-

For reinforced concrete, g, is known as the "percentage of reinforcement”.

Let us remark that the "disk problem” is coupled with the "plate prob-
lem”. The coupling disappears only then, when {, =0or A, = 0. f {; =0
- and A, = 0, then Eq.(3.16) describes in displacements a plane elasticity
problem for an isotropic disk, whereas Eq.(3.17) becomes the equation of
an isotropic plate in bending. The third term in.Eq.(3.16) and the second
one in Eq.(3.17) result from an anisotropy of the fibre composite, which is
enforced by the presence of the fibre phase (reinforcement). The next terms
of these equations are responsible for the coupling between the plane prob-
lem and the problem of plate in bending. In the general case, these two
problems can not be separated. The nonlinear terms of Eq.(3.17) describe
the buckling problem of the fibre composite plate. In Eqs.(3.16) and (3.17)
one can distinguish the equations of longitudinal and of transverse vibra-
tions (the term before last on the left-hand side of Eq.(3.17) represents the
rotational inertia of the plate). Finally, Eqs.(3.16) and (3. 17) can describe
any types of distortions in the plates.

The boundary conditions seem to need no separate consideration. How-
ever, it is worth to note that if the boundary conditions are expressed in
terms of forces (static boundary conditions), then the relations (3.10) and
(3.13) yield a coupling of the disk state and the plate state via the boundary
conditions too,

4. BENDING OF THE FIBRE COMPOSITE PLATE

If the plate is subject only to bending, then
(4.1) Ni;=0.

.In this way one can obtain three equations in which the components €51,
€], and €3, of the tensor ¢}; may be chosen as unknows. The resulting
system of equations may conveniently be written in the matrix form,

(4.2) | Ke* = “""“'E E—Z:&zrszs}"sr+ N,




EQUATIONS OF THE FIBRE COMPOSITE PLATES 195

where
. * * x
¢t = col(ely, €12y €22)
. P T ol
s" = col(s]s], 2s}s), s553),
) -] o
N = col(N11, 2 N1z, N2)

and K = K7 = [ki;]3xa) is a matrix, the elements of which are defined as
follows: '

: _ Eh E‘I’AT ryd
ki = l_vz'i'zr: B (s1)*»

ki = 22

31)3
Ehu E.A
kis = 1—u2+z “(s1)%(s3)%,

kya = 2 ﬂ+22
ke = QZEAT 1(s3)%,

Eh E.A
kaz = T2 Z _2—1:(35)4-

u'z

2 (51)2(s5)"

A solution of the equation {4.2) may be presented in the form

(4.3) E= w’k;Zc"z,s:s}'+ e,

Here

(4.4) c” = col(e]y, €1z €3) = E;_ALK—IST ’
T

(4.5) ¢ = col(€], €)p E3) = KT N .

Having used the result (4.3) we arrive at the following formula for the
stress tensor

Ex
(4.6) oy = —-%2“[(1 — v)wj + vw grdis)

1-—

+

E
T Wk > zesksf[(1 ~ v)el; + ve” 6]

E
1-v
o

S I J T * __ O
¢ =cpp=cpytey, € TChk.

4

Sl -v) e+ v &*8,5)- bis,
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Then, the tensor of plate moments is

A
(4.7) M;; = -D[(1 - v)w,; + vw gebi;] — E E Tz2813 kST

b,
E A,
-3 -

E.A, |
LT T T T

-I-Z 5 Zp EHS,-S_,;S],S( - MiJ .
T

r

r

z,-s1 sjspsq E cpqz,.sksl w ok

The equilibrium equations of the plate element read
Tii+p = 0,
(4.8)
Mi;-Ti = 0, p=ps.

First, using Eq. (4.8); we easily obtain for shearing forces the following
formula

(49) T;=-DViw;— Z ™ rzzs"srsks,

_Z b z’ Jsrsq Zcmzssksf Wikl
8
+E—ET 2y 8%y 8T STSLST — Mijs
b, T <kl i v okl g
-

Then, substitution of (4.8), and (4.7) into Eq.(4.8); eventually leads to the
following equation for the fibre composite plate:

(4.10) DV +E 5, 4 27878 sks]
E. A,
-3 —p TSy, Ec;qz,sisf Wikl
P T
E.A
___p+z: r iy
T 4

We have obtained the anisotrepic plate’s equation in which all constants
of anisotropy are given explicitly. The second term on the right-hand side
of Eq.(4.10) presents disk-type distortions, whereas the third one —~ bending
distortions.

0y T LT LT .
Zy €138 858,81 — Mijij -
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5. THE PLATE REINFORCED WITH FOUR FIBRE FAMILIES FORMING
RECTANGULAR NETS IN TWO LAYERS

The instance indicated in the heading may refer to a plate reinforced with
two rectangular nets of fibres parallel to the axes of a reference system and
which are disposed at the bottom and the top layers of the plate, respectively
(see Fig.4).

X2 Xz

b1
b3

E4Aq E3A3

b by

2
@ E2 A2

@ Eg Ag

Fic, 4.

Hence in this case we have

St=1, Sl=0, S?=0, S7=1,

§3=1, S¥=0, St=0, S3=1
One obtains the equation of an orthotropic plate
(5.1) Dyyw 1111 + 2D12w 1122 + D2gw 2230

Eh2 0y, Oy o
=p+ “2—('\1C1 + Aa(3) €11,11 + (A2l 4 Aa4) £32.20— Mijij

with the notation

(52) Dy=D+DY, Dy=D+vDl,, Dyu=D+Dl;

Eh?
(5.3) D = [/\1C12 + As(?

4
3 (M + A3G) 1+ (1 = v2)( Az + Ag)]
L14dr 422+ da+ A+ (1-22)(0 + Aa)(da + Ad) |
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(5.3) Dl = Eh? (A1 + Aala)(Aala + Aala)
[cont ] R S VI W T VN (D Y YN
Eh
D, = {Azfz + Aal?

B (A2le + Aaa)?*[1 + (1 = ¥2) (M1 + A3)]
T+ M+ A+ A+ A+ —v2) A+ A3)(Ae + M) .'

Let us suppose that the plate is subjected to the temperature field

(5.4) 8 =+ Aa%“ ,

and, that the plate was prestressed. Let 3‘}, f’s‘%, 3‘?, S 1 denote prestressing
forces in typical fibres of each family, respectively, Further, let us assume
that a temperature of the fibre is equal to that of the matrix, i.e.

(5.5) o =6, + Ao% ,
then
§1, = B8 - phnes'- $ib,
'50'%1 = 0, _
.g'?i = E;js €3 = EhAsasf —g’?bs,
(5.6) 34 =0, §L=0,
§% = Eifz £ = Ehoat"~ Sy,
-g'gz = 0,
5%, = E‘;f‘* &4 = Ehdsa40"— 51b,

and §3 12 = 0 for each r.
Next we calculate

0 Eh 0 94

Nn 1_v030+ Sh+ 8%,

(5.7) £h
Q Q [+] Q
Nag = l_vﬂfﬂo.—i- S§2+ S%g, N12= 0;
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0 Ad o o
Mu = (1+v)Da—+ Stizit S3hzs,
i (58) 0 | A8 o g o
M2 = (14 V)DQT+ 83222+ Shaza, M= 0;
sw - 1 [14 (1= ®)(Ag+ M) N1z —v Nag
1 ER14+ XM+ A+ ds+ A+ (1= 02)(A + Az)(A2+ Ag)
59) & = L [1+(1 = ¥)(M + Ao)] Naz —v Ny
: 27T BRI+ M+F M+t M+ 0= (M + )2+ M)
€l = 0. ' -

- In the above formulae o and a, are the linear coeflicients of thermal expan-
" sion of the matrix, and of the fibre in the r-th family.

Moreover, as an example we give the formulae for the bending and twist-
ing moments

Mii = —Dpwai—v(D+ Dihwa
' Eh? 0, o
+-§—(A1C1 +Aa(s} €11~ M,
(5.10) My, = -D(1-r)wss,

My = —v(D+ DL)ws— Dyaw e
Eh? 0
+= (AaC2 + M) E59— Mo -
To conclude, let us state two particular cases.
1) The reinforcement is disposed symmetrically with respect to the mid-
dle plane, In this case one has Ay = A3, Ay = My, 23 = —215 24 = —2p
and '

1
(5.11) Dl ==

2
2) The reinforcement is only in the bottom layer.
Taking Az = A4 = 0 one gets

1
Er®M(}, Diy=0, Dj= EEh?’AgC%. :

1 MG+ A2)
I _ Y43 181
Du - 4Eh 1+/\1+/\2+(1—V2)A1)\2 ’
([ 1 A1A2(ia
(5. Dl = -Em® 172
(5.12) 12 iEhy + 2+ A+ (1 -v2)AAy’
1 A2C3(1 4 X\)
1 _ 2pR3_ 252\ 1
D22 - 4Eh 1 + )\1 + )\2 -+- (1 - Vz)/\l)\z !
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The latter case is often encountered in the structural design of reinforced
concrete. It is related to the two-way reinforced slabs designed according
to the phase Ia. The stiffness constants of plates with technical orthotropy
have been given by many authors for a long time. In the monograph [11
KACZKOWSKI gives the formulae which go back to Huber:

DI _ Eha )\1C12
7 g1-v)1+ N
' ER?  M(2
(513) DI, = 262

A=) 1+ A’

Eh ((h? | M2 Y[R | Xz
Dy = i 2y A )
S P (12‘L1+,\1 127 T+

The first two of the formulae (5.13) show some similarity to the formulae -
(5.12)1,3, though they are “poorer” than the latter ones {no coupling between ' |
the two directions). The formula (5.13)3 is not comparable with (5.12),
More simplified formulae of this kind were given in other papers devoted to :
reinforced slabs (e.g.[15]).
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